ICS853011CG [ICSI]

LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER; 低偏移, 1到2差分至2.5V / 3.3V LVPECL / ECL扇出缓冲器
ICS853011CG
型号: ICS853011CG
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
低偏移, 1到2差分至2.5V / 3.3V LVPECL / ECL扇出缓冲器

逻辑集成电路 光电二极管 驱动
文件: 总14页 (文件大小:229K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
ICS853011C  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
SKEW, 1-TO-2  
D
IFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT  
B
UFFER  
GENERAL DESCRIPTION  
FEATURES  
The ICS853011C is a low skew, high perfor- 2 differential 2.5V/3.3V LVPECL / ECL outputs  
ICS  
mance 1-to-2 Differential-to-2.5V/3.3V LVPECL/  
1 differential PCLK, nPCLK input pair  
HiPerClockS™  
ECL Fanout Buffer and a member of the  
HiPerClockS ™ family of High Performance  
Clock Solutions from ICS. The ICS853011C  
PCLK, nPCLK pair can accept the following  
differential input levels: LVPECL, LVDS, CML, SSTL  
is characterized to operate from either a 2.5V or a 3.3V  
power supply. Guaranteed output and part-to-part skew  
characteristics make the ICS853011C ideal for those  
clock distribution applications demanding well defined  
performance and repeatability.  
Output frequency: 3GHz  
Translates any single ended input signal to 3.3V  
LVPECL levels with resistor bias on nPCLK input  
Output skew: 5ps (typical)  
Part-to-part skew: TBD  
Propagation delay: 250ps (typical)  
LVPECL mode operating voltage supply range:  
VCC = 2.375V to 3.8V, VEE = 0V  
ECL mode operating voltage supply range:  
VCC = 0V, VEE = -3.8V to -2.375V  
-40°C to 85°C ambient operating temperature  
Pin compatible with MC100LVEP11 and SY100EP11U  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
Q0  
nQ0  
Q1  
Vcc  
1
2
3
4
8
7
6
5
Q0  
nQ0  
PCLK  
nPCLK  
VEE  
PCLK  
nPCLK  
Q1  
nQ1  
nQ1  
ICS853011C  
8-Lead SOIC  
3.90mm x 4.90mm x 1.37mm package body  
M Package  
TopView  
ICS853011C  
8-LeadTSSOP, 118 mil  
3mm x 3mm x 0.95mm package body  
G Package  
TopView  
The Preliminary Information presented herein represents a product in prototyping or pre-production.The noted characteristics are based on initial  
product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice.  
853011CM  
www.icst.com/products/hiperclocks.html  
REV. A MARCH 19, 2004  
1
PRELIMINARY  
ICS853011C  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
SKEW, 1-TO-2  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
B
UFFER  
TABLE 1. PIN DESCRIPTIONS  
Number  
1, 2  
Name  
Q0, nQ0  
Q1, nQ1  
VEE  
Type  
Description  
Output  
Output  
Power  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Negative supply pin.  
3, 4  
5
Pullup/  
Pulldown  
6
nPCLK  
Input  
Clock input. LVPECL interface levels.  
7
8
PCLK  
VCC  
Input  
Pulldown Clock input. Default LOW when left floating. LVPECL interface levels.  
Positive supply pin.  
Power  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
RPULLDOWN Input Pulldown Resistor  
75  
37  
K  
KΩ  
RPULLUP  
Input Pullup Resistor  
853011CM  
www.icst.com/products/hiperclocks.html  
REV. A MARCH 19, 2004  
2
PRELIMINARY  
ICS853011C  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
SKEW, 1-TO-2  
D
IFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT  
B
UFFER  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, VCC  
4.6V (LVPECL mode, VEE = 0) NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage  
to the device. These ratings are stress specifi-  
cations only. Functional operation of product at  
these conditions or any conditions beyond those  
listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maxi-  
mum rating conditions for extended periods may  
affect product reliability.  
Negative Supply Voltage, VEE  
Inputs, VI (LVPECL mode)  
Inputs, VI (ECL mode)  
-4.6V (ECL mode, VCC = 0)  
-0.5V to VCC + 0.5V  
0.5V to VEE - 0.5V  
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
OperatingTemperature Range, TA -40°C to +85°C  
StorageTemperature,TSTG -65°C to 150°C  
PackageThermal Impedance, θJA 112.7°C/W (0 lfpm)  
(Junction-to-Ambient) for 8 Lead SOIC  
PackageThermal Impedance, θJA 101.7°C/W (0 m/s)  
(Junction-to-Ambient) for 8 Lead TSSOP  
TABLE 3A. POWER SUPPLY DC CHARACTERISTICS, VCC = 2.375V TO 3.8V; VEE = 0V  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
3.3  
Maximum Units  
VCC  
IEE  
Positive Supply Voltage  
Power Supply Current  
2.375  
3.8  
V
18  
mA  
TABLE 3B. LVPECL DC CHARACTERISTICS, VCC = 3.3V; VEE = 0V  
-40°C  
25°C  
85°C  
Typ  
Symbol Parameter  
Units  
Min  
Typ  
2.275  
1.545  
800  
Max  
Min  
Typ  
2.295  
1.52  
800  
Max  
Min  
Max  
2.295  
V
V
V
VOH  
VOL  
VPP  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Input Voltage  
1.535  
800  
Input High Voltage  
Common Mode Range; NOTE 2, 3  
V
VCMR  
IIH  
Input  
µA  
PCLK, nPCLK  
High Current  
µA  
µA  
PCLK  
Input  
Low Current  
IIL  
nPCLK  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50to VCCO - 2V.  
NOTE 2: Common mode voltage is defined as VIH.  
NOTE 3: For single-ended applications, the maximum input voltage for PCLK, nPCLK is VCC + 0.3V.  
853011CM  
www.icst.com/products/hiperclocks.html  
REV. A MARCH 19, 2004  
3
PRELIMINARY  
ICS853011C  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
SKEW, 1-TO-2  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
B
UFFER  
TABLE 3C. LVPECL DC CHARACTERISTICS, VCC = 2.5V; VEE = 0V  
-40°C  
25°C  
Typ  
85°C  
Typ  
Symbol Parameter  
Units  
Min  
Typ  
1.475  
0.745  
800  
Max  
Min  
Max  
Min  
Max  
1.495  
1.495  
V
V
V
VOH  
VOL  
VPP  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Input Voltage  
0.72  
800  
0.735  
800  
Input High Voltage  
Common Mode Range; NOTE 2, 3  
V
VCMR  
IIH  
Input  
µA  
PCLK, nPCLK  
High Current  
µA  
µA  
PCLK  
Input  
Low Current  
IIL  
nPCLK  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50to VCCO - 2V.  
NOTE 2: Common mode voltage is defined as VIH.  
NOTE 3: For single-ended applications, the maximum input voltage for PCLK, nPCLK is VCC + 0.3V.  
TABLE 3D. ECL DC CHARACTERISTICS, VCC = 0V; VEE = -3.8V TO -2.375V  
-40°C  
Typ Max  
25°C  
Typ Max  
85°C  
Symbol Parameter  
Units  
Min  
Min  
Min  
Typ Max  
-1.005  
-1.025  
-1.755  
800  
-1.005  
-1.78  
800  
V
V
V
VOH  
VOL  
VPP  
Output High Voltage; NOTE 1  
-1.765  
Output Low Voltage; NOTE 1  
Peak-to-Peak Input Voltage  
800  
Input High Voltage  
Common Mode Range; NOTE 2, 3  
V
VCMR  
IIH  
Input  
µA  
PCLK, nPCLK  
High Current  
µA  
µA  
Input  
PCLK  
IIL  
Low Current nPCLK  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50to VCCO - 2V.  
NOTE 2: Common mode voltage is defined as VIH.  
NOTE 3: For single-ended applications, the maximum input voltage for PCLK, nPCLK is VCC + 0.3V.  
TABLE 4. AC CHARACTERISTICS, VCC = 0V; VEE = -3.8V TO -2.375V OR VCC = 2.375 TO 3.8V; VEE = 0V  
-40°C  
Min Typ  
25°C  
Min Typ  
85°C  
Symbol Parameter  
Units  
Max  
Max  
Min Typ  
Max  
fMAX  
Output Frequency  
3
240  
5
3
250  
5
3
260  
5
GHz  
ps  
tPD  
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 4  
tsk(o)  
tsk(pp)  
tR/tF  
ps  
Part-to-Part Skew; NOTE 3, 4  
Output Rise/Fall Time 20% to 80%  
ps  
160  
50  
160  
50  
160  
50  
ps  
odc  
Output Duty Cycle  
f 1GHz  
%
All parameters are measured at f 1.7GHz, unless otherwise noted.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load  
conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
853011CM  
www.icst.com/products/hiperclocks.html  
REV. A MARCH 19, 2004  
4
PRELIMINARY  
ICS853011C  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
S
KEW, 1-TO-2  
D
IFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT  
B
UFFER  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
VCC  
Qx  
nPCLK  
LVPECL  
VPP  
VCMR  
Cross Points  
PCLK  
VEE  
nQx  
VEE  
-1.8V to -0.375V  
OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nQx  
PART 1  
Qx  
nQx  
Qx  
nQy  
nQy  
PART 2  
Qy  
Qy  
tsk(pp)  
tsk(o)  
PART-TO-PART SKEW  
OUTPUT SKEW  
nPCLK  
PCLK  
80%  
tF  
80%  
VSWING  
20%  
nQ0, nQ1  
Clock  
20%  
Outputs  
tR  
Q0, Q1  
tPD  
OUTPUT RISE/FALL TIME  
PROPAGATION DELAY  
nQ0, nQ1  
Q0, Q1  
Pulse Width  
tPERIOD  
tPW  
odc =  
tPERIOD  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
853011CM  
www.icst.com/products/hiperclocks.html  
REV. A MARCH 19, 2004  
5
PRELIMINARY  
ICS853011C  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
SKEW, 1-TO-2  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
B
UFFER  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 1 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = VCC/2 is  
generated by the bias resistors R1, R2 and C1.This bias circuit  
should be located as close as possible to the input pin.The ratio  
of R1 and R2 might need to be adjusted to position theV_REF in  
the center of the input voltage swing. For example, if the input  
clock swing is only 2.5V andVCC = 3.3V, V_REF should be 1.25V  
and R2/R1 = 0.609.  
VCC  
R1  
1K  
Single Ended Clock Input  
V_REF  
PCLK  
nPCLK  
C1  
0.1u  
R2  
1K  
FIGURE 1. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
TERMINATION FOR 3.3V LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs.The two different layouts mentioned  
are recommended only as guidelines.  
50transmission lines. Matched impedance techniques should  
be used to maximize operating frequency and minimize signal  
distortion. Figures 2A and 2B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs.Therefore, terminating  
resistors (DC current path to ground) or current sources must  
be used for functionality. These outputs are designed to drive  
3.3V  
Zo = 50  
125  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
84Ω  
84Ω  
((VOH + VOL) / (VCC – 2)) – 2  
FIGURE 2A. LVPECL OUTPUT TERMINATION  
FIGURE 2B. LVPECL OUTPUT TERMINATION  
853011CM  
www.icst.com/products/hiperclocks.html  
REV. A MARCH 19, 2004  
6
PRELIMINARY  
ICS853011C  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
SKEW, 1-TO-2  
D
IFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT  
B
UFFER  
TERMINATION FOR 2.5V LVPECL OUTPUT  
Figure 3A and Figure 3B show examples of termination for 2.5V ground level. The R3 in Figure 3B can be eliminated and the  
LVPECL driver.These terminations are equivalent to terminat- termination is shown in Figure 3C.  
ing 50to VCC - 2V. For VCC = 2.5V, the VCC - 2V is very close to  
2.5V  
2.5V  
2.5V  
VCCO=2.5V  
VCCO=2.5V  
R1  
R3  
250  
250  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
+
-
2,5V LVPECL  
Driver  
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 3A. 2.5V LVPECL DRIVER  
T
ERMINATION  
EXAMPLE  
FIGURE 3B. 2.5V LVPECL DRIVER  
T
ERMINATION  
E
XAMPLE  
2.5V  
VCCO=2.5V  
Zo = 50 Ohm  
+
-
Zo = 50 Ohm  
2,5V LVPECL  
Driver  
R1  
50  
R2  
50  
FIGURE 3C. 2.5V LVPECL TERMINATION EXAMPLE  
853011CM  
www.icst.com/products/hiperclocks.html  
REV. A MARCH 19, 2004  
7
PRELIMINARY  
ICS853011C  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
SKEW, 1-TO-2  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
B
UFFER  
LVPECL CLOCK INPUT INTERFACE  
The PCLK /nPCLK accepts LVPECL, CML, SSTL and other here are examples only. If the driver is from another vendor,  
differential signals. Both VSWING and VOH must meet the VPP use their termination recommendation. Please consult with the  
and VCMR input requirements. Figures 4A to 4E show interface vendor of the driver component to confirm the driver termina-  
examples for the HiPerClockS PCLK/nPCLK input driven by tion requirements.  
the most common driver types.The input interfaces suggested  
2.5V  
3.3V  
3.3V  
3.3V  
2.5V  
3.3V  
R3  
120  
R4  
120  
R1  
50  
R2  
50  
SSTL  
Zo = 60 Ohm  
Zo = 60 Ohm  
CML  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
PCLK  
nPCLK  
HiPerClockS  
PCLK/nPCLK  
nPCLK  
HiPerClockS  
R1  
120  
R2  
120  
PCLK/nPCLK  
FIGURE 4A. HIPERCLOCKS PCLK/NPCLK INPUT DRIVEN  
BY A CML DRIVER  
FIGURE 4B. HIPERCLOCKS PCLK/NPCLK INPUT DRIVEN  
BY AN SSTL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
Zo = 50 Ohm  
R3  
1K  
R4  
1K  
C1  
C2  
Zo = 50 Ohm  
Zo = 50 Ohm  
LVDS  
PCLK  
PCLK  
R5  
100  
nPCLK  
Zo = 50 Ohm  
HiPerClockS  
PCLK/nPCLK  
nPCLK  
HiPerClockS  
Input  
LVPECL  
R1  
1K  
R2  
1K  
R1  
84  
R2  
84  
FIGURE 4C. HIPERCLOCKS PCLK/NPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER  
FIGURE 4D. HIPERCLOCKS PCLK/NPCLK INPUT DRIVEN  
BY A 3.3V LVDS DRIVER  
3.3V  
3.3V  
3.3V  
R3  
84  
R4  
84  
C1  
C2  
3.3V LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
nPCLK  
HiPerClockS  
PCLK/nPCLK  
R5  
100 - 200  
R6  
100 - 200  
R1  
125  
R2  
125  
FIGURE 4E. HIPERCLOCKS PCLK/NPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER WITH AC COUPLE  
853011CM  
www.icst.com/products/hiperclocks.html  
REV. A MARCH 19, 2004  
8
PRELIMINARY  
ICS853011C  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
SKEW, 1-TO-2  
D
IFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT  
B
UFFER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS853011C.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS853011C is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.8V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.8V * 18mA = 68.4mW  
Power (outputs)MAX = 30.94mW/Loaded Output pair  
If all outputs are loaded, the total power is 2 * 30.94mW = 61.88mW  
Total Power_MAX (3.8V, with all outputs switching) = 68.4mW + 61.88mW = 130.3mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total =Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 103.3°C/W perTable 5A below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.130W * 103.3°C/W = 98.4°C. This is well below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 5A. THERMAL RESISTANCE θJA FOR 8-PIN SOIC, FORCED CONVECTION  
θJA byVelocity (Linear Feet per Minute)  
0
200  
128.5°C/W  
103.3°C/W  
500  
115.5°C/W  
97.1°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
153.3°C/W  
112.7°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TABLE 5B. THERMAL RESISTANCE θJA FOR 8-PIN TSSOP, FORCED CONVECTION  
θJA byVelocity (Meters per Second)  
0
1
2
Multi-Layer PCB, JEDEC Standard Test Boards  
101.7°C/W  
90.5°C/W  
89.8°C/W  
853011CM  
www.icst.com/products/hiperclocks.html  
REV. A MARCH 19, 2004  
9
PRELIMINARY  
ICS853011C  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
SKEW, 1-TO-2  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
B
UFFER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 5.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 5. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage of V - 2V.  
CC  
For logic high, VOUT = V  
= V  
–0.935V  
OH_MAX  
CC_MAX  
)
= 0.935V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, VOUT = V  
= V  
– 1.67V  
OL_MAX  
CC_MAX  
)
= 1.67V  
OL_MAX  
(V  
- V  
CC_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
L
L
[(2V - 0.935V)/50] * 0.935V = 19.92mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
/R ] * (V  
- V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
L
L
[(2V - 1.67V)/50] * 1.67V = 11.02mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.94mW  
853011CM  
www.icst.com/products/hiperclocks.html  
REV. A MARCH 19, 2004  
10  
PRELIMINARY  
ICS853011C  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
SKEW, 1-TO-2  
D
IFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT  
B
UFFER  
RELIABILITY INFORMATION  
TABLE 6A. θJAVS. AIR FLOW TABLE FOR 8 LEAD SOIC  
θJA byVelocity (Linear Feet per Minute)  
0
200  
128.5°C/W  
103.3°C/W  
500  
115.5°C/W  
97.1°C/W  
Single-Layer PCB, JEDEC StandardTest Boards  
Multi-Layer PCB, JEDEC StandardTest Boards  
153.3°C/W  
112.7°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TABLE 6B. θJAVS. AIR FLOW TABLE FOR 8 LEAD TSSOP  
θJA byVelocity (Meters per Second)  
0
1
2
Multi-Layer PCB, JEDEC Standard Test Boards  
101.7°C/W  
90.5°C/W  
89.8°C/W  
TRANSISTOR COUNT  
The transistor count for ICS853011C is: 96  
853011CM  
www.icst.com/products/hiperclocks.html  
REV. A MARCH 19, 2004  
11  
PRELIMINARY  
ICS853011C  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
SKEW, 1-TO-2  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
B
UFFER  
PACKAGE OUTLINE - M SUFFIX FOR 8 LEAD SOIC  
TABLE 7A. PACKAGE DIMENSIONS  
Millimeters  
SYMBOL  
MINIMUN  
MAXIMUM  
N
A
A1  
B
C
D
E
e
8
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
1.27 BASIC  
H
h
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
L
α
Reference Document: JEDEC Publication 95, MS-012  
853011CM  
www.icst.com/products/hiperclocks.html  
REV. A MARCH 19, 2004  
12  
PRELIMINARY  
ICS853011C  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
SKEW, 1-TO-2  
D
IFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT  
B
UFFER  
PACKAGE OUTLINE - G SUFFIX FOR 8 LEAD TSSOP  
TABLE 7B. PACKAGE DIMENSIONS  
Millimeters  
SYMBOL  
Minimum  
Maximum  
N
A
8
--  
1.10  
0.15  
0.97  
0.38  
0.23  
A1  
A2  
b
0
0.79  
0.22  
0.08  
c
D
3.00 BASIC  
4.90 BASIC  
3.00 BASIC  
0.65 BASIC  
1.95 BASIC  
E
E1  
e
e1  
L
0.40  
0°  
0.80  
8°  
α
aaa  
--  
0.10  
Reference Document: JEDEC Publication 95, MO-187  
853011CM  
www.icst.com/products/hiperclocks.html  
REV. A MARCH 19, 2004  
13  
PRELIMINARY  
ICS853011C  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
SKEW, 1-TO-2  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
B
UFFER  
TABLE 8. ORDERING INFORMATION  
Part/Order Number  
ICS853011CM  
Marking  
853011C  
853011C  
3011CLF  
3011CLF  
011C  
Package  
Count  
96 per tube  
2500  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
8 lead SOIC  
ICS853011CMT  
ICS853011CMLF  
ICS853011CMLFT  
ICS853011CG  
8 lead SOIC on Tape and Reel  
"Lead Free" 8 lead SOIC  
96 per tube  
2500  
"Lead Free" 8 lead SOIC on Tape and Reel  
8 lead TSSOP  
96 per tube  
2500  
ICS853011CGT  
011C  
8 lead TSSOP on Tape and Reel  
The aforementioned trademark, HiPerClockS™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product  
for use in life support devices or critical medical instruments.  
853011CM  
www.icst.com/products/hiperclocks.html  
REV. A MARCH 19, 2004  
14  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY