ICS853052AGT [ICSI]

DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER; 双LVCMOS / LVTTL到差分2.5V , 3.3V , 5V LVPECL多路复用器
ICS853052AGT
型号: ICS853052AGT
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
双LVCMOS / LVTTL到差分2.5V , 3.3V , 5V LVPECL多路复用器

复用器 逻辑集成电路 光电二极管
文件: 总13页 (文件大小:231K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
ICS853052  
Integrated  
Circuit  
Systems, Inc.  
DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL  
2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
GENERAL DESCRIPTION  
FEATURES  
The ICS853052 is a Dual LVCMOS / LVTTL-to- 1 differential 2.5V, 3.3V or 5V LVPECL output  
ICS  
Differential 2.5V, 3.3V, 5V LVPECL Multiplexer  
and a member of the HiPerClocksfamily of High  
Performance Clocks Solutions from ICS. The  
ICS853052 has two selectable single ended  
2 selectable LVCMOS/LVTTL clock inputs  
Output frequency: TBD  
HiPerClockS™  
Additive phase jitter, RMS: 0.06ps (typical)  
Propagation Delay: 370ps (typical)  
clock inputs. The single ended clock input accepts LVCMOS  
or LVTTL input levels and translates them to 2.5V, 3.3V or 5V  
LVPECL levels.The small outline 8-pin TSSOP or 8-pin SOIC  
packages make this device ideal for applications where space,  
high performance and low power are important.  
2.5V, 3.3V or 5V operating supply voltage  
(operating range 2.375V to 5.5V)  
-40°C to 85°C ambient operating temperature  
Pin compatible with MC100EP58  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
nc  
Da  
VCC  
Q
1
2
3
4
8
7
6
5
Da  
1
0
nQ  
Q
Db  
SEL  
nQ  
VEE  
Db  
ICS853052  
8-Lead TSSOP, 118 mil  
3mm x 3mm x 0.95mm package body  
G Package  
SEL  
TopView  
8-Lead SOIC, 150 mil  
3.90mm x 4.90mm x 1.37mm package body  
M Package  
TopView  
The Preliminary Information presented herein represents a product in prototyping or pre-production.The noted characteristics are based on initial  
product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice.  
853052AG  
www.icst.com/products/hiperclocks.html  
REV. A JULY 1, 2004  
1
PRELIMINARY  
ICS853052  
Integrated  
Circuit  
Systems, Inc.  
DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL  
2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
nc  
Type  
Description  
1
Unused  
Input  
No connect.  
2, 3  
Da, Db  
Pulldown LVCMOS / LVTTL clock inputs.  
Select input pin. When HIGH, selects Da input clock.  
4
SEL  
Input  
Pulldown When Low selects Db input clock.  
Single-ended 100H LVPECL interface levels.  
5
6, 7  
8
VEE  
nQ, Q  
VCC  
Power  
Output  
Power  
Negative supply pin.  
Differential output pair. LVPECL interface levels.  
Positive supply pin.  
NOTE: Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
Input Capacitance  
Input Pulldown Resistor  
1
pF  
RPULLDOWN  
75  
K  
TABLE 3. CONTROL INPUT FUNCTION TABLE  
Inputs  
SEL  
0
Selected Source  
Db  
Da  
1
853052AG  
www.icst.com/products/hiperclocks.html  
REV. A JULY 1, 2004  
2
PRELIMINARY  
ICS853052  
Integrated  
Circuit  
Systems, Inc.  
DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL  
2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, VCC  
6V (LVPECL mode, VEE = 0) NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage  
to the device. These ratings are stress specifi-  
cations only. Functional operation of product at  
these conditions or any conditions beyond those  
listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maxi-  
mum rating conditions for extended periods may  
affect product reliability.  
Negative Supply Voltage, VEE  
Inputs, VI (LVPECL mode)  
Inputs, VI (ECL mode)  
-6V (ECL mode, VCC = 0)  
-0.5V to VCC + 0.5 V  
0.5V to VEE - 0.5V  
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
OperatingTemperature Range, TA -40°C to +85°C  
StorageTemperature,TSTG -65°C to 150°C  
PackageThermal Impedance, θJA 101.7°C/W (0 m/s)TSSOP  
112.7°C/W (0 lfpm) SOIC  
(Junction-to-Ambient)  
TABLE 4A. DC CHARACTERISTICS, VCC = 2.5V;VEE = 0V  
-40°C  
Typ  
21  
25°C  
Typ  
21  
85°C  
Typ  
21  
Symbol Parameter  
Min  
Units  
Max  
Min  
Max  
Min  
Max  
IEE  
Power Supply Current  
mA  
V
VOH  
VOL  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
1.375 1.475 1.58 1.425 1.495 1.57 1.495 1.53 1.565  
0.605 0.745 0.88 0.625 0.72 0.815 0.64 0.735 0.83  
V
Input High Voltage,  
Single-Ended  
Input Low Voltage,  
Single-Ended  
V
V
VIH  
VIL  
1.275  
0.63  
1.56 1.275  
0.965 0.63  
1.56 1.275  
0.965 0.63  
-0.83  
0.965  
150  
µA  
µA  
IIH  
IIL  
Input High Current  
Input Low Current  
150  
150  
150  
150  
150  
Input and output parameters vary 1:1 with VCC  
.
NOTE 1: Outputs terminated with 50to VCC - 2V.  
TABLE 4B. DC CHARACTERISTICS, VCC = 3.3V;VEE = 0V  
-40°C  
25°C  
Typ  
21  
85°C  
Typ  
21  
Symbol Parameter  
Units  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
IEE  
Power Supply Current  
21  
mA  
mV  
mV  
VOH  
VOL  
Output High Voltage; NOTE 1 2175 2275 2380 2225 2295 2370 2295  
2330  
1535  
2365  
1630  
Output Low Voltage; NOTE 1  
1405 1545 1680 1425 1520 1615 1440  
Input High Voltage),  
(Single-Ended)  
Input Low Voltage,  
(Single-Ended)  
VIH  
VIL  
2075  
1355  
2420 2075  
1675 1355  
2420 2075  
1675 1355  
2420  
mV  
mV  
1675  
150  
IIH  
IIL  
Input High Current  
Input Low Current  
150  
150  
150  
150  
µA  
µA  
150  
Input and output parameters vary 1:1 with VCC  
.
NOTE 1: Outputs terminated with 50to VCC - 2V.  
853052AG  
www.icst.com/products/hiperclocks.html  
REV. A JULY 1, 2004  
3
PRELIMINARY  
ICS853052  
Integrated  
Circuit  
Systems, Inc.  
DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL  
2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
TABLE 4C. DC CHARACTERISTICS, VCC = 5V;VEE = 0V  
-40°C  
Typ  
21  
25°C  
Typ  
21  
85°C  
Typ  
21  
Symbol Parameter  
Min  
Units  
Max  
Min  
Max  
Min  
Max  
IEE  
Power Supply Current  
mA  
mV  
mV  
VOH  
VOL  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
3875 3975 4105 4080 3925 3995 4070 3995 4065  
3105 3245 3380 3125 3220 3315 3140 3235 3330  
Input High Voltage,  
Single-Ended  
Input Low Voltage,  
Single-Ended  
VIH  
VIL  
3775  
3055  
4120 3775  
3375 3055  
4120 3775  
3375 3055  
4120  
mV  
mV  
3375  
150  
IIH  
IIL  
Input High Current  
Input Low Current  
150  
150  
150  
150  
µA  
µA  
150  
Input and output parameters vary 1:1 with VCC  
.
NOTE 1: Outputs terminated with 50to VCC - 2V.  
TABLE 4D. ECL DC CHARACTERISTICS, VCC = 0V;VEE = -5.5V TO -2.375V  
-40°C  
25°C  
Typ  
21  
85°C  
Typ  
21  
Symbol Parameter  
Units  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
IEE  
Power Supply Current  
21  
mA  
mV  
mV  
VOH  
VOL  
Output High Voltage; NOTE 1 -1125 -1025 -920 -1075 -1005 -930 -1005 -970  
-935  
Output Low Voltage; NOTE 1  
-1895 -1755 -1620 -1875 -1780 -1685 -1860 -1765 -1670  
Input High Voltage,  
Single-Ended  
Input Low Voltage,  
Single-Ended  
VIH  
VIL  
-1225  
-1945  
-880 -1225  
-1625 -1945  
-880 -1225  
-1625 -1945  
-880  
mV  
mV  
-1625  
150  
IIH  
IIL  
Input High Current  
Input Low Current  
150  
150  
150  
150  
µA  
µA  
150  
Input and output parameters vary 1:1 with VCC.  
NOTE 1: Outputs terminated with 50to VCC - 2V.  
TABLE 5. AC CHARACTERISTICS, VCC = 0V;VEE = -5.5V TO -2.375V OR VCC = 2.375V TO 5.5V;VEE = 0V  
-40°C 25°C  
Min Typ Max Min Typ  
85°C  
Max Min Typ  
Symbol Parameter  
Units  
Max  
fMAX  
Output Frequency  
TBD  
TBD  
TBD  
GHz  
ps  
Propagation Delay, Low to High;  
NOTE 1  
tPLH  
TBD  
370  
TBD  
Propagation Delay, High to Low;  
NOTE 1  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter section  
tPHL  
tjit  
TBD  
TBD  
370  
TBD  
TBD  
ps  
ps  
0.06  
VPP  
Input Voltage Swing (Differential)  
TBD  
TBD  
TBD  
180  
TBD  
TBD  
ps  
ps  
tR/tF  
Output Rise/Fall Time  
20% to 80%  
All parameters are measured 1GHz unless otherwise noted.  
NOTE 1: Measured from VCC/2 of the input crossing point to the differential output crossing point.  
853052AG  
www.icst.com/products/hiperclocks.html  
REV. A JULY 1, 2004  
4
PRELIMINARY  
ICS853052  
Integrated  
Circuit  
Systems, Inc.  
DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL  
2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
ADDITIVE PHASE JITTER  
the 1Hz band to the power in the fundamental. When the re-  
quired offset is specified, the phase noise is called a dBc value,  
which simply means dBm at a specified offset from the funda-  
mental. By investigating jitter in the frequency domain, we get a  
better understanding of its effects on the desired application over  
the entire time record of the signal. It is mathematically possible  
to calculate an expected bit error rate given a phase noise plot.  
The spectral purity in a band at a specific offset from the funda-  
mental compared to the power of the fundamental is called the  
dBc Phase Noise. This value is normally expressed using a  
Phase noise plot and is most often the specified plot in many  
applications. Phase noise is defined as the ratio of the noise  
power present in a 1Hz band at a specified offset from the fun-  
damental frequency to the power value of the fundamental.This  
ratio is expressed in decibels (dBm) or a ratio of the power in  
0
-10  
-20  
-30  
-40  
Input/Output Additive Phase Jitter  
@ 155.52MHz (12KHz to 20MHz)  
= 0.06ps typical  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
100  
1k  
10k  
100k  
1M  
10M  
100M  
-190  
OFFSET FROM CARRIER FREQUENCY (HZ)  
As with most timing specifications, phase noise measurements vice meets the noise floor of what is shown, but can actually be  
have issues.The primary issue relates to the limitations of the lower. The phase noise is dependant on the input source and  
equipment. Often the noise floor of the equipment is higher than measurement equipment.  
the noise floor of the device. This is illustrated above. The de-  
853052AG  
www.icst.com/products/hiperclocks.html  
REV. A JULY 1, 2004  
5
PRELIMINARY  
ICS853052  
Integrated  
Circuit  
Systems, Inc.  
DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL  
2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
PARAMETER MEASUREMENT INFORMATION  
2V  
SCOPE  
VCC  
Qx  
Da Db  
nQ  
LVPECL  
VEE  
Q
nQx  
tPD  
-3.5V to -0.375V  
OUTPUT LOAD AC TEST CIRCUIT  
PROPAGATION DELAY  
80%  
tF  
80%  
VSWING  
20%  
Clock  
20%  
Outputs  
tR  
OUTPUT RISE/FALL TIME  
853052AG  
www.icst.com/products/hiperclocks.html  
REV. A JULY 1, 2004  
6
PRELIMINARY  
ICS853052  
Integrated  
Circuit  
Systems, Inc.  
DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL  
2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
APPLICATION INFORMATION  
TERMINATION FOR 2.5V LVPECL OUTPUT  
Figure 1A and Figure 1B show examples of termination for 2.5V ground level. The R3 in Figure 1B can be eliminated and the  
LVPECL driver.These terminations are equivalent to terminat- termination is shown in Figure 1C.  
ing 50to VCC - 2V. For VCC = 2.5V, the VCC - 2V is very close to  
2.5V  
VCC=2.5V  
2.5V  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
Zo = 50 Ohm  
R1  
250  
R3  
250  
+
-
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
2,5V LVPECL  
Driver  
R1  
50  
R2  
50  
2,5V LVPECL  
Driv er  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 1A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
FIGURE 1B. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
+
Zo = 50 Ohm  
-
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
FIGURE 1C. 2.5V LVPECL TERMINATION EXAMPLE  
853052AG  
www.icst.com/products/hiperclocks.html  
REV. A JULY 1, 2004  
7
PRELIMINARY  
ICS853052  
Integrated  
Circuit  
Systems, Inc.  
DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL  
2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
TERMINATION FOR 3.3V LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs.The two different layouts mentioned  
are recommended only as guidelines.  
50transmission lines. Matched impedance techniques should  
be used to maximize operating frequency and minimize signal  
distortion. Figures 2A and 2B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs.Therefore, terminating  
resistors (DC current path to ground) or current sources must  
be used for functionality. These outputs are designed to drive  
3.3V  
Zo = 50  
125  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 2A. LVPECL OUTPUT TERMINATION  
FIGURE 2B. LVPECL OUTPUT TERMINATION  
TERMINATION FOR 5V LVPECL OUTPUT  
This section shows examples of 5V LVPECL output termina-  
tion.Figure 3A shows standard termination for 5V LVPECL.The  
termination requires matched load of 50resistors pull down to  
VCC - 2V = 3V at the receiver.Figure 3B shows Thevenin equiva-  
lence of Figure 3A. In actual application where the 3V DC power  
supply is not available, this approached is normally used.  
5V  
5V  
5V  
5V  
R3  
84  
R4  
84  
PECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
PECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
+
-
PECL  
PECL  
R1  
125  
R2  
125  
R1  
50  
R2  
50  
3V  
FIGURE 3A. STANDARD 5V PECL OUTPUT TERMINATION  
FIGURE 3B. 5V PECL OUTPUT TERMINATION EXAMPLE  
853052AG  
www.icst.com/products/hiperclocks.html  
REV. A JULY 1, 2004  
8
PRELIMINARY  
ICS853052  
Integrated  
Circuit  
Systems, Inc.  
DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL  
2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS853052.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS853052 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 5.5V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 5.5V * 21mA = 115.5mW  
Power (outputs)MAX = 30.94mW/Loaded Output pair  
Total Power_MAX (5.5V, with all outputs switching) = 115.5mW + 30.94mW = 146.4mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total =Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 1 meter per second and a multi-layer board, the appropriate value is 90.5°C/W per Table 6A below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.146W * 90.5°C/W = 98.2°C. This is below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 6A. THERMAL RESISTANCE θJA FOR 8-PIN TSSOP, FORCED CONVECTION  
θJA by Velocity (Meters per Second)  
0
1
2
Multi-Layer PCB, JEDEC Standard Test Boards  
101.7°C/W  
90.5°C/W  
89.8°C/W  
TABLE 6B. THERMAL RESISTANCE θJA FOR 8-PIN SOIC, FORCED CONVECTION  
θJA by Velocity (Linear Feet per Minute)  
0
200  
128.5°C/W  
103.3°C/W  
500  
115.5°C/W  
97.1°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
153.3°C/W  
112.7°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
853052AG  
www.icst.com/products/hiperclocks.html  
REV. A JULY 1, 2004  
9
PRELIMINARY  
ICS853052  
Integrated  
Circuit  
Systems, Inc.  
DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL  
2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
3. Calculations and Equations.  
LVPECL output driver circuit and termination are shown in Figure 4.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
Figure 4. LVPECL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage ofV - 2V.  
CC  
For logic high, VOUT = V  
= V  
– 0.935V  
OH_MAX  
CC_MAX  
)
= 0.935V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, VOUT = V  
= V  
– 1.67V  
OL_MAX  
CC_MAX  
)
(V  
- V  
= 1.67V  
CC_MAX  
OL_MAX  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
_MAX  
OH_MAX  
CC _MAX  
OH_MAX  
L
CC  
L
[(2V - 0.935V)/50] * 0.935V = 19.92mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
L
CC  
L
[(2V - 1.67V)/50] * 1.67V = 11.02mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.94mW  
853052AG  
www.icst.com/products/hiperclocks.html  
REV. A JULY 1, 2004  
10  
PRELIMINARY  
ICS853052  
Integrated  
Circuit  
Systems, Inc.  
DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL  
2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
RELIABILITY INFORMATION  
TABLE 7A. θJAVS. AIR FLOW TABLE FOR 8 LEAD TSSOP  
θJA by Velocity (Meters per Second)  
0
1
2
Multi-Layer PCB, JEDEC Standard Test Boards  
101.7°C/W  
90.5°C/W  
89.8°C/W  
TABLE 7B. θJAVS. AIR FLOW TABLE FOR 8 LEAD SOIC  
θJA by Velocity (Linear Feet per Minute)  
0
200  
128.5°C/W  
103.3°C/W  
500  
115.5°C/W  
97.1°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
153.3°C/W  
112.7°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS853052 is: 110  
853052AG  
www.icst.com/products/hiperclocks.html  
REV. A JULY 1, 2004  
11  
PRELIMINARY  
ICS853052  
Integrated  
Circuit  
Systems, Inc.  
DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL  
2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
PACKAGE OUTLINE - G SUFFIX FOR 8 LEAD TSSOP  
PACKAGE OUTLINE - M SUFFIX FOR 8 LEAD SOIC  
TABLE 8A. PACKAGE DIMENSIONS  
TABLE 8B. PACKAGE DIMENSIONS  
Millimeters  
SYMBOL  
Millimeters  
SYMBOL  
Minimum  
Maximum  
MINIMUN  
MAXIMUM  
N
A
8
N
A
A1  
B
C
D
E
e
8
--  
1.10  
0.15  
0.97  
0.38  
0.23  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
A1  
A2  
b
0
0.79  
0.22  
0.08  
c
D
3.00 BASIC  
4.90 BASIC  
3.00 BASIC  
0.65 BASIC  
1.95 BASIC  
E
1.27 BASIC  
E1  
e
H
h
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
e1  
L
L
0.40  
0°  
0.80  
8°  
α
α
Reference Document: JEDEC Publication 95, MS-012  
aaa  
--  
0.10  
Reference Document: JEDEC Publication 95, MO-187  
853052AG  
www.icst.com/products/hiperclocks.html  
REV. A JULY 1, 2004  
12  
PRELIMINARY  
ICS853052  
Integrated  
Circuit  
Systems, Inc.  
DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL  
2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
ICS853052AG  
Marking  
Package  
8 lead TSSOP  
Count  
96 per tube  
2500  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
052A  
052A  
ICS853052AGT  
ICS853052AM  
8 lead TSSOP on Tape and Reel  
8 lead SOIC  
853052A  
853052A  
96 per tube  
2500  
ICS853052AMT  
8 lead SOIC on Tape and Reel  
The aforementioned trademark, HiPerClockS™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product  
for use in life support devices or critical medical instruments.  
853052AG  
www.icst.com/products/hiperclocks.html  
REV. A JULY 1, 2004  
13  

相关型号:

ICS853052AM

DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
IDT

ICS853052AM

DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
ICSI

ICS853052AMLF

DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
IDT

ICS853052AMLFT

DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
IDT

ICS853052AMT

DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
IDT

ICS853052AMT

DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
ICSI

ICS853054

4:1, DIFFERENTIAL-TO-3.3V OR 2.5V LVPECL/ECL CLOCK MULTIPLEXER
ICSI

ICS853054AG

4:1, DIFFERENTIAL-TO-3.3V OR 2.5V LVPECL/ECL CLOCK MULTIPLEXER
ICSI

ICS853054AGLF

4:1, DIFFERENTIAL-TO-3.3V OR 2.5V LVPECL/ECL CLOCK MULTIPLEXER
ICSI

ICS853054AGLFT

4:1, DIFFERENTIAL-TO-3.3V OR 2.5V LVPECL/ECL CLOCK MULTIPLEXER
ICSI

ICS853054AGT

4:1, DIFFERENTIAL-TO-3.3V OR 2.5V LVPECL/ECL CLOCK MULTIPLEXER
ICSI

ICS853058

8:1, DIFFERENTIAL-TO-3.3V OR 2.5V LVPECL/ECL CLOCK MULTIPLEXER
ICSI