ICS853011BMLF [ICSI]

LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER; 低偏移, 1到2差分至2.5V / 3.3V LVPECL / ECL扇出缓冲器
ICS853011BMLF
型号: ICS853011BMLF
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
低偏移, 1到2差分至2.5V / 3.3V LVPECL / ECL扇出缓冲器

逻辑集成电路 光电二极管 驱动
文件: 总16页 (文件大小:214K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS853011  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
GENERAL DESCRIPTION  
FEATURES  
The ICS853011 is a low skew, high perfor- 2 differential 2.5V/3.3V LVPECL / ECL outputs  
ICS  
mance 1-to-2 Differential-to-2.5V/3.3V LVPECL/  
1 differential PCLK, nPCLK input pair  
HiPerClockS™  
ECL Fanout Buffer and a member of the  
HiPerClockS™ family of High Performance  
Clock Solutions from ICS. The ICS853011  
PCLK, nPCLK pair can accept the following  
differential input levels: LVPECL, LVDS, CML, SSTL  
is characterized to operate from either a 2.5V or a 3.3V  
power supply. Guaranteed output and part-to-part skew  
characteristics make the ICS853011 ideal for those  
clock distribution applications demanding well defined  
performance and repeatability.  
Maximum output frequency: >3GHz  
Translates any single ended input signal to 3.3V  
LVPECL levels with resistor bias on nPCLK input  
Output skew: 5ps (typical)  
Part-to-part skew: 130ps (maximum)  
Propagation delay: 390ps (maximum)  
Additive phase jitter, RMS: 0.06ps (typical)  
LVPECL mode operating voltage supply range:  
VCC = 2.375V to 3.8V, VEE = 0V  
ECL mode operating voltage supply range:  
VCC = 0V, VEE = -3.8V to -2.375V  
-40°C to 85°C ambient operating temperature  
Available in both, Standard and RoHS/Lead-Free compliant  
packages  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
Q0  
nQ0  
Q1  
Vcc  
1
2
3
4
8
7
6
5
Q0  
nQ0  
PCLK  
nPCLK  
VEE  
PCLK  
nPCLK  
Q1  
nQ1  
nQ1  
ICS853011  
8-Lead SOIC  
3.90mm x 4.90mm x 1.37mm package body  
M Package  
TopView  
853011BM  
www.icst.com/products/hiperclocks.html  
REV. C JULY 13, 2005  
1
ICS853011  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 1. PIN DESCRIPTIONS  
Number  
1, 2  
Name  
Q0, nQ0  
Q1, nQ1  
VEE  
Type  
Description  
Output  
Output  
Power  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Negative supply pin.  
3, 4  
5
Pullup/  
Pulldown  
6
nPCLK  
Input  
Clock input. VCC/2 default when left floating. LVPECL interface levels.  
7
8
PCLK  
VCC  
Input  
Pulldown Clock input. Default LOW when left floating. LVPECL interface levels.  
Positive supply pin.  
Power  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
RPULLDOWN  
RVCC/2  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Input Pulldown Resistor  
Pullup/Pulldown Resistors  
75  
50  
kΩ  
kΩ  
853011BM  
www.icst.com/products/hiperclocks.html  
REV. C JULY 13, 2005  
2
ICS853011  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, VCC  
4.6V (LVPECL mode, VEE = 0) NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage  
to the device. These ratings are stress specifi-  
cations only. Functional operation of product at  
these conditions or any conditions beyond those  
listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maxi-  
mum rating conditions for extended periods may  
affect product reliability.  
Negative SupplyVoltage,VEE  
Inputs,VI (LVPECL mode)  
Inputs, VI (ECL mode)  
-4.6V (ECL mode, VCC = 0)  
-0.5V to VCC + 0.5V  
0.5V to VEE - 0.5V  
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
OperatingTemperature Range, TA -40°C to +85°C  
StorageTemperature, TSTG -65°C to 150°C  
PackageThermal Impedance, θJA 112.7°C/W (0 lfpm)  
(Junction-to-Ambient)  
TABLE 3A. POWER SUPPLY DC CHARACTERISTICS, VCC = 2.375V TO 3.8V; VEE = 0V  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VCC  
IEE  
Positive Supply Voltage  
Power Supply Current  
2.375  
3.3  
3.8  
25  
V
mA  
TABLE 3B. LVPECL DC CHARACTERISTICS, VCC = 3.3V; VEE = 0V  
-40°C  
25°C  
85°C  
Typ  
Symbol Parameter  
Units  
Min  
2.175 2.275 2.38 2.225 2.295 2.37  
1.405 1.545 1.68 1.425  
Typ  
Max  
Min  
Typ  
Max  
Min  
Max  
2.22  
2.295 2.365  
1.535 1.63  
V
V
V
VOH  
VOL  
VPP  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Input Voltage  
1.52 1.615 1.44  
150  
1.2  
800  
1200  
3.3  
150  
1.2  
800  
1200  
3.3  
150  
1.2  
800  
1200  
3.3  
Input High Voltage  
Common Mode Range; NOTE 2, 3  
V
VCMR  
IIH  
Input  
150  
150  
150  
µA  
PCLK, nPCLK  
High Current  
-10  
-10  
µA  
µA  
PCLK  
-10  
Input  
Low Current  
IIL  
-150  
-150  
nPCLK  
-150  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50Ω to VCCO - 2V.  
NOTE 2: Common mode voltage is defined as VIH.  
NOTE 3: For single-ended applications, the maximum input voltage for PCLK, nPCLK is VCC + 0.3V.  
TABLE 3C. LVPECL DC CHARACTERISTICS, VCC = 2.5V; VEE = 0V  
-40°C  
Typ  
25°C  
Typ  
85°C  
Typ  
Symbol Parameter  
Units  
Min  
Max  
Min  
Max  
Min  
Max  
1.375 1.475 1.58  
0.605 0.745 0.88  
1.425 1.495 1.57  
1.42 1.495 1.565  
V
V
V
VOH  
VOL  
VPP  
Output High Voltage; NOTE 1  
0.625 0.72 0.815 0.64 0.735 0.83  
Output Low Voltage; NOTE 1  
Peak-to-Peak Input Voltage  
150  
1.2  
800  
1200  
2.5  
150  
1.2  
800  
1200  
2.5  
150  
1.2  
800  
1200  
2.5  
Input High Voltage  
Common Mode Range; NOTE 2, 3  
V
VCMR  
IIH  
Input  
150  
150  
150  
µA  
PCLK, nPCLK  
High Current  
-10  
-10  
-10  
µA  
µA  
PCLK  
Input  
Low Current  
IIL  
-150  
-150  
-150  
nPCLK  
For notes see above Table 3B, 3.3V LVPECL DC Characteristics.  
853011BM  
www.icst.com/products/hiperclocks.html  
REV. C JULY 13, 2005  
3
ICS853011  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 3D. ECL DC CHARACTERISTICS, VCC = 0V; VEE = -3.8V TO -2.375V  
-40°C  
25°C  
Typ Max  
85°C  
Typ Max  
Symbol Parameter  
Units  
Min  
-1.125  
-1.895  
150  
Typ Max  
Min  
-1.075  
-1.875  
150  
Min  
-1.08  
-1.86  
150  
-1.025  
-1.755  
800  
-0.92  
-1.62  
1200  
-1.005  
-1.78  
800  
-0.93  
-1.685  
1200  
-1.005 -0.935  
V
V
V
VOH  
VOL  
VPP  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Input Voltage  
-1.765  
800  
-1.67  
1200  
Input High Voltage  
Common Mode Range; NOTE 2, 3  
VEE+1.2V  
0
VEE+1.2V  
0
VEE+1.2V  
0
V
VCMR  
IIH  
Input  
150  
150  
150  
µA  
PCLK, nPCLK  
High Current  
-10  
-10  
-10  
µA  
µA  
Input  
PCLK  
IIL  
-150  
-150  
-150  
Low Current nPCLK  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50Ω to VCCO - 2V.  
NOTE 2: Common mode voltage is defined as VIH.  
NOTE 3: For single-ended applications, the maximum input voltage for PCLK, nPCLK is VCC + 0.3V.  
TABLE 4. AC CHARACTERISTICS, VCC = 0V; VEE = -3.8V TO -2.375V OR VCC = 2.375 TO 3.8V; VEE = 0V  
-40°C  
Min Typ  
25°C  
Max Min Typ  
85°C  
Symbol Parameter  
Units  
Max Min Typ  
Max  
>3  
fMAX  
Output Frequency  
>3  
375  
20  
>3  
390  
20  
GHz  
ps  
tPD  
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 4  
245  
260  
275  
415  
20  
tsk(o)  
tsk(pp)  
5
5
5
ps  
Part-to-Part Skew; NOTE 3, 4  
130  
130  
150  
ps  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter Section,  
Integration Range: 12KHz to 20MHz  
tjit  
0.06  
0.06  
0.06  
ps  
tR/tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
20% to 80%  
70  
48  
250  
52  
80  
48  
250  
52  
100  
48  
250  
52  
ps  
%
f 1GHz  
50  
50  
50  
All parameters are measured at f 1.7GHz, unless otherwise noted.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load  
conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
853011BM  
www.icst.com/products/hiperclocks.html  
REV. C JULY 13, 2005  
4
ICS853011  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
ADDITIVE PHASE JITTER  
the 1Hz band to the power in the fundamental. When the re-  
quired offset is specified, the phase noise is called a dBc value,  
which simply means dBm at a specified offset from the funda-  
mental. By investigating jitter in the frequency domain, we get a  
better understanding of its effects on the desired application over  
the entire time record of the signal. It is mathematically possible  
to calculate an expected bit error rate given a phase noise plot.  
The spectral purity in a band at a specific offset from the funda-  
mental compared to the power of the fundamental is called the  
dBc Phase Noise. This value is normally expressed using a  
Phase noise plot and is most often the specified plot in many  
applications. Phase noise is defined as the ratio of the noise  
power present in a 1Hz band at a specified offset from the fun-  
damental frequency to the power value of the fundamental.This  
ratio is expressed in decibels (dBm) or a ratio of the power in  
0
-10  
-20  
-30  
-40  
Additive Phase Jitter  
155.52MHz@12kHz to 20MHz  
= 0.06ps (typical)  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FROM CARRIER FREQUENCY (HZ)  
As with most timing specifications, phase noise measurements vice meets the noise floor of what is shown, but can actually be  
have issues.The primary issue relates to the limitations of the lower. The phase noise is dependant on the input source and  
equipment. Often the noise floor of the equipment is higher than measurement equipment.  
the noise floor of the device. This is illustrated above. The de-  
853011BM  
www.icst.com/products/hiperclocks.html  
REV. C JULY 13, 2005  
5
ICS853011  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
VCC  
,
Qx  
VCCO  
nPCLK  
LVPECL  
VPP  
VCMR  
Cross Points  
PCLK  
VEE  
nQx  
VEE  
-1.8V to -0.375V  
OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nQx  
PART 1  
Qx  
nQx  
Qx  
nQy  
nQy  
PART 2  
Qy  
Qy  
tsk(pp)  
tsk(o)  
PART-TO-PART SKEW  
OUTPUT SKEW  
nPCLK  
PCLK  
80%  
tF  
80%  
VSWING  
20%  
nQ0, nQ1  
Clock  
20%  
Outputs  
tR  
Q0, Q1  
tPD  
OUTPUT RISE/FALL TIME  
PROPAGATION DELAY  
nQ0, nQ1  
Q0, Q1  
tPW  
tPERIOD  
tPW  
odc =  
x 100%  
tPERIOD  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
853011BM  
www.icst.com/products/hiperclocks.html  
REV. C JULY 13, 2005  
6
ICS853011  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 1 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = VCC/2 is  
generated by the bias resistors R1, R2 and C1.This bias circuit  
should be located as close as possible to the input pin.The ratio  
of R1 and R2 might need to be adjusted to position theV_REF in  
the center of the input voltage swing. For example, if the input  
clock swing is only 2.5V andVCC = 3.3V, V_REF should be 1.25V  
and R2/R1 = 0.609.  
VCC  
R1  
1K  
Single Ended Clock Input  
V_REF  
PCLK  
nPCLK  
C1  
0.1u  
R2  
1K  
FIGURE 1. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
TERMINATION FOR 3.3V LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs.The two different layouts mentioned  
are recommended only as guidelines.  
50Ω transmission lines. Matched impedance techniques should  
be used to maximize operating frequency and minimize signal  
distortion. Figures 2A and 2B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs.Therefore, terminating  
resistors (DC current path to ground) or current sources must  
be used for functionality. These outputs are designed to drive  
3.3V  
Zo = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
84Ω  
84Ω  
((VOH + VOL) / (VCC – 2)) – 2  
FIGURE 2A. LVPECL OUTPUT TERMINATION  
FIGURE 2B. LVPECL OUTPUT TERMINATION  
853011BM  
www.icst.com/products/hiperclocks.html  
REV. C JULY 13, 2005  
7
ICS853011  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TERMINATION FOR 2.5V LVPECL OUTPUT  
Figure 3A and Figure 3B show examples of termination for 2.5V ground level. The R3 in Figure 3B can be eliminated and the  
LVPECL driver.These terminations are equivalent to terminat- termination is shown in Figure 3C.  
ing 50Ω to VCC - 2V. For VCC = 2.5V, the VCC - 2V is very close to  
2.5V  
2.5V  
2.5V  
VCCO=2.5V  
VCCO=2.5V  
R1  
R3  
250  
250  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
+
-
2,5V LVPECL  
Driver  
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 3A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
FIGURE 3B. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
2.5V  
VCCO=2.5V  
Zo = 50 Ohm  
+
Zo = 50 Ohm  
-
2,5V LVPECL  
Driver  
R1  
50  
R2  
50  
FIGURE 3C. 2.5V LVPECL TERMINATION EXAMPLE  
853011BM  
www.icst.com/products/hiperclocks.html  
REV. C JULY 13, 2005  
8
ICS853011  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
LVPECL CLOCK INPUT INTERFACE  
The PCLK /nPCLK accepts LVPECL, CML, SSTL and other here are examples only. If the driver is from another vendor,  
differential signals. Both VSWING and VOH must meet the VPP use their termination recommendation. Please consult with the  
vendor of the driver component to confirm the driver termina-  
tion requirements.  
and VCMR input requirements. Figures 4A to 4E show interface  
examples for the HiPerClockS PCLK/nPCLK input driven by  
the most common driver types.The input interfaces suggested  
2.5V  
3.3V  
3.3V  
3.3V  
2.5V  
3.3V  
R3  
120  
R4  
120  
R1  
50  
R2  
50  
SSTL  
Zo = 60 Ohm  
Zo = 60 Ohm  
CML  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
PCLK  
nPCLK  
HiPerClockS  
PCLK/nPCLK  
nPCLK  
HiPerClockS  
R1  
120  
R2  
120  
PCLK/nPCLK  
FIGURE 4A. HIPERCLOCKS PCLK/NPCLK INPUT DRIVEN  
BY A CML DRIVER  
FIGURE 4B. HIPERCLOCKS PCLK/NPCLK INPUT DRIVEN  
BY AN SSTL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
R4  
Zo = 50 Ohm  
R3  
1K  
R4  
1K  
125  
125  
C1  
C2  
Zo = 50 Ohm  
Zo = 50 Ohm  
LVDS  
PCLK  
PCLK  
R5  
100  
nPCLK  
Zo = 50 Ohm  
HiPerClockS  
PCLK/nPCLK  
nPCLK  
HiPerClockS  
Input  
LVPECL  
R1  
1K  
R2  
1K  
R1  
84  
R2  
84  
FIGURE 4C. HIPERCLOCKS PCLK/NPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER  
FIGURE 4D. HIPERCLOCKS PCLK/NPCLK INPUT DRIVEN  
BY A 3.3V LVDS DRIVER  
3.3V  
3.3V  
3.3V  
R3  
84  
R4  
84  
C1  
C2  
3.3V LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
nPCLK  
HiPerClockS  
PCLK/nPCLK  
R5  
100 - 200  
R6  
100 - 200  
R1  
125  
R2  
125  
FIGURE 4E. HIPERCLOCKS PCLK/NPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER WITH AC COUPLE  
853011BM  
www.icst.com/products/hiperclocks.html  
REV. C JULY 13, 2005  
9
ICS853011  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
INPUTS:  
CRYSTAL INPUT:  
OUTPUTS:  
LVCMOS OUTPUT:  
For applications not requiring the use of the crystal oscillator All unused LVCMOS output can be left floating.We recommend  
input, both XTAL_IN and XTAL_OUT can be left floating.Though that there is no trace attached.  
not required, but for additional protection, a 1kΩ resister can be  
tied from XTAL_IN to ground.  
LVPECL OUTPUT  
All unused LVPECL outputs can be left floating.We recommend  
that there is no trace attached. Both sides of the differential  
CLK INPUT:  
For applications not requiring the use of the test clock, it can be output pair should either be left floating or terminated.  
left floating.Though not required, but for additional protection, a  
1kΩ resister can be tied from the CLK input to ground.  
LVHSTL OUTPUT  
All unused LVHSTL outputs can be left floating.We recommend  
TEST_CLK INPUT:  
that there is no trace attached. Both sides of the differential  
For applications not requiring the use of the test clock, it can be output pair should either be left floating or terminated.  
left floating.Though not required, but for additional protection, a  
1kΩ resister can be tied from the TEST_CLK to ground.  
LVDS OUTPUT  
All unused LVDS outputs should be terminated with 100Ω resister  
between the differential pair.  
CLK/nCLK INPUT:  
For applications not requiring the use of the differential input,  
both CLK and nCLK can be left floating. Though not required,  
LVDS – Like OUTPUT  
but for additional protection, a 1kΩ resister can be tied from CLK All unused LVDS outputs can be left floating.We recommend  
to ground.  
that there is no trace attached. Both sides of the differential  
output pair should either be left floating or terminated.  
PCLK/nPCLK INPUT:  
For applications not requiring the use of a differential input, both  
HCSL OUTPUT  
the PCLK and nPCLK pins can be left floating. Though not All unused HCSL outputs can be left floating.We recommend  
required, but for additional protection, a 1kΩ resister can be tied that there is no trace attached. Both sides of the differential  
from PCLK to ground.  
output pair should either be left floating or terminated.  
SELECT PINS:  
SSTL OUTPUT  
All select pins have internal pull-ups and pull-downs; additional All unused SSTL outputs can be left floating. We recommend  
resistance is not required but can be added for additional that there is no trace attached. Both sides of the differential  
protection. A 1kΩ resister can be used.  
output pair should either be left floating or terminated.  
853011BM  
www.icst.com/products/hiperclocks.html  
REV. C JULY 13, 2005  
10  
ICS853011  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS853011.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS853011 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.8V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.8V * 25mA = 95mW  
Power (outputs)MAX = 30.94mW/Loaded Output pair  
If all outputs are loaded, the total power is 2 * 30.94mW = 61.88mW  
Total Power_MAX (3.8V, with all outputs switching) = 95mW + 61.88mW = 156.88mW  
2. JunctionTemperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total =Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 103.3°C/W perTable 5 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.157W * 103.3°C/W = 101.2°C. This is well below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 5. THERMAL RESISTANCE θJA FOR 8-PIN SOIC, FORCED CONVECTION  
θJA byVelocity (Linear Feet per Minute)  
0
200  
128.5°C/W  
103.3°C/W  
500  
115.5°C/W  
97.1°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
153.3°C/W  
112.7°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
853011BM  
www.icst.com/products/hiperclocks.html  
REV. C JULY 13, 2005  
11  
ICS853011  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 5.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 5. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage of V - 2V.  
CC  
For logic high,VOUT = V  
= V  
–0.935V  
OH_MAX  
CC_MAX  
)
= 0.935V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, VOUT = V  
= V  
– 1.67V  
OL_MAX  
CC_MAX  
)
= 1.67V  
OL_MAX  
(V  
- V  
CC_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
L
L
[(2V - 0.935V)/50Ω] * 0.935V = 19.92mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
L
L
[(2V - 1.67V)/50Ω] * 1.67V = 11.02mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.94mW  
853011BM  
www.icst.com/products/hiperclocks.html  
REV. C JULY 13, 2005  
12  
ICS853011  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
RELIABILITY INFORMATION  
TABLE 6. θJAVS. AIR FLOW TABLE FOR 8 LEAD SOIC  
θJA byVelocity (Linear Feet per Minute)  
0
200  
128.5°C/W  
103.3°C/W  
500  
115.5°C/W  
97.1°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
153.3°C/W  
112.7°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS853011 is: 96  
Pin compatible with MC100LVEP11 and SY100EP11U  
853011BM  
www.icst.com/products/hiperclocks.html  
REV. C JULY 13, 2005  
13  
ICS853011  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
PACKAGE OUTLINE - M SUFFIX FOR 8 LEAD SOIC  
TABLE 7. PACKAGE DIMENSIONS  
Millimeters  
MINIMUN MAXIMUM  
SYMBOL  
N
A
A1  
B
C
D
E
e
8
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
1.27 BASIC  
H
h
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
L
α
Reference Document: JEDEC Publication 95, MS-012  
853011BM  
www.icst.com/products/hiperclocks.html  
REV. C JULY 13, 2005  
14  
ICS853011  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 8. ORDERING INFORMATION  
Part/Order Number  
ICS853011BM  
Marking  
Package  
8 lead SOIC  
Shipping Package  
tube  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
853011B  
853011B  
853011BL  
853011BL  
ICS853011BMT  
ICS853011BMLF  
ICS853011BMLFT  
8 lead SOIC  
2500 tape & reel  
tube  
"Lead Free" 8 lead SOIC  
"Lead Free" 8 lead SOI  
2500 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
The aforementioned trademark, HiPerClockS is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product  
for use in life support devices or critical medical instruments.  
853011BM  
www.icst.com/products/hiperclocks.html  
REV. C JULY 13, 2005  
15  
ICS853011  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
REVISION HISTORY SHEET  
Rev  
Table  
Page  
Description of Change  
Date  
T3B  
T3C  
T3D  
3
3.3V LVPECL Table - changed VOH @ 85° , from 2.295V min. to 2.22V min.  
and 2.33V typical to 2.295V typical.  
4
4
2.5V LVPECL Table - changed VOH @ 85°, from 1.495V min. to 1.42V min. and  
1.53V typical to 1.495V typical.  
B
9/2/03  
ECL Table - changed VOH @ 85°, from -1.005V min. to -1.08V min. and --  
0.97V typical to -1.005V typical.  
6
8
8
Updated LVPECL Output Termination Diagrams.  
Updated LVPECL Clock Input Inteface Figure 4D.  
Corrected Figure 4C.  
B
C
11/12/03  
9/7/04  
Added "Lead Free" Part/Order Number rows.  
AC Characteristics Table - added Additive Phase Jitter.  
Added Additive Phase Jitter Section.  
13  
4
5
T4  
T8  
1
Features Section - added Lead-Free bullet.  
10  
15  
Added "Recommendations for Unused Input and Output Pins".  
C
7/13/05  
Ordering Information Table - corrected Lead-Free marking and added Lead-  
Free note.  
853011BM  
www.icst.com/products/hiperclocks.html  
REV. C JULY 13, 2005  
16  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY