ICS85310I-11 [ICSI]

LOW SKEW, 1-TO-10 DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER; 低偏移, 1到10差分至2.5V / 3.3V ECL / LVPECL扇出缓冲器
ICS85310I-11
型号: ICS85310I-11
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

LOW SKEW, 1-TO-10 DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER
低偏移, 1到10差分至2.5V / 3.3V ECL / LVPECL扇出缓冲器

文件: 总16页 (文件大小:190K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS85310I-11  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
GENERAL DESCRIPTION  
FEATURES  
The ICS85310I-11 is a low skew, high perfor- 10 differential 2.5V/3.3V LVPECL / ECL outputs  
ICS  
mance 1-to-10 Differential-to-2.5V/3.3V ECL/  
2 selectable differential input pairs  
HiPerClockS™  
LVPECL Fanout Buffer and a member of the  
HiPerClockS™ family of High Performance  
Clock Solutions from ICS. The CLKx, nCLKx  
CLKx, nCLKx pairs can accept the following differential  
input levels: LVDS, LVPECL, LVHSTL, SSTL, HCSL  
pairs can accept most standard differential input levels. The  
ICS85310I-11 is characterized to operate from either a  
2.5V or a 3.3V power supply. Guaranteed output and part-  
to-part skew characteristics make the ICS85310I-11 ideal  
for those clock distribution applications demanding well de-  
fined performance and repeatability.  
Maximum output frequency: 700MHz  
Translates any single ended input signal to 3.3V  
LVPECL levels with resistor bias on nCLK input  
Output skew: 30ps (typical)  
Part-to-part skew: 140ps (typical)  
Propagation delay: 2ns (typical)  
Additive phase jitter, RMS: <0.13ps (typical)  
LVPECL mode operating voltage supply range:  
VCC = 2.375V to 3.8V, VEE = 0V  
ECL mode operating voltage supply range:  
VCC = 0V, VEE = -2.375V to -3.8V  
-40°C to 85°C ambient operating temperature  
Lead-Free package fully RoHS complaint  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
Q0  
nQ0  
CLK0  
nCLK0  
0
1
CLK1  
nCLK1  
Q1  
nQ1  
32 31 30 29 28 27 26 25  
Q2  
nQ2  
VCC  
CLK_SEL  
CLK0  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
Q3  
nQ3  
Q4  
CLK_SEL  
CLK_EN  
Q3  
nQ3  
nCLK0  
nQ4  
Q5  
ICS85310I-11  
D
Q4  
nQ4  
CLK_EN  
CLK1  
Q
nQ5  
Q6  
LE  
nCLK1  
Q5  
nQ5  
nQ6  
VEE  
Q6  
nQ6  
9
10 11 12 13 14 15 16  
Q7  
nQ7  
32-Lead LQFP  
Q8  
nQ8  
7mm x 7mm x 1.4mm package body  
Y Package  
TopView  
Q9  
nQ9  
85310AYI-11  
www.icst.com/products/hiperclocks.html  
REV. E JULY 7, 2005  
1
ICS85310I-11  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
1
VCC  
Power  
Core supply pin.  
Clock select input. When HIGH, selects CLK1, nCLK1 inputs. When LOW,  
selects CLK0, nCLK0 inputs. LVCMOS / LVTTL interface levels.  
2
CLK_SEL  
Input Pulldown  
3
4
CLK0  
Input Pulldown Non-inverting differential clock input.  
nCLK0  
Input  
Pullup  
Inverting differential clock input.  
Synchronizing clock enable. When HIGH, clock outputs follow clock input.  
When LOW, Q outputs are forced low, nQ outputs are forced high.  
LVCMOS / LVTTL interface levels.  
5
CLK_EN  
Input  
Pullup  
6
7
CLK1  
nCLK1  
VEE  
Input Pulldown Non-inverting differential clock input.  
Input  
Power  
Power  
Pullup  
Inverting differential clock input.  
8
Negative supply pin.  
9, 16, 25, 32  
10, 11  
12, 13  
14, 15  
17, 18  
19, 20  
21, 22  
23, 24  
26, 27  
28, 29  
30, 31  
VCCO  
Output supply pins.  
nQ9, Q9 Output  
nQ8, Q8 Output  
nQ7, Q7 Output  
nQ6, Q6 Output  
nQ5, Q5 Output  
nQ4, Q4 Output  
nQ3, Q3 Output  
nQ2, Q2 Output  
nQ1, Q1 Output  
nQ0, Q0 Output  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
4
RPULLUP  
51  
51  
kΩ  
RPULLDOWN Input Pulldown Resistor  
kΩ  
85310AYI-11  
www.icst.com/products/hiperclocks.html  
REV. E JULY 7, 2005  
2
ICS85310I-11  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 3A. CONTROL INPUT FUNCTION TABLE  
Inputs  
Outputs  
CLK_EN  
Selected Source  
Q0:Q9  
Disabled; LOW  
Enabled  
Q0:Q9  
Disabled; HIGH  
Enabled  
0
1
CLK0, nCLK0  
CLK1, nCLK1  
After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge  
as shown in Figure 1.  
In the active mode, the state of the outputs are a function of the CLK0, nCLK0 and CLK1, nCLK1 inputs as described  
in Table 3B.  
Enabled  
Disabled  
CLK0, nCLK0  
CLK1, CLK1  
CLK_EN  
nQ0:nQ9  
Q0:Q9  
FIGURE 1. CLK_EN TIMING DIAGRAM  
TABLE 3B. CLOCK INPUT FUNCTION TABLE  
Inputs  
Outputs  
Input to Output Mode  
Polarity  
CLK0 or CLK1  
nCLK0 or nCLK1  
Q0:Q9  
LOW  
HIGH  
LOW  
HIGH  
HIGH  
LOW  
nQ0:Q9  
HIGH  
LOW  
0
1
Differential to Differential  
Differential to Differential  
Single Ended to Differential  
Single Ended to Differential  
Single Ended to Differential  
Single Ended to Differential  
Non Inverting  
Non Inverting  
Non Inverting  
Non Inverting  
Inverting  
1
0
0
Biased; NOTE 1  
HIGH  
LOW  
1
Biased; NOTE 1  
Biased; NOTE 1  
Biased; NOTE 1  
0
1
LOW  
HIGH  
Inverting  
NOTE 1: Please refer to the Application Information, "Wiring the Differential Input to Accept Single Ended Levels".  
85310AYI-11  
www.icst.com/products/hiperclocks.html  
REV. E JULY 7, 2005  
3
ICS85310I-11  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, VCC  
Inputs, VCC  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
-0.5V toVCC + 0.5 V  
-0.5V to VCCO + 0.5V  
Outputs,VCCO  
PackageThermal Impedance, θJA 47.9°C/W (0 lfpm)  
StorageTemperature, TSTG -65°C to 150°C  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCO = 2.375V TO 3.8V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
2.375  
Typical  
3.3  
Maximum Units  
VCC  
VCCO  
IEE  
Core Supply Voltage  
3.8  
3.8  
120  
V
V
Output Supply Voltage  
Power Supply Current  
2.375  
3.3  
mA  
Table 4B. LVCMOS/LVTTL DC Characteristics, VCC = VCCO = 2.375V TO 3.8V, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
CLK_SEL,  
CLK_EN  
CLK_SEL,  
CLK_EN  
VIH  
VIL  
Input High Voltage  
2
VCC + 0.3  
0.8  
V
V
Input Low Voltage  
Input High Current  
-0.3  
CLK_EN  
CLK_SEL  
CLK_EN  
CLK_SEL  
V
CC = VIN = 3.8V  
CC = VIN = 3.8V  
5
µA  
µA  
µA  
µA  
IIH  
V
150  
V
CC = 3.8V, VIN = 0V  
-150  
-5  
IIL  
Input Low Current  
VCC = 3.8V, VIN = 0V  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VCC = VCCO = 2.375V TO 3.8V, TA = -40°C TO 85°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
Minimum  
Typical  
Maximum Units  
CLK0, CLK1  
nCLK0, nCLK1  
CLK0, CLK1  
V
CC = VIN = 3.8V  
CC = VIN = 3.8V  
150  
5
µA  
µA  
µA  
µA  
V
V
V
CC = 3.8V, VIN = 0V  
CC = 3.8V, VIN = 0V  
-5  
-150  
IIL  
Input Low Current  
nCLK0, nCLK1  
V
VPP  
Peak-to-Peak Input Voltage  
0.15  
1.3  
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
VEE + 0.5  
VCC - 0.85  
V
NOTE 1: Common mode voltage is defined as VIH.  
NOTE 2: For single ended applications, the maximum input voltage for CLK0, nCLK0 and CLK1, nCLK1 is VCC + 0.3V.  
85310AYI-11  
www.icst.com/products/hiperclocks.html  
REV. E JULY 7, 2005  
4
ICS85310I-11  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = VCCO = 2.375V TO 3.8V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical  
VCC - 1.4  
Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCC - 1.0  
VCC - 1.7  
0.85  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VCC - 2.0  
VSWING  
Peak-to-Peak Output Voltage Swing  
0.6  
NOTE 1: Outputs terminated with 50Ω to VCCO - 2V.  
TABLE 5. AC CHARACTERISTICS, VCC = VCCO = 2.375V TO 3.8V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
fMAX  
Output Frequency  
700  
2.5  
55  
MHz  
ns  
tPD  
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 4  
ƒ500MHz  
2
tsk(o)  
tsk(pp)  
30  
ps  
Part-to-Part Skew; NOTE 3, 4  
140  
340  
ps  
Buffer Additive Phase Jitter,  
RMS; refer to Additive Phase  
Jitter Section  
tjit  
<0.13  
ps  
tR  
Output Rise Time  
Output Fall Time  
Output Duty Cycle  
20% to 80%  
20% to 80%  
200  
200  
47  
700  
700  
53  
ps  
ps  
%
tF  
odc  
All parameters measured at 500MHz unless noted otherwise.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages  
and with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
85310AYI-11  
www.icst.com/products/hiperclocks.html  
REV. E JULY 7, 2005  
5
ICS85310I-11  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
ADDITIVE PHASE JITTER  
the 1Hz band to the power in the fundamental. When the re-  
quired offset is specified, the phase noise is called a dBc value,  
which simply means dBm at a specified offset from the funda-  
mental. By investigating jitter in the frequency domain, we get a  
better understanding of its effects on the desired application over  
the entire time record of the signal. It is mathematically possible  
to calculate an expected bit error rate given a phase noise plot.  
The spectral purity in a band at a specific offset from the funda-  
mental compared to the power of the fundamental is called the  
dBc Phase Noise. This value is normally expressed using a  
Phase noise plot and is most often the specified plot in many  
applications. Phase noise is defined as the ratio of the noise  
power present in a 1Hz band at a specified offset from the fun-  
damental frequency to the power value of the fundamental.This  
ratio is expressed in decibels (dBm) or a ratio of the power in  
0
-10  
-20  
-30  
Additive Phase Jitter, RMS  
@ 155.52MHz = <0.13ps typical  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
100  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FROM CARRIER FREQUENCY (HZ)  
As with most timing specifications, phase noise measurements vice meets the noise floor of what is shown, but can actually be  
have issues.The primary issue relates to the limitations of the lower. The phase noise is dependant on the input source and  
equipment. Often the noise floor of the equipment is higher than measurement equipment.  
the noise floor of the device. This is illustrated above. The de-  
85310AYI-11  
www.icst.com/products/hiperclocks.html  
REV. E JULY 7, 2005  
6
ICS85310I-11  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
PARAMETER MEASUREMENT INFORMATION  
VCC,VCCO= 2V  
VCC  
SCOPE  
Qx  
nCLK0, nCLK1  
VPP  
LVPECL  
VCMR  
Cross Points  
CLK0, CLK1  
nQx  
VEE  
VEE = -0.375V to -1.8V  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nQx  
PART 1  
Qx  
nQx  
Qx  
nQy  
nQy  
PART 2  
Qy  
Qy  
tsk(pp)  
tsk(o)  
PART-TO-PART SKEW  
OUTPUT SKEW  
nCLK0,  
nCLK1  
80%  
tF  
80%  
CLK0,  
CLK1  
VSWING  
20%  
nQ0:nQ9  
Clock  
20%  
Outputs  
tR  
Q0:Q9  
tPD  
OUTPUT RISE/FALL TIME  
PROPAGATION DELAY  
nQ0:nQ9  
Q0:Q9  
tPW  
tPERIOD  
tPW  
odc =  
x 100%  
tPERIOD  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
85310AYI-11  
www.icst.com/products/hiperclocks.html  
REV. E JULY 7, 2005  
7
ICS85310I-11  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 1 shows how the differential input can be wired to accept of R1 and R2 might need to be adjusted to position theV_REF in  
single ended levels. The reference voltage V_REF ~ VCC/2 is the center of the input voltage swing. For example, if the input  
generated by the bias resistors R1, R2 and C1.This bias circuit clock swing is only 2.5V andVCC = 3.3V, V_REF should be 1.25V  
should be located as close as possible to the input pin.The ratio and R2/R1 = 0.609.  
VCC  
R1  
1K  
Single Ended Clock Input  
CLKx  
V_REF  
nCLKx  
C1  
0.1u  
R2  
1K  
FIGURE 2. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
TERMINATION FOR 3.3V LVPECL OUTPUTS  
50Ω transmission lines. Matched impedance techniques should  
be used to maximize operating frequency and minimize signal  
distortion. Figures 3A and 3B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs.The two different layouts mentioned  
are recommended only as guidelines.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs.Therefore, terminating  
resistors (DC current path to ground) or current sources must  
be used for functionality. These outputs are designed to drive  
3.3V  
Zo = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 3A. LVPECL OUTPUT TERMINATION  
FIGURE 3B. LVPECL OUTPUT TERMINATION  
85310AYI-11  
www.icst.com/products/hiperclocks.html  
REV. E JULY 7, 2005  
8
ICS85310I-11  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TERMINATION FOR 2.5V LVPECL OUTPUTS  
Figure 4A and Figure 4B show examples of termination for 2.5V ground level. The R3 in Figure 4B can be eliminated and the  
LVPECL driver.These terminations are equivalent to terminat- termination is shown in Figure 4C.  
ing 50Ω to VCC - 2V. For VCC = 2.5V, the VCC - 2V is very close to  
2.5V  
2.5V  
2.5V  
VCCO=2.5V  
VCCO=2.5V  
R1  
R3  
250  
250  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
+
-
2,5V LVPECL  
Driver  
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 4A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
FIGURE 4B. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
2.5V  
VCCO=2.5V  
Zo = 50 Ohm  
+
Zo = 50 Ohm  
-
2,5V LVPECL  
Driver  
R1  
50  
R2  
50  
FIGURE 4C. 2.5V LVPECL TERMINATION EXAMPLE  
85310AYI-11  
www.icst.com/products/hiperclocks.html  
REV. E JULY 7, 2005  
9
ICS85310I-11  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL here are examples only. Please consult with the vendor of the  
and other differential signals.BothVSWING and VOH must meet the driver component to confirm the driver termination requirements.  
VPP and VCMR input requirements. Figures 5A to 5E show inter- For example in Figure 5A, the input termination applies for ICS  
face examples for the HiPerClockS CLK/nCLK input driven by HiPerClockS LVHSTL drivers. If you are using an LVHSTL driver  
the most common driver types.The input interfaces suggested from another vendor, use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
Input  
LVPECL  
nCLK  
HiPerClockS  
Input  
LVHSTL  
R1  
50  
R2  
50  
ICS  
HiPerClockS  
R1  
50  
R2  
50  
LVHSTL Driver  
R3  
50  
FIGURE 5A. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
ICS HIPERCLOCKS LVHSTL DRIVER  
FIGURE 5B. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
R4  
125  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiver  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 5C. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 5D. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
C1  
C2  
LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
nCLK  
HiPerClockS  
Input  
R5  
100 - 200  
R6  
100 - 200  
R1  
84  
R2  
84  
R5,R6 locate near the driver pin.  
FIGURE 5E. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER WITH AC COUPLE  
85310AYI-11  
www.icst.com/products/hiperclocks.html  
REV. E JULY 7, 2005  
10  
ICS85310I-11  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS85310I-11.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS85310I-11 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.8V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.8V * 120mA = 456mW  
Power (outputs)MAX = 30.2mW/Loaded Output pair  
If all outputs are loaded, the total power is 10 * 30.2mW = 302mW  
Total Power_MAX (3.8V, with all outputs switching) = 456mW + 302mW = 758mW  
2. JunctionTemperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total =Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W perTable 6 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.758W * 42.1°C/W = 117°C. This is below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 6. THERMAL RESISTANCE θJA FOR 32-PIN LQFP, FORCED CONVECTION  
θ byVelocity (Linear Feet per Minute)  
JA  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
85310AYI-11  
www.icst.com/products/hiperclocks.html  
REV. E JULY 7, 2005  
11  
ICS85310I-11  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
3. Calculations and Equations.  
LVPECL output driver circuit and termination are shown in Figure 6.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
Figure 6. LVPECL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage of V - 2V.  
CCO  
For logic high, VOUT = V  
= V  
– 1.0V  
OH_MAX  
CCO_MAX  
)
= 1.0V  
OH_MAX  
(V  
- V  
CCO_MAX  
For logic low, VOUT = V  
= V  
– 1.7V  
OL_MAX  
CCO_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CCO_MAX  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
) = [(2V - (V  
- V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
_MAX  
OH_MAX  
CCO _MAX  
OH_MAX  
L
CCO  
L
[(2V - 1V)/50Ω] * 1V = 20.0mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
_MAX  
CCO  
OL_MAX  
CCO_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50Ω] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW  
85310AYI-11  
www.icst.com/products/hiperclocks.html  
REV. E JULY 7, 2005  
12  
ICS85310I-11  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
RELIABILITY INFORMATION  
TABLE 7. θJAVS. AIR FLOW TABLE FOR 32 LEAD LQFP  
θ byVelocity (Linear Feet per Minute)  
JA  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS85310I-11 is: 1034  
85310AYI-11  
www.icst.com/products/hiperclocks.html  
REV. E JULY 7, 2005  
13  
ICS85310I-11  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP  
TABLE 8. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBA  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
--  
--  
--  
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
A2  
b
0.05  
1.35  
0.30  
0.09  
1.40  
0.37  
c
--  
D
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
0.80 BASIC  
0.60  
D1  
D2  
E
E1  
E2  
e
L
0.45  
0.75  
θ
--  
0°  
7°  
ccc  
--  
--  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
85310AYI-11  
www.icst.com/products/hiperclocks.html  
REV. E JULY 7, 2005  
14  
ICS85310I-11  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
ICS85310AYI-11  
Marking  
Package  
Shipping Packaging Temperature  
ICS85310AYI11  
ICS85310AYI11  
ICS85310AI11L  
ICS85310AI11L  
32 lead LQFP  
tray  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS85310AYI-11T  
ICS85310AYI-11LF  
ICS85310AYI-11LFT  
32 lead LQFP  
1000 tape & reel  
tray  
32 lead LQFP, "Lead-Free"  
32 lead LQFP, "Lead-Free"  
1000 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
The aforementioned trademark, HiPerClockS is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product  
for use in life support devices or critical medical instruments.  
85310AYI-11  
www.icst.com/products/hiperclocks.html  
REV. E JULY 7, 2005  
15  
ICS85310I-11  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
REVISION HISTORY SHEET  
Rev  
Table  
Page  
Description of Change  
Date  
AC Characterisitics table - tPD row, revised value from 2.25ns Max. to  
2.5ns Max.  
B
T5  
5
4/29/02  
5/29/02  
9
5
Added Termination for LVPECL Outputs section.  
4D  
Added LVPECL DC Characterisitics table.  
C
D
Changed part number from ICS85310-11 to ICS85310I-11 in title and all  
subsequent areas throughout the datasheet.  
Power Supply table - increased max. value for IEE to 120mA from 30mA max.  
7/25/02  
T4A  
4
10/23/02  
10  
1
2
5
6
Power Considerations have re-adjusted to the increased IEE value.  
Features Section - added Additive Phase Jitter bullet and Lead Free bullet.  
Pin Characteristics Table - changed CIN 4pF max. to 4pF typical  
AC Characteristics Table - added Additive Phase Jitter row.  
Added Additive Phase Jitter Section.  
T2  
T5  
E
7/7/05  
9
Added Termination for 2.5V LVPECL Outputs.  
10  
15  
Added Differential Clock Input Interface.  
Ordering Information Table - added Lead-Free Part Number and Note.  
T9  
85310AYI-11  
www.icst.com/products/hiperclocks.html  
REV. E JULY 7, 2005  
16  

相关型号:

ICS85310I-21

LOW SKEW, DUAL, 1-TO-5 DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER
ICSI

ICS85310I-21T

Clock Driver
IDT

ICS85310I-31

LOW SKEW, DUAL, 1-TO-5 2.5V/3.3V DIFFERENTIAL-TO-ECL/LVPECL FANOUT BUFFER
ICSI

ICS85311

Low Skew, 1-to-2 Differential-to-2.5V/3.3V ECL/LVPECL Fanout Buffer
ICSI

ICS853111

LOW SKEW, 1-TO-10 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853111-01

LOW SKEW, 1-TO-9 DIFFERENTIAL-TO-3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853111-01

LOW SKEW, 1-TO-9 DIFFERENTIAL-TO-3.3V LVPECL/ECL FANOUT BUFFER
IDT

ICS853111-02

LOW SKEW, 1-TO-10 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853111A

LOW SKEW, 1-TO-10, DIFFERENTIAL-TOLVPECL/ ECL FANOUT BUFFER
IDT

ICS853111A

LOW SKEW, 1-TO-10 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853111A02

LOW SKEW, 1-TO-10 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853111A02L

LOW SKEW, 1-TO-10 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI