ICS85310AYI-21T [ICSI]

LOW SKEW, DUAL, 1-TO-5 DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER; 低歪曲率,双通道, 1到5差分至2.5V / 3.3V ECL / LVPECL扇出缓冲器
ICS85310AYI-21T
型号: ICS85310AYI-21T
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

LOW SKEW, DUAL, 1-TO-5 DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER
低歪曲率,双通道, 1到5差分至2.5V / 3.3V ECL / LVPECL扇出缓冲器

逻辑集成电路 驱动
文件: 总15页 (文件大小:188K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS85310I-21  
LOW SKEW, DUAL, 1-TO-5  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
GENERAL DESCRIPTION  
FEATURES  
The ICS85310I-21 is a low skew, high perfor- 2 differential 2.5V/3.3V LVPECL / ECL bank outputs  
ICS  
mance dual 1-to-5 Differential-to-2.5V/3.3V  
2 differential clock input pairs  
HiPerClockS™  
ECL/LVPECL Fanout Buffer and a member of  
the HiPerClockS™ family of High Performance  
Clock Solutions from ICS. The CLKx, nCLKx  
CLKx, nCLKx pairs can accept the following differential  
input levels: LVDS, LVPECL, LVHSTL, SSTL, HCSL  
pairs can accept most standard differential input levels.  
The ICS85310I-21 is characterized to operate from either a  
2.5V or a 3.3V power supply. Guaranteed output and part-  
to-part skew characteristics make the ICS85310I-21 ideal  
for those clock distribution applications demanding well  
defined performance and repeatability.  
Maximum output frequency: 700MHz  
Translates any single ended input signal to 3.3V  
LVPECL levels with resistor bias on nCLKx input  
Output skew: 25ps (typical)  
Part-to-part skew: 270ps (typical)  
Propagation delay: 1.7ns (typical)  
Additive phase jitter, RMS: <0.13ps (typical)  
LVPECL mode operating voltage supply range:  
VCC = 2.375V to 3.8V, VEE = 0V  
ECL mode operating voltage supply range:  
VCC = 0V, VEE = -3.8V to -2.375V  
-40°C to 85°C ambient operating temperature  
Lead-Free package fully RoHS complaint  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
QA0  
nQA0  
CLKA  
nCLKA  
QA1  
nQA1  
QA2  
nQA2  
32 31 30 29 28 27 26 25  
VCC  
nc  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
QA3  
QA3  
nQA3  
nQA3  
QA4  
CLKA  
nCLKA  
nc  
QA4  
nQA4  
nQA4  
QB0  
ICS85310I-21  
CLKB  
nCLKB  
nQB0  
QB1  
QB0  
nQB0  
CLKB  
nQB1  
VEE  
nCLKB  
QB1  
nQB1  
9
10 11 12 13 14 15 16  
QB2  
nQB2  
32-Lead LQFP  
QB3  
nQB3  
7mm x 7mm x 1.4mm package body  
Y Package  
TopView  
QB4  
nQB4  
85310AYI-21  
www.icst.com/products/hiperclocks.html  
REV. D JUNE 30, 2005  
1
ICS85310I-21  
LOW SKEW, DUAL, 1-TO-5  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 1. PIN DESCRIPTIONS  
Number  
1
Name  
VCC  
Type  
Description  
Core supply pin.  
Power  
2, 5  
nc  
Unused  
Input  
No connect.  
3
CLKA  
Pulldown Non-inverting differential clock input.  
4
nCLKA  
Input  
Pullup  
Inverting differential clock input.  
6
CLKB  
Input  
Pulldown Non-inverting differential clock input.  
7
nCLKB  
Input  
Pullup  
Inverting differential clock input.  
8
VEE  
Power  
Power  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Negative supply pin.  
9, 16, 25, 32  
10, 11  
12, 13  
14, 15  
17, 18  
19, 20  
21, 22  
23, 24  
26, 27  
28, 29  
30, 31  
VCCO  
Output supply pins.  
nQB4, QB4  
nQB3, QB3  
nQB2, QB2  
nQB1, QB1  
nQB0, QB0  
nQA4, QA4  
nQA3, QA3  
nQA2, QA2  
nQA1, QA1  
nQA0, QA0  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
4
RPULLUP  
51  
51  
kΩ  
RPULLDOWN Input Pulldown Resistor  
kΩ  
TABLE 3. CLOCK INPUT FUNCTION TABLE  
Inputs  
Outputs  
Input to Output Mode  
Polarity  
QA0:QA4,  
QB0:QB4  
nQA0:nQA4,  
nQB0:nQB4  
CLKA or CLKB  
nCLKA or nCLKB  
0
1
LOW  
HIGH  
LOW  
HIGH  
LOW  
LOW  
HIGH  
Differential to Differential  
Differential to Differential  
Single Ended to Differential  
Single Ended to Differential  
Single Ended to Differential  
Single Ended to Differential  
Non Inverting  
Non Inverting  
Non Inverting  
Non Inverting  
Inverting  
1
0
HIGH  
LOW  
HIGH  
HIGH  
LOW  
0
Biased; NOTE 1  
1
Biased; NOTE 1  
Biased; NOTE 1  
Biased; NOTE 1  
0
1
Inverting  
NOTE 1: Please refer to the Application Information, "Wiring the Differential Input to Accept Single Ended Levels".  
85310AYI-21  
www.icst.com/products/hiperclocks.html  
REV. D JUNE 30, 2005  
2
ICS85310I-21  
LOW SKEW, DUAL, 1-TO-5  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, VCC  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
-4.6V  
Negative SupplyVoltage,VEE  
Maximum Ratings may cause permanent damage to the  
-0.5V to VCC + 0.5V  
Inputs, VI  
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
OperatingTemperature Range, TA -40°C to +85°C  
StorageTemperature, TSTG -65°C to 150°C  
conditions for extended periods may affect product reliability.  
PackageThermal Impedance, θJA 47.9°C/W (0 lfpm)  
(Junction-to-Ambient)  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCO = 2.375V TO 3.8V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
2.375  
Typical  
3.3  
Maximum Units  
VCC  
VCCO  
IEE  
Core Supply Voltage  
3.8  
3.8  
120  
V
V
Output Supply Voltage  
Power Supply Current  
2.375  
3.3  
mA  
TABLE 4B. DIFFERENTIAL DC CHARACTERISTICS, VVCC = VCCO = 2.375V TO 3.8V, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
CLKA, CLKB  
nCLKA, nCLKB  
CLKA, CLKB  
nCLKA, nCLKB  
V
V
CC = VIN = 3.8V  
CC = VIN = 3.8V  
150  
5
µA  
µA  
µA  
µA  
V
IIH  
Input High Current  
V
CC = 3.8V, VIN = 0V  
CC = 3.8V, VIN = 0V  
-5  
-150  
IIL  
Input Low Current  
V
VPP  
Peak-to-Peak Input Voltage  
0.15  
1.3  
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
VEE + 0.5  
VCC - 0.85  
V
NOTE 1: Common mode voltage is defined as VIH.  
NOTE 2: For single ended applications, the maximum input voltage for CLKA, nCLKA and CLKB, nCLKB is VCC + 0.3V.  
TABLE 4C. LVPECL DC CHARACTERISTICS, VCC = VCCO = 2.375V TO 3.8V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical  
VCCO - 1.4  
Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCCO - 1.0  
VCCO - 1.7  
0.85  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VCCO - 2.0  
VSWING  
Peak-to-Peak Output Voltage Swing  
0.6  
NOTE 1: Outputs terminated with 50Ω to VCCO - 2V.  
85310AYI-21  
www.icst.com/products/hiperclocks.html  
REV. D JUNE 30, 2005  
3
ICS85310I-21  
LOW SKEW, DUAL, 1-TO-5  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 5. AC CHARACTERISTICS, VCC = VCCO = 2.375V TO 3.8V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
fMAX  
Output Frequency  
700  
2.2  
50  
MHz  
ns  
tPD  
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 4  
ƒ500MHz  
1.7  
25  
tsk(o)  
tsk(pp)  
ps  
Part-to-Part Skew; NOTE 3, 4  
270  
550  
ps  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter Section  
tjit  
<0.13  
ps  
tR  
Output Rise Time  
Output Fall Time  
Output Duty Cycle  
20% to 80%  
20% to 80%  
200  
200  
47  
700  
700  
53  
ps  
ps  
%
tF  
odc  
All parameters measured at 500MHz unless noted otherwise.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages  
and with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
85310AYI-21  
www.icst.com/products/hiperclocks.html  
REV. D JUNE 30, 2005  
4
ICS85310I-21  
LOW SKEW, DUAL, 1-TO-5  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
ADDITIVE PHASE JITTER  
the 1Hz band to the power in the fundamental. When the re-  
quired offset is specified, the phase noise is called a dBc value,  
which simply means dBm at a specified offset from the funda-  
mental. By investigating jitter in the frequency domain, we get a  
better understanding of its effects on the desired application over  
the entire time record of the signal. It is mathematically possible  
to calculate an expected bit error rate given a phase noise plot.  
The spectral purity in a band at a specific offset from the funda-  
mental compared to the power of the fundamental is called the  
dBc Phase Noise. This value is normally expressed using a  
Phase noise plot and is most often the specified plot in many  
applications. Phase noise is defined as the ratio of the noise  
power present in a 1Hz band at a specified offset from the fun-  
damental frequency to the power value of the fundamental.This  
ratio is expressed in decibels (dBm) or a ratio of the power in  
0
-10  
-20  
-30  
Additive Phase Jitter, RMS  
@ 155.52MHz = <0.13ps typical  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
100  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FROM CARRIER FREQUENCY (HZ)  
As with most timing specifications, phase noise measurements vice meets the noise floor of what is shown, but can actually be  
have issues.The primary issue relates to the limitations of the lower. The phase noise is dependant on the input source and  
equipment. Often the noise floor of the equipment is higher than measurement equipment.  
the noise floor of the device. This is illustrated above. The de-  
85310AYI-21  
www.icst.com/products/hiperclocks.html  
REV. D JUNE 30, 2005  
5
ICS85310I-21  
LOW SKEW, DUAL, 1-TO-5  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
VCC,  
Qx  
VCCO  
nCLKA, nCLKB  
VPP  
LVPECL  
VEE  
VCMR  
Cross Points  
CLKA, CLKB  
nQx  
VEE  
-0.375V to -1.8V  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nQx  
PART 1  
Qx  
nQx  
Qx  
nQy  
nQy  
PART 2  
Qy  
Qy  
tsk(pp)  
tsk(o)  
PART-TO-PART SKEW  
OUTPUT SKEW  
nCLKA,  
nCLKB  
80%  
tF  
80%  
CLKA,  
CLKB  
VSWING  
20%  
Clock  
20%  
nQAx,  
nQBx  
Outputs  
tR  
QAx,  
QBx  
tPD  
OUTPUT RISE/FALL TIME  
PROPAGATION DELAY  
nQA0:nQA4,  
nQB0:nQB4  
QA0:QA4,  
QB0:QB4  
tPW  
tPERIOD  
tPW  
odc =  
x 100%  
tPERIOD  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
85310AYI-21  
www.icst.com/products/hiperclocks.html  
REV. D JUNE 30, 2005  
6
ICS85310I-21  
LOW SKEW, DUAL, 1-TO-5  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 1 shows how the differential input can be wired to accept of R1 and R2 might need to be adjusted to position theV_REF in  
single ended levels. The reference voltage V_REF ~ VCC/2 is the center of the input voltage swing. For example, if the input  
generated by the bias resistors R1, R2 and C1.This bias circuit clock swing is only 2.5V andVCC = 3.3V, V_REF should be 1.25V  
should be located as close as possible to the input pin.The ratio and R2/R1 = 0.609.  
VCC  
R1  
1K  
Single Ended Clock Input  
CLKx  
V_REF  
nCLKx  
C1  
0.1u  
R2  
1K  
FIGURE 1. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
TERMINATION FOR 3.3V LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs.The two different layouts mentioned  
are recommended only as guidelines.  
50Ω transmission lines. Matched impedance techniques should  
be used to maximize operating frequency and minimize signal  
distortion. Figures 2A and 2B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs.Therefore, terminating  
resistors (DC current path to ground) or current sources must  
be used for functionality. These outputs are designed to drive  
3.3V  
Zo = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 2A. LVPECL OUTPUT TERMINATION  
FIGURE 2B. LVPECL OUTPUT TERMINATION  
85310AYI-21  
www.icst.com/products/hiperclocks.html  
REV. D JUNE 30, 2005  
7
ICS85310I-21  
LOW SKEW, DUAL, 1-TO-5  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TERMINATION FOR 2.5V LVPECL OUTPUTS  
Figure 3A and Figure 3B show examples of termination for 2.5V ground level. The R3 in Figure 3B can be eliminated and the  
LVPECL driver.These terminations are equivalent to terminat- termination is shown in Figure 3C.  
ing 50Ω to VCC - 2V. For VCC = 2.5V, the VCC - 2V is very close to  
2.5V  
2.5V  
2.5V  
VCCO=2.5V  
VCCO=2.5V  
R1  
R3  
250  
250  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
+
-
2,5V LVPECL  
Driver  
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 3A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
FIGURE 3B. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
2.5V  
VCCO=2.5V  
Zo = 50 Ohm  
+
Zo = 50 Ohm  
-
2,5V LVPECL  
Driver  
R1  
50  
R2  
50  
FIGURE 3C. 2.5V LVPECL TERMINATION EXAMPLE  
85310AYI-21  
www.icst.com/products/hiperclocks.html  
REV. D JUNE 30, 2005  
8
ICS85310I-21  
LOW SKEW, DUAL, 1-TO-5  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL here are examples only. Please consult with the vendor of the  
and other differential signals.BothVSWING and VOH must meet the driver component to confirm the driver termination requirements.  
VPP and VCMR input requirements. Figures 4A to 4E show inter- For example in Figure 4A, the input termination applies for ICS  
face examples for the HiPerClockS CLK/nCLK input driven by HiPerClockS LVHSTL drivers. If you are using an LVHSTL driver  
the most common driver types.The input interfaces suggested from another vendor, use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
Input  
LVPECL  
nCLK  
HiPerClockS  
Input  
LVHSTL  
R1  
50  
R2  
50  
ICS  
HiPerClockS  
R1  
50  
R2  
50  
LVHSTL Driver  
R3  
50  
FIGURE 4A. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
ICS HIPERCLOCKS LVHSTL DRIVER  
FIGURE 4B. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
R4  
125  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiver  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 4C. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 4D. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
C1  
C2  
LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
nCLK  
HiPerClockS  
Input  
R5  
100 - 200  
R6  
100 - 200  
R1  
84  
R2  
84  
R5,R6 locate near the driver pin.  
FIGURE 4E. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER WITH AC COUPLE  
85310AYI-21  
www.icst.com/products/hiperclocks.html  
REV. D JUNE 30, 2005  
9
ICS85310I-21  
LOW SKEW, DUAL, 1-TO-5  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS85310I-21.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS85310I-21 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.8V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.8V * 120mA = 456mW  
Power (outputs)MAX = 30.2mW/Loaded Output pair  
If all outputs are loaded, the total power is 10 * 30.2mW = 302mW  
Total Power_MAX (3.8V, with all outputs switching) = 4564mW + 302mW = 758mW  
2. JunctionTemperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total =Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W perTable 6 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.758W * 42.1°C/W = 117°C. This is below the limit of 125°C  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 6. THERMAL RESISTANCE θJA FOR 32-PIN LQFP, FORCED CONVECTION  
θ byVelocity (Linear Feet per Minute)  
JA  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
85310AYI-21  
www.icst.com/products/hiperclocks.html  
REV. D JUNE 30, 2005  
10  
ICS85310I-21  
LOW SKEW, DUAL, 1-TO-5  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
3. Calculations and Equations.  
LVPECL output driver circuit and termination are shown in Figure 5.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
Figure 5. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage of V - 2V.  
CCO  
For logic high, VOUT = V  
= V  
– 1.0V  
OH_MAX  
CCO_MAX  
)
= 1.0V  
OH_MAX  
(V  
- V  
CCO_MAX  
For logic low, VOUT = V  
= V  
– 1.7V  
OL_MAX  
CCO_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CCO_MAX  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
) = [(2V - (V  
- V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
_MAX  
CCO  
OH_MAX  
CCO _MAX  
OH_MAX  
L
L
[(2V - 1V)/50Ω] * 1V = 20.0mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
_MAX  
CCO  
OL_MAX  
CCO_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50Ω] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW  
85310AYI-21  
www.icst.com/products/hiperclocks.html  
REV. D JUNE 30, 2005  
11  
ICS85310I-21  
LOW SKEW, DUAL, 1-TO-5  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
RELIABILITY INFORMATION  
TABLE 7. θJAVS. AIR FLOW TABLE FOR 32 LEAD LQFP  
θ byVelocity (Linear Feet per Minute)  
JA  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS85310I-21 is: 1216  
Pin compatible with MC100LVEP210  
85310AYI-21  
www.icst.com/products/hiperclocks.html  
REV. D JUNE 30, 2005  
12  
ICS85310I-21  
LOW SKEW, DUAL, 1-TO-5  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP  
TABLE 8. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBA  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
--  
--  
--  
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
A2  
b
0.05  
1.35  
0.30  
0.09  
1.40  
0.37  
c
--  
D
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
0.80 BASIC  
0.60  
D1  
D2  
E
E1  
E2  
e
L
0.45  
0.75  
θ
--  
0°  
7°  
ccc  
--  
--  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
85310AYI-21  
www.icst.com/products/hiperclocks.html  
REV. D JUNE 30, 2005  
13  
ICS85310I-21  
LOW SKEW, DUAL, 1-TO-5  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
ICS85310AYI-21  
Marking  
Package  
32 lead LQFP  
Shipping Packaging Temperature  
ICS85310AYI21  
ICS85310AYI21  
ICS85310AI21N  
ICS85310AI21N  
tray  
1000 tape & reel  
250 per tray  
1000  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS85310AYI-21T  
ICS85310AYI-21LN  
ICS85310AYI-21LNT  
32 lead LQFP  
32 lead LQFP, "Lead-Free Annealed"  
32 lead LQFP "Lead-Free Annealed"  
NOTE: Parts that are ordered with an "LN" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
The aforementioned trademark, HiPerClockS is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product  
for use in life support devices or critical medical instruments.  
85310AYI-21  
www.icst.com/products/hiperclocks.html  
REV. D JUNE 30, 2005  
14  
ICS85310I-21  
LOW SKEW, DUAL, 1-TO-5  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
REVISION HISTORY SHEET  
Rev  
Table  
Page  
Description of Change  
Added Termination for LVPECL Outputs.  
Date  
A
8
5/30/02  
Updated part number from ICS85310-21 to ICS85310I-21 throughout the data  
sheet to reflect operating temperature.  
Ordering Information Table - corrected Marking from ICS85310AYI-21 to  
ICS85310AYI21.  
A
A
7/24/02  
7/25/02  
T9  
13  
T4A  
3
9
Power Supply table - increased max. value for IEE to 120mA from 30mA max.  
B
10/23/02  
Power Considerations have re-adjusted to the increased IEE value.  
T2  
2
3
Pin Characteristics table - changed CIN from 4pF max. to 4pF typical.  
Updated Absolute Maximum Rating.  
C
7
Added Termination for 2.5V LVPECL Outputs.  
4/14/04  
8
Added Differential Clock Input Interface.  
13  
1
13  
1
4
5
Ordering Information table - added "Lead Free Annealed" marking.  
Added Lead-Free bullet in Features section.  
Ordering Information table - corrected "Lead Free" part/order number.  
Features Section - added Additive Phase Jitter bullet.  
AC Characteristics Table - added Additive Phase Jitter row.  
Added Additive Phase Jitter Section.  
C
D
10/8/04  
6/30/05  
T9  
T5  
T9  
14  
Ordering Information Table - added Lead-Free Note.  
85310AYI-21  
www.icst.com/products/hiperclocks.html  
REV. D JUNE 30, 2005  
15  

相关型号:

ICS85310AYI-31

LOW SKEW, DUAL, 1-TO-5 2.5V/3.3V DIFFERENTIAL-TO-ECL/LVPECL FANOUT BUFFER
ICSI

ICS85310AYI-31LF

LOW SKEW, DUAL, 1-TO-5 2.5V/3.3V DIFFERENTIAL-TO-ECL/LVPECL FANOUT BUFFER
ICSI

ICS85310AYI-31LFT

LOW SKEW, DUAL, 1-TO-5 2.5V/3.3V DIFFERENTIAL-TO-ECL/LVPECL FANOUT BUFFER
ICSI

ICS85310AYI-31T

LOW SKEW, DUAL, 1-TO-5 2.5V/3.3V DIFFERENTIAL-TO-ECL/LVPECL FANOUT BUFFER
ICSI

ICS85310AYI01

LOW SKEW, 1-TO-10 DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER
ICSI

ICS85310AYI11

LOW SKEW, 1-TO-10 DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER
ICSI

ICS85310AYI21

LOW SKEW, DUAL, 1-TO-5 DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER
ICSI

ICS85310AYI31

LOW SKEW, DUAL, 1-TO-5 2.5V/3.3V DIFFERENTIAL-TO-ECL/LVPECL FANOUT BUFFER
ICSI

ICS85310I-01

LOW SKEW, 1-TO-10 DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER
ICSI

ICS85310I-11

LOW SKEW, 1-TO-10 DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER
ICSI

ICS85310I-21

LOW SKEW, DUAL, 1-TO-5 DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER
ICSI

ICS85310I-21T

Clock Driver
IDT