ICS85304AG-01 [ICSI]

LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER; 低偏移, 1到5差分至3.3V的LVPECL扇出缓冲器
ICS85304AG-01
型号: ICS85304AG-01
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
低偏移, 1到5差分至3.3V的LVPECL扇出缓冲器

逻辑集成电路 光电二极管 驱动
文件: 总13页 (文件大小:155K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS85304-01  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
GENERAL DESCRIPTION  
FEATURES  
The ICS85304-01 is a low skew, high perfor- 5 differential 3.3V LVPECLoutputs  
mance 1-to-5 Differential-to-3.3V LVPECL fanout  
buffer and a member of the HiPerClockS™ family  
of High Performance Clock Solutions from ICS.  
The ICS85304-01 has two selectable clock in-  
Selectable CLK, nCLK or LVPECL clock inputs  
HiPerClockS™  
CLK, nCLK pair can accept the following differential input  
levels: LVDS, LVPECL, LVHSTL, SSTL, HCSL  
puts. The CLK, nCLK pair can accept most standard differen-  
tial input levels. The PCLK, nPCLK pair can accept LVPECL,  
CML, or SSTL input levels. The clock enable is internally syn-  
chronized to eliminate runt clock pulses on the outputs dur-  
ing asynchronous assertion/deassertion of the clock enable  
pin.  
PCLK, nPCLK supports the following input types:  
LVPECL, CML, SSTL  
Maximum output frequency up to 650MHz  
Translates any single-ended input signal to 3.3V LVPECL  
levels with resistor bias on nCLK input  
Guaranteed output and part-to-part skew characteristics  
make the ICS85304-01 ideal for those applications  
demanding well defined performance and repeatability.  
Output skew: 35ps (maximum)  
Part-to-part skew: 150ps (maximum)  
Propagation delay: 2.1ns (maximum)  
3.3V operating supply  
0°C to 70°C ambient operating temperature  
Industrial temperature information available upon request  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
Q0  
nQ0  
Q1  
nQ1  
Q2  
nQ2  
Q3  
nQ3  
Q4  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VCC  
CLK_EN  
VCC  
D
CLK_EN  
Q
LE  
CLK  
nCLK  
PCLK  
nPCLK  
PCLK  
VEE  
nCLK  
CLK  
0
Q0  
nQ0  
1
nPCLK  
Q1  
nQ1  
CLK_SEL  
VCC  
CLK_SEL  
nQ4  
Q2  
nQ2  
ICS85304-01  
20-Lead TSSOP  
6.5mm x 4.4mm x 0.92mm Package Body  
Q3  
nQ3  
G Package  
Top View  
Q4  
nQ4  
85304AG-01  
www.icst.com/products/hiperclocks.html  
REV. B JULY 13, 2001  
1
ICS85304-01  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
TABLE 1. PIN DESCRIPTIONS  
Number  
1, 2  
Name  
Q0, nQ0  
Q1, nQ1  
Q2, nQ2  
Q3, nQ3  
Q4, nQ4  
VCC  
Type  
Description  
Output  
Output  
Output  
Output  
Output  
Power  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
3, 4  
5, 6  
7, 8  
9, 10  
11, 18, 20  
Positive supply pins. Connect to 3.3V.  
Clock select input. When HIGH, selects PCLK, nPCLK inputs.  
12  
CLK_SEL  
Input  
Pulldown When LOW, selects CLK, nCLK inputs.  
LVTTL / LVCMOS interface levels.  
13  
14  
15  
16  
17  
CLK  
nCLK  
VEE  
Input  
Input  
Power  
Input  
Input  
Pulldown Non-inverting differential clock input.  
Pullup  
Inverting differential clock input.  
Negative supply pin. Connect to ground.  
PCLK  
nPCLK  
Pulldown Non-inverting differential LVPECL clock input.  
Pullup  
Inverting differential LVPECL clock input.  
Synchronizing clock enable. When HIGH, clock outputs follow clock  
input. When LOW, Q outputs are forced low, nQ outputs are forced  
high. LVTTL / LVCMOS interface levels.  
19  
CLK_EN  
Input  
Pullup  
NOTE: Pullup and Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
CLK, nCLK  
4
4
pF  
pF  
PCLK, nPCLK  
CIN  
Input Capacitance  
CLK_EN,  
CLK_SEL  
4
pF  
RPULLUP  
Input Pullup Resistor  
51  
51  
K  
KΩ  
RPULLDOWN  
Input Pulldown Resistor  
85304AG-01  
www.icst.com/products/hiperclocks.html  
REV. B JULY 13, 2001  
2
ICS85304-01  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
TABLE 3A. CONTROL INPUT FUNCTION TABLE  
Inputs  
Outputs  
CLK_EN  
CLK_SEL  
Selected Source  
CLK, nCLK  
Q0 thru Q4  
Disabled; LOW  
Disabled; LOW  
Enabled  
nQ0 thru nQ4  
Disabled; HIGH  
Disabled; HIGH  
Enabled  
0
0
1
1
0
1
0
1
PCLK, nPCLK  
CLK, nCLK  
PCLK, nPCLK  
Enabled  
Enabled  
After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge  
as shown in Figure 1.  
In the active mode, the state of the outputs are a function of the CLK, nCLK and PCLK, nPCLK inputs as described  
in Table 3B.  
Enabled  
Disabled  
nCLK, nPCLK  
CLK, PCLK  
CLK_EN  
nQ0 - nQ4  
Q0 - Q4  
FIGURE 1 - CLK_EN TIMING DIAGRAM  
TABLE 3B. CLOCK INPUT FUNCTION TABLE  
Inputs  
Outputs  
Input to Output Mode  
Polarity  
CLK or CLK  
nPCLK or nPCLK  
Q0 thru Q4  
LOW  
nQ0 thru nQ4  
HIGH  
0
1
Differential to Differential  
Differential to Differential  
Single Ended to Differential  
Single Ended to Differential  
Single Ended to Differential  
Single Ended to Differential  
Non Inverting  
Non Inverting  
Non Inverting  
Non Inverting  
Inverting  
1
0
HIGH  
LOW  
0
Biased; NOTE 1  
LOW  
HIGH  
1
Biased; NOTE 1  
HIGH  
LOW  
Biased; NOTE 1  
Biased; NOTE 1  
0
1
HIGH  
LOW  
LOW  
HIGH  
Inverting  
NOTE 1: Please refer to the Application Information section on page 8, Figure 8, which discusses wiring the differential  
input to accept single ended levels.  
85304AG-01  
www.icst.com/products/hiperclocks.html  
REV. B JULY 13, 2001  
3
ICS85304-01  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, VCCx  
Inputs, VI  
4.6V  
-0.5V to VCC + 0.5V  
-0.5V to VCC + 0.5V  
Outputs, VO  
Package Thermal Impedance, θJA  
Storage Temperature, TSTG  
73.2°C/W (0lfpm)  
-65°C to 150°C  
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings  
are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the  
DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended peri-  
ods may affect product reliability.  
TABLE 4A. POWER SUPPLY CHARACTERISTICS, VCC=3.3V±5%, TA = 0°C TO 70°C  
Symbol  
VCC  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
Power Supply Voltage  
Power Supply Current  
3.135  
3.3  
3.465  
55  
V
IEE  
mA  
TABLE 4B. LVCMOS / LVTTL CHARACTERISTICS, VCC=3.3V±5%, TA = 0°C TO 70°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
CLK_EN,  
CLK_SEL  
CLK_EN,  
CLK_SEL  
VIH  
Input High Voltage  
2
3.765  
0.8  
V
V
VIL  
IIH  
Input Low Voltage  
Input High Current  
-0.3  
CLK_EN  
CLK_SEL  
CLK_EN  
CLK_SEL  
V
IN = VCC = 3.465V  
5
µA  
µA  
µA  
µA  
VIN = VCC = 3.465V  
150  
VCC = 3.465V, VIN = 0V  
-150  
-5  
IIL  
Input Low Current  
V
CC = 3.465V, VIN = 0V  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VCC=3.3V±5%, TA = 0°C TO 70°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
VCC = VIN = 3.465V  
VCC = VIN = 3.465V  
VCC = 3.465V, VIN = 0V  
VCC = 3.465V, VIN = 0V  
Minimum Typical Maximum Units  
nCLK  
CLK  
5
µA  
µA  
µA  
µA  
V
150  
nCLK  
CLK  
-150  
-5  
IIL  
Input Low Current  
VPP  
Peak-to-Peak Input Voltage  
0.15  
1.3  
Common Mode Input Voltage;  
NOTE 1, 2  
VCMR  
0.5  
VCC - 0.85  
V
NOTE 1: For single ended applications the maximum input voltage for CLK, nCLK is VCC + 0.3V.  
NOTE 2: Common mode voltage is defined as VIH.  
85304AG-01  
www.icst.com/products/hiperclocks.html  
REV. B JULY 13, 2001  
4
ICS85304-01  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
TABLE 4D. LVPECL DC CHARACTERISTICS, VCC=3.3V±5%, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions  
Minimum Typical  
Maximum Units  
PCLK  
V
CC = VIN = 3.465V  
VCC = VIN = 3.465V  
CC = 3.465V, VIN = 0V  
150  
5
µA  
µA  
µA  
µA  
V
IIH  
Input High Current  
nPCLK  
PCLK  
V
-5  
-150  
IIL  
Input Low Current  
nPCLK  
VCC = 3.465V, VIN = 0V  
VPP  
Peak-to-Peak Input Voltage  
0.15  
1.3  
VCMR  
VOH  
Common Mode Input Voltage; NOTE 1, 2  
Output High Voltage; NOTE 3  
0.5  
VCC - 0.85  
VCC - 1.0  
VCC - 1.7  
0.85  
V
VCC - 1.4  
VCC - 2.0  
0.6  
V
VOL  
Output Low Voltage; NOTE 3  
V
VSWING  
Peak-to-Peak Output Voltage Swing  
V
NOTE 1: Common mode voltage is defined as VIH.  
NOTE 2: For single ended applications the maximum input voltage for PCLK, nPCLK is VCC + 0.3V.  
NOTE 3: Outputs terminated with 50to VCC - 2V.  
TABLE 5. AC CHARACTERISTICS, VCC=3.3V±5%, TA = 0°C TO 70°C  
Symbol  
fMAX  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Maximum Output Frequency  
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 4  
Part-to-Part Skew; NOTE 3, 4  
Output Rise Time  
650  
2.1  
35  
MHz  
ns  
tPD  
ƒ650MHz  
1.0  
tsk(o)  
tsk(pp)  
tR  
ps  
150  
700  
700  
52  
ps  
20% to 80% @ 50MHz  
20% to 80% @ 50MHz  
300  
300  
48  
ps  
tF  
Output Fall Time  
ps  
odc  
Output Duty Cycle  
50  
ps  
All parameters measured at 500MHz unless noted otherwise.  
The cycle-to-cycle jitter on the input will equal the jitter on the output. The part does not add jitter  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages  
and with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
85304AG-01  
www.icst.com/products/hiperclocks.html  
REV. B JULY 13, 2001  
5
ICS85304-01  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
PARAMETER MEASUREMENT INFORMATION  
VCC  
SCOPE  
Qx  
LVPECL  
VCC = 2V  
nQx  
VEE =-1.3V ± 0.135V  
FIGURE 2 - OUTPUT LOAD TEST CIRCUIT  
VCC  
CLK, PCLK  
VPP  
VCMR  
Cross Points  
nCLK, nPCLK  
VEE  
FIGURE 3 - DIFFERENTIAL INPUT LEVEL  
Qx  
nQx  
Qy  
nQy  
tsk(o)  
FIGURE 4 - OUTPUT SKEW  
85304AG-01  
www.icst.com/products/hiperclocks.html  
REV. B JULY 13, 2001  
6
ICS85304-01  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
80%  
80%  
VSWING  
20%  
20%  
Clock Inputs  
and Outputs  
tR  
tF  
FIGURE 5 - INPUT AND OUTPUT RISE AND FALL TIME  
CLK, PCLK  
nCLK, nPCLK  
Q0 - Q4  
nQ0 - nQ4  
tPD  
FIGURE 6 - PROPAGATION DELAY  
CLK, PCLK, Qx  
nCLK, nPCLK, nQx  
Pulse Width  
tPERIOD  
tPW  
odc =  
tPERIOD  
FIGURE 7 - odc & tPERIOD  
85304AG-01  
www.icst.com/products/hiperclocks.html  
REV. B JULY 13, 2001  
7
ICS85304-01  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 8 shows how the differential input can be wired to accept single ended levels. The reference voltage V_REF ~ VCC/2 is  
generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of  
R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock  
swing is only 2.5V and VCC = 3.3V, V_REF should be 1.25V and R2/R1 = 0.609.  
VCC  
R1  
1K  
CLK_IN  
+
V_REF  
-
C1  
R2  
1K  
0.1uF  
FIGURE 8 - SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
85304AG-01  
www.icst.com/products/hiperclocks.html  
REV. B JULY 13, 2001  
8
ICS85304-01  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS85304-01.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS85304-01 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 55mA = 190.57mW  
Power (outputs)MAX = 30.2mW/Loaded Output pair  
If all outputs are loaded, the total power is 5 * 30.2mW = 151mW  
Total Power_MAX (3.465V, with all outputs switching) = 190.57mW + 151mW = 341.57mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device. The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = junction-to-ambient thermal resistance  
Pd_total = Total device power dissipation (example calculation is in section 1 above)  
TA =Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 66.6°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.341W * 66.6°C/W = 92.71°C. This is well below the limit of 125°C  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
Table 6. Thermal Resistance qJA for 20-pin TSSOP, Forced Convection  
qJA by Velocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards 114.5°C/W  
98.0°C/W  
88.0°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
73.2°C/W  
66.6°C/W  
63.5°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
85304AG-01  
www.icst.com/products/hiperclocks.html  
REV. B JULY 13, 2001  
9
ICS85304-01  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
3ꢀ Calculations and Equationsꢀ  
LVPECL output driver circuit and termination are shown in Figure 9ꢀ  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 9 - LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load,  
and a termination voltage of V - 2V!  
CC  
Pd_H is power dissipation when the output drives high!  
Pd_L is the power dissipation when the output drives low!  
Pd_H = [(V  
Pd_L = [(V  
– (V - 2V))/R ]*(V - V  
)
OH_MAX  
CC  
L
CC  
OH_MAX  
– (V - 2V))/R ]*(V - V )  
OL_MAX  
OL_MAX  
CC  
L
CC  
For logic high , V = V  
= V – 1ꢀ0V  
OH_MAX CC  
OUT  
Using V = 3!465, this results in V  
= 2ꢀ465V  
CC  
OH_MAX  
For logic low , V = V  
= V – 1ꢀ7V  
CC  
OUT  
OL_MAX  
Using V = 3!465, this results in V  
= 1ꢀ765V  
CC  
OL_MAX  
Pd_H = [(2!465V - (3!465V - 2V))/50 ]*(3!465V - 2!465V) = 20ꢀ0mW  
Pd_L = [(1!765V - (3!465V - 2V))/50 ]*(3!465V - 1!765V) = 10ꢀ2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30ꢀ2mW  
85304AG-01  
www.icst.com/products/hiperclocks.html  
REV. B JULY 13, 2001  
10  
ICS85304-01  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
RELIABILITY INFORMATION  
TABLE 7. θJAVS. AIR FLOW TABLE  
q by Velocity (Linear Feet per Minute)  
JA  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards 114!5°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards 73!2°C/W  
98!0°C/W  
66!6°C/W  
88!0°C/W  
63!5°C/W  
NOTE: Most modern PCB designs use multi-layered boardsꢀ The data in the second row pertains to most designsꢀ  
TRANSISTOR COUNT  
The transistor count for ICS85304-01 is: 489  
85304AG-01  
www.icst.com/products/hiperclocks.html  
REV. B JULY 13, 2001  
11  
ICS85304-01  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
PACKAGE OUTLINE - G SUFFIX  
TABLE 8. PACKAGE DIMENSIONS  
Millimeters  
SYMBOL  
MIN  
MAX  
N
A
20  
--  
1.20  
0.15  
1.05  
0.30  
0.20  
6.60  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
6.40  
c
D
E
6.40 BASIC  
0.65 BASIC  
E1  
e
4.30  
4.50  
L
0.45  
0°  
0.75  
8°  
α
aaa  
--  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
85304AG-01  
www.icst.com/products/hiperclocks.html  
REV. B JULY 13, 2001  
12  
ICS85304-01  
LOW SKEW, 1-TO-5  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
ICS85304AG-01  
Marking  
Package  
Count  
72 per tube  
2500  
Temperature  
0°C to 70°C  
0°C to 70°C  
ICS85304AG-01  
ICS85304AG-01  
20 lead TSSOP  
ICS85304AG-01T  
20 lead TSSOP on Tape and Reel  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are  
not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS  
product for use in life support devices or critical medical instruments.  
85304AG-01  
www.icst.com/products/hiperclocks.html  
REV. B JULY 13, 2001  
13  

相关型号:

ICS85304AG-01LF

Low Skew Clock Driver, 5 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, LEAD FREE, MO-153, TSSOP-20
IDT

ICS85304AG-01LFT

Low Skew Clock Driver, 5 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, LEAD FREE, MO-153, TSSOP-20
IDT

ICS85304AG-01T

LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
ICSI

ICS853052

DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
IDT

ICS853052

DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
ICSI

ICS853052AG

DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
IDT

ICS853052AG

DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
ICSI

ICS853052AGLF

DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
IDT

ICS853052AGLFT

DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
IDT

ICS853052AGT

DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
IDT

ICS853052AGT

DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
ICSI

ICS853052AM

DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
IDT