ICS85301AGLFT [ICSI]

2:1 DIFFERENTIAL-TO-LVPECL MULTIPLEXER; 2 : 1差分至LVPECL多路复用器
ICS85301AGLFT
型号: ICS85301AGLFT
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

2:1 DIFFERENTIAL-TO-LVPECL MULTIPLEXER
2 : 1差分至LVPECL多路复用器

复用器 逻辑集成电路 光电二极管 驱动
文件: 总19页 (文件大小:299K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS85301  
2:1  
DIFFERENTIAL-TO-LVPECL MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
GENERAL DESCRIPTION  
FEATURES  
The ICS85301 is a high performance 2:1 Differ- 2:1 LVPECL MUX  
ICS  
HiPerClockS™  
ential-to-LVPECL Multiplexer and a member of the  
One LVPECL output  
HiPerClockS™family of High Performance Clock  
Solutions from ICS.The ICS85301 can also per-  
form differential translation because the differ-  
Two differential clock inputs can accept: LVPECL, LVDS,  
CML  
ential inputs accept LVPECL, CML as well as LVDS levels.  
The ICS85301 is packaged in a small 3mm x 3mm  
16 VFQFN package, making it ideal for use on space con-  
strained boards.  
Maximum input/output frequency: 3GHz  
Translates LVCMOS/LVTTL input signals to LVPECL levels  
by using a resistor bias network on nPCLK0, nPCLK0  
Propagation delay: 490ps (maximum)  
Part-to-part skew: 150ps (maximum)  
Additive phase jitter, RMS: 0.009ps (typical)  
Full 3.3V or 2.5V operating supply  
-40°C to 85°C ambient operating temperature  
Available in both standard and lead-free RoHS compliant  
packages  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
PCLK0  
nPCLK0  
0
16 15 14 13  
PCLK0  
1
2
12  
VEE  
Q
Q
nQ  
nPCLK0  
11  
PCLK1  
nPCLK1  
1
PCLK1  
3
4
10 nQ  
VEE  
nPCLK1  
9
5
6
7
8
CLK_SEL  
VBB  
ICS85301  
16-Lead VFQFN  
3mm x 3mm x 0.95 package body  
K Package  
TopView  
1
2
3
4
5
6
7
8
PCLK0  
nPCLK0  
PCLK1  
nPCLK1  
VBB  
16  
15  
14  
13  
12  
11  
10  
9
nc  
VEE  
VEE  
VCC  
VEE  
Q
CLK_SEL  
nc  
nQ  
VEE  
VCC  
ICS85301  
16-LeadTSSOP  
4.4mm x 5.0mm x 0.92mm  
package body  
G Package  
TopView  
85301AK  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 16, 2006  
1
ICS85301  
2:1  
DIFFERENTIAL-TO-LVPECL MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
1
PCLK0  
Input  
Input  
Input  
Input  
Pulldown Non-inverting differential LVPECL clock input.  
Pullup/  
2
3
4
nPCLK0  
PCLK1  
Inverting differential LVPECL clock input. VCC/2 default when left floating.  
Pulldown  
Pulldown Non-inverting differential LVPECL clock input.  
Pullup/  
nPCLK1  
Inverting differential LVPECL clock input. VCC/2 default when left floating.  
Pulldown  
5
VBB  
nc  
Output  
Bias voltage.  
No connect.  
7, 16  
Unused  
Clock select input. When HIGH, selects PCLK1, nPCLK1 inputs.  
Pulldown When LOW, selects PCLK0, nPCLK0 inputs.  
LVCMOS / LVTTL interface levels.  
6
CLK_SEL  
Input  
8, 13  
9, 12, 14, 15  
10, 11  
VCC  
VEE  
Power  
Power  
Output  
Positive supply pins.  
Negative supply pins.  
nQ, Q  
Differential output pair. LVPECL interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
1
RPULLUP  
37  
37  
kΩ  
RPULLDOWN Input Pulldown Resistor  
kΩ  
TABLE 3. CONTROL INPUT FUNCTION TABLE  
Input  
Input Selected  
PCLK  
CLK_SEL  
0
1
PCLK0, nPCLK0  
PCLK1, nPCLK1  
85301AK  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 16, 2006  
2
ICS85301  
2:1  
DIFFERENTIAL-TO-LVPECL MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
CC  
Inputs, V  
-0.5V to VCC + 0.5 V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
PackageThermal Impedance, θ  
16 VFQFN  
16TSSOP  
JA  
51.5°C/W (0 lfpm)  
89°C/W (0 lfpm)  
StorageTemperature, T  
-65°C to 150°C  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VCC  
IEE  
Positive Supply Voltage  
Power Supply Current  
3.135  
3.3  
3.465  
26  
V
mA  
TABLE 4B. POWER SUPPLY DC CHARACTERISTICS, VCC = 2.5V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VCC  
IEE  
Positive Supply Voltage  
Power Supply Current  
2.375  
2.5  
2.625  
24  
V
mA  
TABLE 4C. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = 3.3V 5ꢀ OR 2.5V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VIH  
VIL  
IIH  
Input High Voltage CLK_SEL  
2
VCC + 0.3  
0.8  
V
V
Input Low Voltage CLK_SEL  
Input High Current CLK_SEL  
Input Low Current CLK_SEL  
-0.3  
VCC = VIN = 3.465V or 2.625V  
150  
µA  
µA  
IIL  
VCC = 3.465V or 2.625V, VIN = 0V  
-150  
NOTE: Outputs terminated with 50Ω to VCC/2. See Parameter Measurement Information, "Output Load Test Circuit".  
TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
VCC = VIN = 3.465  
Minimum Typical Maximum Units  
PCLK0, nPCLK0,  
PCLK1, nPCLK1  
150  
µA  
PCLK0, PCLK1  
VCC = 3.465V, VIN = 0V  
-10  
-150  
150  
µA  
µA  
mV  
V
IIL  
Input Low Current  
nPCLK0, nPCLK1  
VCC = 3.465V, VIN = 0V  
VPP  
VCMR  
VOH  
VOL  
VBB  
Peak-to-Peak Input Voltage  
Common Mode Input Voltage; NOTE 1, 2  
Output High Voltage; NOTE 3  
Output Low Voltage; NOTE 3  
Bias Voltage  
1200  
3.3  
1.2  
2.01  
1.24  
1.695  
2.535  
1.845  
2.145  
V
V
V
NOTE 1: Common mode voltage is defined as VIH.  
NOTE 2: For single ended applications, the maximum input voltage for PCLKx, nPCLKx is VCC + 0.3V.  
NOTE 3: Outputs terminated with 50Ω to VCC - 2V. .  
85301AK  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 16, 2006  
3
ICS85301  
2:1  
DIFFERENTIAL-TO-LVPECL MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 4E. LVPECL DC CHARACTERISTICS, VCC = 2.5V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
VCC = VIN = 2.625V  
VCC = 2.625V, VIN = 0V  
Minimum Typical Maximum Units  
Input High  
Current  
PCLK0, nPCLK0,  
PCLK1, nPCLK1  
IIH  
150  
µA  
PCLK0, PCLK1  
-10  
-150  
150  
µA  
µA  
mV  
V
IIL  
Input Low Current  
nPCLK0, nPCLK1  
VCC = 2.625V, VIN = 0V  
VPP  
VCMR  
VOH  
VOL  
VBB  
Peak-to-Peak Input Voltage  
1200  
2.5  
Common Mode Input Voltage; NOTE 1, 2  
Output High Voltage; NOTE 3  
Output Low Voltage; NOTE 3  
Bias Voltage  
1.2  
1.25  
0.48  
0.935  
1.705  
1.005  
1.305  
V
V
V
NOTE 1: Common mode voltage is defined as VIH.  
NOTE 2: For single ended applications, the maximum input voltage for PCLKx, nPCLKx is VCC + 0.3V.  
NOTE 3: Outputs terminated with 50Ω to VCC - 2V. .  
TABLE 5A. AC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol  
fMAX  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Output Frequency  
Propagation Delay; NOTE 1  
Part-to-Part Skew; NOTE 2, 3  
Input Skew  
3
GHz  
ps  
tPD  
240  
490  
150  
25  
tsk(pp)  
tsk(i)  
ps  
ps  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter section  
622MHz (Integration Range:  
12KHz - 20MHz)  
tjit  
0.009  
-55  
ps  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
20ꢀ to 80ꢀ  
100  
48  
200  
52  
ps  
MUX_ISOL MUX Isolation  
f = 622MHz  
dBm  
All parameters measured at f 1.7GHz unless otherwise noted.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltages and  
with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
TABLE 5B. AC CHARACTERISTICS, VCC = 2.5V 5ꢀ, TA = -40°C TO 85°C  
Symbol  
fMAX  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Output Frequency  
Propagation Delay; NOTE 1  
Part-to-Part Skew; NOTE 2, 3  
Input Skew  
3
GHz  
ps  
tPD  
240  
490  
150  
25  
tsk(pp)  
tsk(i)  
ps  
ps  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter section  
622MHz (Integration Range:  
12KHz - 20MHz)  
tjit  
0.009  
-55  
ps  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
20ꢀ to 80ꢀ  
100  
47  
200  
53  
ps  
MUX_ISOL MUX Isolation  
f = 622MHz  
dBm  
For notes, see Table 5A above.  
85301AK  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 16, 2006  
4
ICS85301  
2:1  
DIFFERENTIAL-TO-LVPECL MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
ADDITIVE PHASE JITTER  
the 1Hz band to the power in the fundamental. When the re-  
quired offset is specified, the phase noise is called a dBc value,  
which simply means dBm at a specified offset from the funda-  
mental. By investigating jitter in the frequency domain, we get a  
better understanding of its effects on the desired application over  
the entire time record of the signal. It is mathematically possible  
to calculate an expected bit error rate given a phase noise plot.  
The spectral purity in a band at a specific offset from the funda-  
mental compared to the power of the fundamental is called the  
dBc Phase Noise. This value is normally expressed using a  
Phase noise plot and is most often the specified plot in many  
applications. Phase noise is defined as the ratio of the noise  
power present in a 1Hz band at a specified offset from the fun-  
damental frequency to the power value of the fundamental.This  
ratio is expressed in decibels (dBm) or a ratio of the power in  
0
-10  
-20  
-30  
Additive Phase Jitter  
3.3V or 2.5V @ 622MHz (12KHz to 20MHz)  
= 0.009ps typical  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FROM CARRIER FREQUENCY (HZ)  
As with most timing specifications, phase noise measurements vice meets the noise floor of what is shown, but can actually be  
have issues.The primary issue relates to the limitations of the lower. The phase noise is dependant on the input source and  
equipment. Often the noise floor of the equipment is higher than measurement equipment.  
the noise floor of the device. This is illustrated above. The de-  
85301AK  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 16, 2006  
5
ICS85301  
2:1  
DIFFERENTIAL-TO-LVPECL MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
PARAMETER MEASUREMENT INFORMATION  
2V  
2V  
SCOPE  
SCOPE  
VCC  
VCC  
Qx  
Qx  
LVPECL  
VEE  
LVPECL  
VEE  
nQx  
nQx  
-1.3V 0.165V  
-0.5V 0.125V  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
2.5V OUTPUT LOAD AC TEST CIRCUIT  
VCC  
nQx  
PART 1  
Q0x  
nPCLK0,  
nPCLK1  
nQy  
VPP  
VCMR  
Cross Points  
PART 2  
Qy  
nPCLK0,  
nPCLK1  
tsk(pp)  
VEE  
PART-TO-PART SKEW  
DIFFERENTIAL INPUT LEVEL  
nQ  
nPCLK0,  
nPCLK1  
Q
PCLK0,  
PCLK1  
tPW  
tPERIOD  
nQ  
tPW  
odc =  
x 100ꢀ  
Q
tPERIOD  
tPD  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
PROPAGATION DELAY  
85301AK  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 16, 2006  
6
ICS85301  
2:1  
DIFFERENTIAL-TO-LVPECL MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
nPCLK0  
PCLK0  
80ꢀ  
tF  
80ꢀ  
tR  
VOD  
Clock  
Outputs  
20ꢀ  
20ꢀ  
nPCLK1  
PCLK1  
nQ  
Q
tPD2  
tPD1  
tsk(i)  
tsk(i) = |tPD1 - tPD2  
|
INPUT SKEW  
OUTPUT RISE/FALL TIME  
85301AK  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 16, 2006  
7
ICS85301  
2:1  
DIFFERENTIAL-TO-LVPECL MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LVCMOS LEVELS  
Figure 1A shows an example of the differential input that  
can be wired to accept single ended LVCMOS levels. The  
reference voltage level VBB generated from the device is  
connected to the negative input. The C1 capacitor should  
be located as close as possible to the input pin.  
VCC  
R1  
1K  
Single Ended Clock Input  
V_REF  
PCLK  
nPCLK  
C1  
0.1u  
R2  
1K  
FIGURE 1A. SINGLE ENDED LVCMOS SIGNAL DRIVING DIFFERENTIAL INPUT  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LVPECL LEVELS  
Figure 1B shows an example of the differential input that  
can be wired to accept single ended LVPECL levels. The  
reference voltage level VBB generated from the device is  
connected to the negative input.  
VCC(or VDD)  
CLK_IN  
PCLK  
VBB  
nPCLK  
FIGURE 1B. SINGLE ENDED LVPECL SIGNAL DRIVING DIFFERENTIAL INPUT  
85301AK  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 16, 2006  
8
ICS85301  
2:1  
DIFFERENTIAL-TO-LVPECL MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
LVPECL CLOCK INPUT INTERFACE  
The PCLK /nPCLK accepts LVPECL, CML, SSTL and other gested here are examples only. If the driver is from another  
differential signals. Both VSWING and VOH must meet the VPP vendor, use their termination recommendation. Please con-  
and VCMR input requirements. Figures 2A to 2F show inter- sult with the vendor of the driver component to confirm the  
face examples for the HiPerClockS PCLK/nPCLK input driven driver termination requirements.  
by the most common driver types. The input interfaces sug-  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R1  
50  
R2  
50  
Zo = 50 Ohm  
Zo = 50 Ohm  
CML  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
PCLK  
R1  
100  
nPCLK  
nPCLK  
HiPerClockS  
HiPerClockS  
PCLK/nPCLK  
PCLK/nPCLK  
CML Built-In Pullup  
FIGURE 2A. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY AN OPEN COLLECTOR CML DRIVER  
FIGURE 2B. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A BUILT-IN PULLUP CML DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
R4  
125  
125  
C1  
Zo = 50 Ohm  
Zo = 50 Ohm  
3.3V LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
VBB  
PCLK  
C2  
nPCLK  
nPCLK  
HiPerClockS  
Input  
PCLK/nPCLK  
LVPECL  
R5  
100 - 200  
R6  
100 - 200  
R1  
50  
R2  
50  
R1  
84  
R2  
84  
FIGURE 2C. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER  
FIGURE 2D. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER WITH AC COUPLE  
2.5V  
3.3V  
3.3V  
3.3V  
2.5V  
Zo = 50 Ohm  
R3  
R4  
120  
120  
C1  
LVDS  
SSTL  
Zo = 60 Ohm  
Zo = 60 Ohm  
PCLK  
PCLK  
R5  
100  
VBB  
C2  
nPCLK  
nPCLK  
Zo = 50 Ohm  
HiPerClockS  
PCLK/nPCLK  
PCLK/nPCLK  
R1  
1K  
R2  
1K  
R1  
120  
R2  
120  
FIGURE 2E. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY AN SSTL DRIVER  
FIGURE 2F. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVDS DRIVER  
85301AK  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 16, 2006  
9
ICS85301  
2:1  
DIFFERENTIAL-TO-LVPECL MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
RECOMMENDATIONS FOR UNUSED INPUT PINS  
INPUTS:  
PCLK/nPCLK INPUT:  
For applications not requiring the use of a differential input,  
both the PCLK and nPCLK pins can be left floating. Though  
not required, but for additional protection, a 1kΩ resistor can  
be tied from PCLK to ground.  
TERMINATION FOR 3.3V LVPECL OUTPUT  
The clock layout topology shown below is a typical termi- ance techniques should be used to maximize operating  
nation for LVPECL outputs. The two different layouts men- frequency and minimize signal distortion. Figures 3A and  
tioned are recommended only as guidelines.  
3B show two different layouts which are recommended only  
as guidelines. Other suitable clock layouts may exist and it  
FOUT and nFOUT are low impedance follower outputs that would be recommended that the board designers simulate  
generate ECL/LVPECL compatible outputs. Therefore, ter- to guarantee compatibility across all printed circuit and clock  
minating resistors (DC current path to ground) or current component process variations.  
sources must be used for functionality. These outputs are  
designed to drive 50Ω transmission lines. Matched imped-  
3.3V  
Z
o = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 3A. LVPECL OUTPUTTERMINATION  
FIGURE 3B. LVPECL OUTPUTT ERMINATION  
85301AK  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 16, 2006  
10  
ICS85301  
2:1  
DIFFERENTIAL-TO-LVPECL MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
TERMINATION FOR 2.5V LVPECL OUTPUT  
Figure 4A and Figure 4B show examples of termination for close to ground level. The R3 in Figure 4B can be eliminated  
2.5V LVPECL driver.These terminations are equivalent to ter- and the termination is shown in Figure 4C.  
minating 50Ω to VCC - 2V. For VCC = 2.5V, the VCC - 2V is very  
2.5V  
VCC=2.5V  
2.5V  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
Zo = 50 Ohm  
R1  
250  
R3  
250  
+
-
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
2,5V LVPECL  
Driver  
R1  
50  
R2  
50  
2,5V LVPECL  
Driv er  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 4A. 2.5V LVPECL DRIVERTERMINATION EXAMPLE  
FIGURE 4B. 2.5V LVPECL DRIVERTERMINATION EXAMPLE  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
+
Zo = 50 Ohm  
-
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
FIGURE 4C. 2.5V LVPECLTERMINATION EXAMPLE  
85301AK  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 16, 2006  
11  
ICS85301  
2:1  
DIFFERENTIAL-TO-LVPECL MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
APPLICATION SCHEMATIC EXAMPLE  
Figure 5 shows an example of ICS85401 application sche- decoupling capacitor should be located as close as possible  
matic. This device can accept different types of input signal. to the power pin.  
In this example, the input is driven by a LVDS driver. The  
3.3V  
C1  
0.1u  
3.3V  
Zo = 50  
R2  
100  
Zo = 50  
1
2
3
4
12  
11  
10  
9
Zo = 50  
Zo = 50  
CLK0  
nCLK0  
CLK1  
GND  
Q
nQ  
+
-
LVDS  
R1  
nCLK1  
GND  
100  
3.3V  
U1  
ICS85401  
Zo = 50  
3.3V  
R3  
100  
R4  
1K  
C2  
0.1u  
Zo = 50  
LVDS  
FIGURE 5. ICS85401 APPLICATION SCHEMATIC EXAMPLE  
85301AK  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 16, 2006  
12  
ICS85301  
2:1  
DIFFERENTIAL-TO-LVPECL MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS85301.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS85301 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 26mA = 90.09mW  
Power (outputs)MAX = 27.83mW/Loaded Output pair  
Total Power_MAX (3.465, with all outputs switching) = 90.09mW + 27.83mW = 117.92mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total =Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 0 linear feet per minute and a multi-layer board, the appropriate value is 51.5°C/W perTable 6A below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.118W * 51.5°C/W = 91.1°C. This is well below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 6A. THERMAL RESISTANCE θJA FOR 16-PIN VFQFN, FORCED CONVECTION  
θJA at 0 Air Flow (Linear Feet per Minute)  
0
Multi-Layer PCB, JEDEC Standard Test Boards  
51.5°C/W  
TABLE 6B. THERMAL RESISTANCE θJA FOR FOR 16 LEAD TSSOP  
θJA byVelocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
137.1°C/W  
89.0°C/W  
118.2°C/W  
81.8°C/W  
106.8°C/W  
78.1°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
85301AK  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 16, 2006  
13  
ICS85301  
2:1  
DIFFERENTIAL-TO-LVPECL MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 6.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 6. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage ofV - 2V.  
CC  
For logic high, VOUT = V  
= V  
– 1.005V  
CC_MAX  
OH_MAX  
)
= 1.005  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, VOUT = V  
= V  
– 1.78V  
OL_MAX  
CC_MAX  
)
= 1.78V  
OL_MAX  
(V  
- V  
CC_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
L
L
[(2V - 1.005V)/50Ω] * 1.005V = 20mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
L
L
[(2V - 1.78V)/50Ω] * 1.78V = 7.83mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 27.83mW  
85301AK  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 16, 2006  
14  
ICS85301  
2:1  
DIFFERENTIAL-TO-LVPECL MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
RELIABILITY INFORMATION  
TABLE 7A. θJAVS. AIR FLOW TABLE FOR 16 LEAD VFQFN  
θJA at 0 Air Flow (Linear Feet per Minute)  
0
Multi-Layer PCB, JEDEC Standard Test Boards  
51.5°C/W  
TABLE 7B. θJAVS. AIR FLOW TABLE FOR 16 LEAD TSSOP  
θJA byVelocity (Linear Feet per Minute)  
0
200  
118.2°C/W  
81.8°C/W  
500  
106.8°C/W  
78.1°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
137.1°C/W  
89.0°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS85301 is: 137  
85301AK  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 16, 2006  
15  
ICS85301  
2:1  
DIFFERENTIAL-TO-LVPECL MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
PACKAGE OUTLINE - K SUFFIX FOR 16 LEAD VFQFN  
TABLE 8A. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
SYMBOL  
MINIMUM  
MAXIMUM  
N
A
16  
0.80  
0
1.0  
A1  
A3  
b
0.05  
0.25 Reference  
0.18  
0.30  
e
0.50 BASIC  
ND  
NE  
D
4
4
3.0  
D2  
E
0.25  
1.25  
3.0  
E2  
L
0.25  
0.30  
1.25  
0.50  
Reference Document: JEDEC Publication 95, MO-220  
85301AK  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 16, 2006  
16  
ICS85301  
2:1  
DIFFERENTIAL-TO-LVPECL MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
PACKAGE OUTLINE - G SUFFIX FOR 16 LEAD TSSOP  
TABLE 8B. PACKAGE DIMENSIONS  
Millimeters  
Minimum Maximum  
SYMBOL  
N
A
16  
--  
1.20  
0.15  
1.05  
0.30  
0.20  
5.10  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
4.90  
c
D
E
6.40 BASIC  
0.65 BASIC  
E1  
e
4.30  
4.50  
L
0.45  
0°  
0.75  
8°  
α
aaa  
--  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
85301AK  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 16, 2006  
17  
ICS85301  
2:1  
DIFFERENTIAL-TO-LVPECL MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
ICS85301AK  
Marking  
Package  
Shipping Packaging  
Tray  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
301A  
301A  
16 Lead VFQFN  
ICS85301AKT  
ICS85301AKLF  
ICS85301AKLFT  
ICS85301AG  
16 Lead VFQFN  
2500 Tape & Reel  
Tray  
01AL  
16 Lead "Lead-Free" VFQFN  
16 Lead "Lead-Free" VFQFN  
16 Lead TSSOP  
01AL  
2500 Tape & Reel  
tube  
85301AG  
85301AG  
85301AGL  
85301AGL  
ICS85301AGT  
ICS85301AGLF  
ICS85301AGLFT  
16 Lead TSSOP  
2500 tape & reel  
Tube  
16 Lead "Lead-Free" TSSOP  
16 Lead "Lead-Free" TSSOP  
2500 Tape & Reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
The aforementioned trademark, HiPerClockS™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product  
for use in life support devices or critical medical instruments.  
85301AK  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 16, 2006  
18  
ICS85301  
2:1  
DIFFERENTIAL-TO-LVPECL MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
REVISION HISTORY SHEET  
Description of Change  
Ordering Information Table - corrected count.  
Rev  
A
Table  
Page  
Date  
T9  
17  
11/17/04  
5/23/05  
A
Added 16 Lead TSSOP package throughout the datasheet.  
10  
18  
Added Recommendations for Unused Input Pins.  
Ordering Information Table - added lead-free marking to ICS85301AGLF  
part number.  
A
T9  
1/16/06  
85301AK  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 16, 2006  
19  

相关型号:

ICS85301AGT

2:1 DIFFERENTIAL-TO-LVPECL MULTIPLEXER
ICSI

ICS85301AK

2:1 DIFFERENTIAL-TO-LVPECL MULTIPLEXER
ICSI

ICS85301AKLF

2:1 DIFFERENTIAL-TO-LVPECL MULTIPLEXER
ICSI

ICS85301AKLF

Low Skew Clock Driver, 85301 Series, 1 True Output(s), 0 Inverted Output(s), 3 X 3 MM, 0.95 MM HEIGHT, ROHS COMPLIANT, MO-220, VFQFN-16
IDT

ICS85301AKLFT

2:1 DIFFERENTIAL-TO-LVPECL MULTIPLEXER
ICSI

ICS85301AKT

2:1 DIFFERENTIAL-TO-LVPECL MULTIPLEXER
ICSI

ICS853031

LOW SKEW, 1-TO-9 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853031AY

LOW SKEW, 1-TO-9 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853031AYLF

LOW SKEW, 1-TO-9 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853031AYLFT

LOW SKEW, 1-TO-9 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853031AYT

LOW SKEW, 1-TO-9 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS85304-01

LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
ICSI