ICS853013AMLF [ICSI]

LOW SKEW, DUAL, 1-TO-3, DIFFERENTIAL-TO-2.5V/3.3V/5V LVPECL/ECL FANOUT BUFFER; 低歪曲率,双通道, 1 - TO- 3 ,差分至2.5V / 3.3V / 5V LVPECL / ECL扇出缓冲器
ICS853013AMLF
型号: ICS853013AMLF
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

LOW SKEW, DUAL, 1-TO-3, DIFFERENTIAL-TO-2.5V/3.3V/5V LVPECL/ECL FANOUT BUFFER
低歪曲率,双通道, 1 - TO- 3 ,差分至2.5V / 3.3V / 5V LVPECL / ECL扇出缓冲器

逻辑集成电路 光电二极管 驱动
文件: 总17页 (文件大小:218K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS853013  
LOW SKEW, DUAL, 1-TO-3, DIFFERENTIAL-TO-  
2.5V/3.3V/5V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
GENERAL DESCRIPTION  
FEATURES  
The ICS853013 is a low skew, high perfor- Two differential LVPECL / ECL bank outputs  
ICS  
HiPerClockS™  
mance dual 1-to-3 Differential-to-2.5V/3.3V/5V  
Two differential LVPECL clock input pairs  
LVPECL/ECL Fanout Buffer and a member of  
the HiperclocksTM family of High Performance  
PCLKx, nPCLKx pairs can accept the following  
differential input levels: LVPECL, LVDS, CML, SSTL  
Clock Solutions from ICS. The ICS853013  
operates with a positive or negative power supply at 2.5V,  
3.3V, or 5V. Guaranteed output and part-to-part skew  
characteristics make the ICS853013 ideal for those clock  
distribution applications demanding well defined perfor-  
mance and repeatability.  
Output frequency: >2GHz (typical)  
Translates any single ended input signal to  
LVPECL levels with resistor bias on nPCLKx input  
Output skew: 40ps (maximum)  
Part-to-part skew: 250ps (maximum)  
Propagation delay: 570ps (maximum)  
Additive phase jitter, RMS: 0.03ps (typical)  
LVPECL mode operating voltage supply range:  
VCC = 2.375V to 5.25V  
ECL mode operating voltage supply range:  
VCC = 0V, VEE = -5.25V to -2.375V  
-40°C to 85°C ambient operating temperature  
Available in both standard and lead-free RoHS-compliant  
packages  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
QA0  
QA1  
nQA1  
QA2  
nQA2  
VCC  
QB2  
nQB2  
QB1  
nQB1  
VEE  
nQA0  
QA0  
VCC  
PCLKA  
nPCLKA  
PCLKB  
nPCLKB  
VCC  
1
2
3
4
5
6
7
8
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
nQA0  
PCLKA  
nPCLKA  
QA1  
nQA1  
QA2  
nQA2  
nQB0  
QB0  
9
10  
QB0  
nQB0  
PCLKB  
ICS853013  
20-Lead, 300-MIL SOIC  
7.5mm x 12.8mm x 2.3mm body package  
M Package  
nPCLKB  
QB1  
nQB1  
QB2  
nQB2  
Top View  
853013AM  
www.icst.com/products/hiperclocks.html  
REV.A OCTOBER 19, 2005  
1
ICS853013  
LOW SKEW, DUAL, 1-TO-3, DIFFERENTIAL-TO-  
2.5V/3.3V/5V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 1. PIN DESCRIPTIONS  
Number  
1, 2  
Name  
nQA0, QA0  
VCC  
Type  
Description  
Output  
Power  
Input  
Differential output pair. LVPECL interface levels.  
Power supply pins.  
3, 8, 16  
4
PCLKA  
Pulldown Non-inverting differential LVPECL clock input.  
Pullup/  
5
6
7
nPCLKA  
PCLKB  
Input  
Input  
Input  
Inverting differential LVPECL clock input. VCC/2 default when left floating.  
Pulldown  
Pulldown Non-inverting differential LVPECL clock input.  
Pullup/  
nPCLKB  
Inverting differential LVPECL clock input. VCC/2 default when left floating.  
Pulldown  
9, 10  
11  
nQB0, QB0  
VEE  
Output  
Power  
Output  
Output  
Output  
Output  
Differential output pair. LVPECL interface levels.  
Negative supply pin.  
12, 13  
14, 15  
17, 18  
19, 20  
nQB1, QB1  
nQB2, QB2  
nQA2, QA2  
nQA1, QA1  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
RPULLDOWN Input Pulldown Resistor  
RVCC/2 Pullup/Pulldown Resistors  
Parameter  
Test Conditions  
Minimum  
Typical  
75  
Maximum  
Units  
kΩ  
50  
kΩ  
TABLE 3. CLOCK INPUT FUNCTION TABLE  
Inputs  
Outputs  
Input to Output Mode  
Polarity  
PCLKA or  
PCLKB  
nPCLKA or  
nPCLKB  
QA0:QA2,  
QB0:QB2  
nQA0:nQA2,  
nQB0:nQB2  
0
1
LOW  
HIGH  
LOW  
HIGH  
LOW  
LOW  
HIGH  
Differential to Differential  
Differential to Differential  
Single Ended to Differential  
Single Ended to Differential  
Single Ended to Differential  
Single Ended to Differential  
Non Inverting  
Non Inverting  
Non Inverting  
Non Inverting  
Inverting  
1
0
HIGH  
LOW  
HIGH  
HIGH  
LOW  
0
Biased; NOTE 1  
1
Biased; NOTE 1  
Biased; NOTE 1  
Biased; NOTE 1  
0
1
Inverting  
NOTE 1: Please refer to the Application Information, "Wiring the Differential Input to Accept Single Ended Levels".  
853013AM  
www.icst.com/products/hiperclocks.html  
REV.A OCTOBER 19, 2005  
2
ICS853013  
LOW SKEW, DUAL, 1-TO-3, DIFFERENTIAL-TO-  
2.5V/3.3V/5V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, VCC  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage  
to the device. These ratings are stress specifi-  
cations only. Functional operation of product at  
these conditions or any conditions beyond those  
listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maxi-  
mum rating conditions for extended periods may  
affect product reliability.  
5.5V (LVPECL mode, VEE = 0)  
-5.5V (ECL mode, VCC = 0)  
-0.5V to VCC + 0.5V  
Negative Supply Voltage, VEE  
Inputs, VI (LVPECL mode)  
Inputs, VI (ECL mode)  
0.5V to VEE - 0.5V  
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
OperatingTemperature Range, TA -40°C to +85°C  
StorageTemperature,TSTG -65°C to 150°C  
PackageThermal Impedance, θJA 46.2°C/W (0 lfpm)  
(Junction-to-Ambient)  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = 2.375 TO 5.25V; VEE = 0V  
Symbol Parameter Test Conditions  
Minimum  
Typical  
Maximum Units  
VCC  
IEE  
Power Supply Voltage  
Power Supply Current  
2.375  
3.3  
5.25  
60  
V
mA  
TABLE 4B. LVPECL DC CHARACTERISTICS, VCC = 3.3V; VEE = 0V  
-40°C  
25°C  
85°C  
Typ  
Symbol Parameter  
Units  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Max  
2.175 2.275 2.38 2.225 2.295 2.37 2.295 2.33 2.365  
1.405 1.545 1.68 1.425 1.52 1.615 1.44 1.535 1.63  
V
V
V
V
VOH  
VOL  
VIH  
VIL  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Input High Voltage(Single-Ended)  
Input Low Voltage(Single-Ended)  
Peak-to-Peak Input Voltage  
2.075  
1.43  
150  
2.36 2.075  
1.765 1.43  
2.36 2.075  
1.765 1.43  
2.36  
1.765  
1200  
800  
1200  
3.3  
150  
1.2  
800  
1200  
3.3  
150  
1.2  
800  
VPP  
mV  
Input High Voltage  
Common Mode Range; NOTE 2, 3  
1.2  
3.3  
V
VCMR  
IIH  
Input  
PCLKA, PCLKB  
150  
150  
150  
µA  
High Current nPCLKA, nPCLKB  
-10  
-10  
µA  
µA  
PCLKA, PCLKB  
-10  
Input  
Low Current  
IIL  
-150  
-150  
nPCLKA, nPCLKB  
-150  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50Ω to VCC - 2V.  
NOTE 2: Common mode voltage is defined as VIH.  
NOTE 3: For single-ended applications, the maximum input voltage for PCLKA, nPCLKB and PCLKA, nPCLKB  
is VCC + 0.3V.  
853013AM  
www.icst.com/products/hiperclocks.html  
REV.A OCTOBER 19, 2005  
3
ICS853013  
LOW SKEW, DUAL, 1-TO-3, DIFFERENTIAL-TO-  
2.5V/3.3V/5V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 4C. LVPECL DC CHARACTERISTICS, VCC = 2.5V; VEE = 0V  
-40°C  
25°C  
Typ  
85°C  
Typ  
Symbol Parameter  
Units  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
1.375 1.475 1.58 1.425 1.495 1.57 1.495 1.53 1.565  
0.605 0.745 0.88 0.625 0.72 0.815 0.64 0.735 0.83  
V
V
V
V
VOH  
VOL  
VIH  
VIL  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Input High Voltage(Single-Ended)  
Input Low Voltage(Single-Ended)  
Peak-to-Peak Input Voltage  
1.275  
0.63  
150  
1.56 1.275  
0.965 0.63  
1.56 1.275  
0.965 0.63  
-0.83  
0.965  
1200  
800  
1200  
2.5  
150  
1.2  
800  
1200  
2.5  
150  
1.2  
800  
VPP  
mV  
Input High Voltage  
Common Mode Range; NOTE 2, 3  
1.2  
2.5  
V
VCMR  
IIH  
Input  
PCLKA, PCLKB  
150  
150  
150  
µA  
High Current nPCLKA, nPCLKB  
-10  
-10  
-10  
µA  
µA  
PCLKA, PCLKB  
Input  
Low Current  
IIL  
-150  
-150  
-150  
nPCLKA, nPCLKB  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50Ω to VCC - 2V.  
NOTE 2: Common mode voltage is defined as VIH.  
NOTE 3: For single-ended applications, the maximum input voltage for PCLKA, nPCLKB and PCLKA, nPCLKB  
is VCC + 0.3V.  
TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = 5V; VEE = 0V  
-40°C  
Typ Max  
25°C  
Typ Max  
85°C  
Typ Max  
Symbol Parameter  
Units  
Min  
-1.125  
-1.895  
-1.225  
-1.87  
Min  
-1.075  
-1.875  
-1.225  
-1.87  
Min  
-1.005  
-1.86  
-1.225  
-1.87  
150  
-1.025  
-1.755  
-0.92  
-1.62  
-0.94  
-1.535  
1200  
-1.005  
-1.78  
-0.93  
-1.685  
-0.94  
-0.97  
-0.935  
-1.67  
-0.94  
-1.535  
1200  
V
V
V
V
VOH  
VOL  
VIH  
VIL  
Output High Voltage; NOTE 1  
-1.765  
Output Low Voltage; NOTE 1  
Input High Voltage(Single-Ended)  
Input Low Voltage(Single-Ended)  
Peak-to-Peak Input Voltage  
-1.535  
1200  
150  
800  
150  
800  
800  
VPP  
mV  
Input High Voltage  
Common Mode Range; NOTE 2, 3  
VEE+1.2V  
0
VEE+1.2V  
0
VEE+1.2V  
0
V
VCMR  
IIH  
Input  
PCLKA, PCLKB  
150  
150  
150  
µA  
High Current nPCLKA, nPCLKB  
-10  
-10  
-10  
µA  
µA  
PCLKA, PCLKB  
Input  
Low Current  
IIL  
-150  
-150  
-150  
nPCLKA, nPCLKB  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50Ω to VCC - 2V.  
NOTE 2: Common mode voltage is defined as VIH.  
NOTE 3: For single-ended applications, the maximum input voltage for PCLKA, nPCLKB and PCLKA, nPCLKB  
is VCC + 0.3V.  
853013AM  
www.icst.com/products/hiperclocks.html  
REV.A OCTOBER 19, 2005  
4
ICS853013  
LOW SKEW, DUAL, 1-TO-3, DIFFERENTIAL-TO-  
2.5V/3.3V/5V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 4E. ECL DC CHARACTERISTICS, VCC = 0V; VEE = -5.25V TO -2.375V  
-40°C  
25°C  
Typ Max  
85°C  
Typ Max  
Symbol Parameter  
Units  
Min  
-1.125  
-1.895  
-1.225  
-1.87  
Typ Max  
Min  
-1.075  
-1.875  
-1.225  
-1.87  
Min  
-1.005  
-1.86  
-1.225  
-1.87  
150  
-1.025  
-1.755  
-0.92  
-1.62  
-0.94  
-1.535  
1200  
-1.005  
-1.78  
-0.93  
-1.685  
-0.94  
-0.97  
-0.935  
-1.67  
-0.94  
-1.535  
1200  
V
V
V
V
VOH  
VOL  
VIH  
VIL  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Input High Voltage(Single-Ended)  
Input Low Voltage(Single-Ended)  
Peak-to-Peak Input Voltage  
-1.765  
-1.535  
1200  
150  
800  
150  
800  
800  
VPP  
mV  
Input High Voltage  
Common Mode Range; NOTE 2, 3  
VEE+1.2V  
0
VEE+1.2V  
0
VEE+1.2V  
0
V
VCMR  
IIH  
Input  
PCLKA, PCLKB  
150  
150  
150  
µA  
High Current nPCLKA, nPCLKB  
-10  
-10  
-10  
µA  
µA  
PCLKA, PCLKB  
Input  
Low Current  
IIL  
-150  
-150  
-150  
nPCLKA, nPCLKB  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50Ω to VCC - 2V.  
NOTE 2: Common mode voltage is defined as VIH.  
NOTE 3: For single-ended applications, the maximum input voltage for PCLKA, nPCLKA and PCLKB, nPCLKB  
is VCC + 0.3V.  
TABLE 5. AC CHARACTERISTICS, VCC = 0V; VEE = -5.25V TO -2.375V OR VCC = 2.375V TO 5.25V; VEE = 0V  
-40°C  
Typ  
>2  
25°C  
Typ  
>2  
85°C  
Symbol Parameter  
Units  
Min  
Max Min  
Max Min  
Typ Max  
fMAX  
Output Frequency  
>2  
GHz  
ps  
Propagation Delay, Low-to-High;  
NOTE 1  
tPLH  
300  
300  
410  
410  
510  
510  
330  
330  
425  
425  
520 360  
520 360  
465  
465  
570  
570  
Propagation Delay, High-to-Low;  
NOTE 1  
tPHL  
ps  
tsk(o)  
Output Skew; NOTE 2, 4  
40  
40  
40  
40  
40  
40  
ps  
ps  
ps  
tsk(odc) Output Duty Cycle Skew  
tsk(pp)  
tjit  
Part-to-Part Skew; NOTE 3, 4  
250  
250  
250  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter Section  
0.03  
180  
0.03  
180  
0.03  
190  
ps  
ps  
tR/tF  
Output Rise/Fall Time  
20% to 80%  
120  
250  
140  
150  
230  
All parameters tested 1GHz unless otherwise noted.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages  
and with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
853013AM  
www.icst.com/products/hiperclocks.html  
REV.A OCTOBER 19, 2005  
5
ICS853013  
LOW SKEW, DUAL, 1-TO-3, DIFFERENTIAL-TO-  
2.5V/3.3V/5V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
ADDITIVE PHASE JITTER  
the 1Hz band to the power in the fundamental. When the re-  
quired offset is specified, the phase noise is called a dBc value,  
which simply means dBm at a specified offset from the funda-  
mental. By investigating jitter in the frequency domain, we get a  
better understanding of its effects on the desired application over  
the entire time record of the signal. It is mathematically possible  
to calculate an expected bit error rate given a phase noise plot.  
The spectral purity in a band at a specific offset from the funda-  
mental compared to the power of the fundamental is called the  
dBc Phase Noise. This value is normally expressed using a  
Phase noise plot and is most often the specified plot in many  
applications. Phase noise is defined as the ratio of the noise  
power present in a 1Hz band at a specified offset from the fun-  
damental frequency to the power value of the fundamental.This  
ratio is expressed in decibels (dBm) or a ratio of the power in  
0
-10  
-20  
-30  
-40  
-50  
Input/Output Additive  
Phase Jitter at 156.25MHz  
= 0.03ps (typical)  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FROM CARRIER FREQUENCY (HZ)  
As with most timing specifications, phase noise measurements vice meets the noise floor of what is shown, but can actually be  
have issues.The primary issue relates to the limitations of the lower. The phase noise is dependant on the input source and  
equipment. Often the noise floor of the equipment is higher than measurement equipment.  
the noise floor of the device. This is illustrated above. The de-  
853013AM  
www.icst.com/products/hiperclocks.html  
REV.A OCTOBER 19, 2005  
6
ICS853013  
LOW SKEW, DUAL, 1-TO-3, DIFFERENTIAL-TO-  
2.5V/3.3V/5V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
PARAMETER MEASUREMENT INFORMATION  
2V  
SCOPE  
VCC  
Qx  
VCC  
LVPECL  
nPCLKA,  
nPCLKB  
nQx  
VPP  
VCMR  
Cross Points  
VEE  
PCLKA,  
PCLKB  
-0.375V to -3.25V  
VEE  
OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nQx  
PART 1  
Qx  
nQx  
Qx  
nQy  
nQy  
PART 2  
Qy  
Qy  
tsk(pp)  
tsk(o)  
PART-TO-PART SKEW  
OUTPUT SKEW  
nPCLKA,  
nPCLKB  
nPCLKA,  
nPCLKB  
PCLKA,  
PCLKB  
PCLKA,  
PCLKB  
nQA0:nQA2,  
nQB0:nQB2,  
nQA0:nQA2,  
nQB0:nQB2,  
QA0:QA2,  
QB0:QB2,  
QA0:QA2,  
QB0:QB2,  
tpLH  
tpHL  
tpLH  
OUTPUT DUTY CYCLE SKEW  
80%  
tpHL  
tsk(odc) = tpLH - tpHL  
PROPAGATION DELAY  
80%  
tF  
VSWING  
20%  
Clock  
20%  
Outputs  
tR  
OUTPUT RISE/FALL TIME  
853013AM  
www.icst.com/products/hiperclocks.html  
REV.A OCTOBER 19, 2005  
7
ICS853013  
LOW SKEW, DUAL, 1-TO-3, DIFFERENTIAL-TO-  
2.5V/3.3V/5V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 1 shows how the differential input can be wired to accept of R1 and R2 might need to be adjusted to position theV_REF in  
single ended levels. The reference voltage V_REF ~ VCC/2 is the center of the input voltage swing. For example, if the input  
generated by the bias resistors R1, R2 and C1.This bias circuit clock swing is only 2.5V and VCC = 3.3V, V_REF should be 1.25V  
should be located as close as possible to the input pin.The ratio and R2/R1 = 0.609.  
VCC  
R1  
1K  
Single Ended Clock Input  
PCLK  
V_REF  
nPCLK  
C1  
0.1u  
R2  
1K  
FIGURE 1. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
INPUTS:  
OUTPUTS:  
PCLK/nPCLK INPUT:  
LVPECL OUTPUT  
For applications not requiring the use of a differential input, All unused LVPECL outputs can be left floating. We  
both the PCLK and nPCLK pins can be left floating. Though recommend that there is no trace attached. Both sides of the  
not required, but for additional protection, a 1kΩ resistor can differential output pair should either be left floating or  
be tied from PCLK to ground.  
terminated.  
LVCMOS CONTROL PINS:  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional  
protection. A 1kΩ resistor can be used.  
853013AM  
www.icst.com/products/hiperclocks.html  
REV.A OCTOBER 19, 2005  
8
ICS853013  
LOW SKEW, DUAL, 1-TO-3, DIFFERENTIAL-TO-  
2.5V/3.3V/5V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
LVPECL CLOCK INPUT INTERFACE  
The PCLKx /nPCLKx accepts LVPECL, CML, SSTL and other suggested here are examples only. If the driver is from an-  
differential signals. Both VSWING and VOH must meet the VPP other vendor, use their termination recommendation. Please  
and VCMR input requirements. Figures 2A to 2E show inter- consult with the vendor of the driver component to confirm  
face examples for the HiPerClockS PCLKx/nPCLKx input the driver termination requirements.  
driven by the most common driver types.The input interfaces  
2.5V  
3.3V  
3.3V  
3.3V  
2.5V  
3.3V  
R3  
120  
R4  
120  
R1  
50  
R2  
50  
SSTL  
Zo = 60 Ohm  
Zo = 60 Ohm  
CML  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
PCLK  
nPCLK  
HiPerClockS  
nPCLK  
PCLK/nPCLK  
HiPerClockS  
PCLK/nPCLK  
R1  
120  
R2  
120  
FIGURE 2A. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A CML DRIVER  
FIGURE 2B. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY AN SSTL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
3.3V  
Zo = 50 Ohm  
R3  
1K  
R4  
1K  
Zo = 50 Ohm  
Zo = 50 Ohm  
C1  
C2  
LVDS  
PCLK  
PCLK  
R5  
100  
nPCLK  
nPCLK  
Zo = 50 Ohm  
HiPerClockS  
PCLK/nPCLK  
HiPerClockS  
Input  
LVPECL  
R1  
1K  
R2  
1K  
R1  
84  
R2  
84  
FIGURE 2C. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER  
FIGURE 2D. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVDS DRIVER  
3.3V  
3.3V  
3.3V  
R3  
84  
R4  
84  
C1  
C2  
3.3V LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
nPCLK  
HiPerClockS  
PCLK/nPCLK  
R5  
100 - 200  
R6  
100 - 200  
R1  
125  
R2  
125  
FIGURE 2E. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER WITH AC COUPLE  
853013AM  
www.icst.com/products/hiperclocks.html  
REV.A OCTOBER 19, 2005  
9
ICS853013  
LOW SKEW, DUAL, 1-TO-3, DIFFERENTIAL-TO-  
2.5V/3.3V/5V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TERMINATION FOR 3.3V LVPECL OUTPUTS  
The clock layout topology shown below is a typical termi- ance techniques should be used to maximize operating  
nation for LVPECL outputs. The two different layouts men- frequency and minimize signal distortion. Figures 3A and  
tioned are recommended only as guidelines.  
3B show two different layouts which are recommended  
only as guidelines. Other suitable clock layouts may exist  
and it would be recommended that the board designers  
simulate to guarantee compatibility across all printed cir-  
cuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, ter-  
minating resistors (DC current path to ground) or current  
sources must be used for functionality. These outputs are  
designed to drive 50Ω transmission lines. Matched imped-  
3.3V  
Z
o = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
84Ω  
84Ω  
((VOH + VOL) / (VCC – 2)) – 2  
FIGURE 3A. LVPECL OUTPUTTERMINATION  
FIGURE 3B. LVPECL OUTPUTT ERMINATION  
853013AM  
www.icst.com/products/hiperclocks.html  
REV.A OCTOBER 19, 2005  
10  
ICS853013  
LOW SKEW, DUAL, 1-TO-3, DIFFERENTIAL-TO-  
2.5V/3.3V/5V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TERMINATION FOR 2.5V LVPECL OUTPUT  
Figure 4A and Figure 4B show examples of termination for close to ground level. The R3 in Figure 4B can be eliminated  
2.5V LVPECL driver.These terminations are equivalent to ter- and the termination is shown in Figure 4C.  
minating 50Ω to VCC - 2V. For VCC = 2.5V, the VCC - 2V is very  
2.5V  
VCC=2.5V  
2.5V  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
Zo = 50 Ohm  
R1  
250  
R3  
250  
+
-
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
2,5V LVPECL  
Driver  
R1  
50  
R2  
50  
2,5V LVPECL  
Driv er  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 4A. 2.5V LVPECL DRIVERTERMINATION EXAMPLE  
FIGURE 4B. 2.5V LVPECL DRIVERTERMINATION EXAMPLE  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
+
Zo = 50 Ohm  
-
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
FIGURE 4C. 2.5V LVPECLTERMINATION EXAMPLE  
853013AM  
www.icst.com/products/hiperclocks.html  
REV.A OCTOBER 19, 2005  
11  
ICS853013  
LOW SKEW, DUAL, 1-TO-3, DIFFERENTIAL-TO-  
2.5V/3.3V/5V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS853013.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS853013 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 5.25V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 5.25V * 60mA = 315mW  
Power (outputs)MAX = 30.94mW/Loaded Output pair  
If all outputs are loaded, the total power is 6 * 30.94mW = 185.64mW  
Total Power_MAX (5.25V, with all outputs switching) = 315mW + 185.64mW = 500.64mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 39.7°C/W perTable 6 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.500W * 39.7°C/W = 104.85°C. This is well below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 6. THERMAL RESISTANCE θJA FOR 20-PIN SOIC, FORCED CONVECTION  
θ byVelocity (Linear Feet per Minute)  
JA  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
83.2°C/W  
65.7°C/W  
57.5°C/W  
46.2°C/W  
39.7°C/W  
36.8°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
853013AM  
www.icst.com/products/hiperclocks.html  
REV.A OCTOBER 19, 2005  
12  
ICS853013  
LOW SKEW, DUAL, 1-TO-3, DIFFERENTIAL-TO-  
2.5V/3.3V/5V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
3. Calculations and Equations.  
LVPECL output driver circuit and termination are shown in Figure 5.  
VCCO  
Q1  
VOUT  
RL  
50  
VCCO - 2V  
Figure 5. LVPECL Driver Circuit andTermination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage ofV - 2V.  
CCO  
For logic high, VOUT = V  
= V  
– 0.935V  
OH_MAX  
CCO_MAX  
)
= 0.935V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, VOUT = V  
= V  
– 1.67V  
CCO_MAX  
OL_MAX  
)
= 1.67V  
OL_MAX  
(V  
- V  
CCO_MAX  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
_MAX  
CCO  
OH_MAX  
CCO _MAX  
OH_MAX  
L
L
[(2V - 0.935V)/50Ω] * 0.935V = 19.92mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
_MAX  
CCO  
OL_MAX  
CCO_MAX  
OL_MAX  
L
L
[(2V - 1.67V)/50Ω] * 1.67V = 11.02mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.94mW  
853013AM  
www.icst.com/products/hiperclocks.html  
REV.A OCTOBER 19, 2005  
13  
ICS853013  
LOW SKEW, DUAL, 1-TO-3, DIFFERENTIAL-TO-  
2.5V/3.3V/5V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
RELIABILITY INFORMATION  
TABLE 6. θJAVS. AIR FLOW TABLE FOR 20 LEAD SOIC  
θ byVelocity (Linear Feet per Minute)  
JA  
0
200  
500  
Single-Layer PCB, JEDEC StandardTest Boards  
Multi-Layer PCB, JEDEC StandardTest Boards  
83.2°C/W  
65.7°C/W  
57.5°C/W  
46.2°C/W  
39.7°C/W  
36.8°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS853013 is: 226  
Pin compatible with MC100LVEL13, MC100EL13  
853013AM  
www.icst.com/products/hiperclocks.html  
REV.A OCTOBER 19, 2005  
14  
ICS853013  
LOW SKEW, DUAL, 1-TO-3, DIFFERENTIAL-TO-  
2.5V/3.3V/5V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
PACKAGE OUTLINE - Y SUFFIX FOR 20 LEAD SOIC  
TABLE 7. PACKAGE DIMENSIONS  
Millimeters  
Minimum Maximum  
SYMBOL  
N
A
20  
--  
2.65  
--  
A1  
A2  
B
0.10  
2.05  
0.33  
0.18  
12.60  
7.40  
2.55  
0.51  
0.32  
13.00  
7.60  
C
D
E
e
1.27 BASIC  
H
h
10.00  
0.25  
0.40  
0°  
10.65  
0.75  
1.27  
8°  
L
α
Reference Document: JEDEC Publication 95, MS-013, MO-119  
853013AM  
www.icst.com/products/hiperclocks.html  
REV.A OCTOBER 19, 2005  
15  
ICS853013  
LOW SKEW, DUAL, 1-TO-3, DIFFERENTIAL-TO-  
2.5V/3.3V/5V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 8. ORDERING INFORMATION  
Part/Order Number  
ICS853013AM  
Marking  
Package  
Shipping Packaging  
tube  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS853013AM  
ICS853013AM  
20 Lead SOIC  
ICS853013AMT  
ICS853013AMLF  
ICS853013AMLFT  
20 Lead SOIC  
1000 tape & reel  
tube  
ICS853013AMLF  
ICS853013AMLF  
20 Lead "Lead-Free" SOIC  
20 Lead "Lead-Free" SOIC  
1000 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
The aforementioned trademark, HiPerClockS is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product  
for use in life support devices or critical medical instruments.  
853013AM  
www.icst.com/products/hiperclocks.html  
REV.A OCTOBER 19, 2005  
16  
ICS853013  
LOW SKEW, DUAL, 1-TO-3, DIFFERENTIAL-TO-  
2.5V/3.3V/5V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
REVISION HISTORY SHEET  
Description of Change  
Added Recommendations for Unused Input and Output Pins.  
Ordering Information Table - added lead-free marking.  
Rev  
Table  
T8  
Page  
8
16  
Date  
A
10/19/05  
853013AM  
www.icst.com/products/hiperclocks.html  
REV.A OCTOBER 19, 2005  
17  

相关型号:

ICS853013AMLFT

LOW SKEW, DUAL, 1-TO-3, DIFFERENTIAL-TO-2.5V/3.3V/5V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853013AMT

LOW SKEW, DUAL, 1-TO-3, DIFFERENTIAL-TO-2.5V/3.3V/5V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853014

LOW SKEW, 1-TO-5 2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER
ICSI

ICS853014

LOW SKEW, 1-TO-5, DIFFERENTIAL-TO- 2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
IDT

ICS853014AG

Low Skew Clock Driver, 5 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 X 0.92 MM, TSSOP-20
IDT

ICS853014AGLF

Low Skew Clock Driver, 5 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 X 0.92 MM, TSSOP-20
IDT

ICS853014AGLFT

Low Skew Clock Driver, 5 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 X 0.92 MM, TSSOP-20
IDT

ICS853014AGT

Low Skew Clock Driver, 5 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 X 0.92 MM, TSSOP-20
IDT

ICS853014BG

LOW SKEW, 1-TO-5 2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER
ICSI

ICS853014BG

LOW SKEW, 1-TO-5, DIFFERENTIAL-TO- 2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
IDT

ICS853014BGL

LOW SKEW, 1-TO-5, DIFFERENTIAL-TO- 2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
IDT

ICS853014BGLF

LOW SKEW, 1-TO-5 2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER
ICSI