ICS85356AGI [ICSI]

2:1, DIFFERENTIAL-TO-3.3V DUAL LVPECL / ECL CLOCK MULTIPLEXER; 2 : 1 ,差分至3.3V双LVPECL / ECL时钟多路复用器
ICS85356AGI
型号: ICS85356AGI
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

2:1, DIFFERENTIAL-TO-3.3V DUAL LVPECL / ECL CLOCK MULTIPLEXER
2 : 1 ,差分至3.3V双LVPECL / ECL时钟多路复用器

复用器 时钟
文件: 总14页 (文件大小:238K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS85356I  
2:1, DIFFERENTIAL-TO-3.3V  
DUAL LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
GENERAL DESCRIPTION  
FEATURES  
The ICS85356I is a dual 2:1 Differential-to-LVPECL High speed differential multiplexer.  
ICS  
Multiplexer and is a member of the HiPerClockSTM  
family of High Performance Clock Solutions from  
ICS.The device has both common select and indi-  
vidual select inputs.When COM_SEL is logic High,  
The device can be configured as a 2:1 multiplexer  
HiPerClockS™  
Dual 3.3V LVPECL outputs  
Selectable differential CLKxx, nCLKxx inputs  
the CLKxx input pairs will be passed to the output. When  
COM_SEL is logic Low, the output is determined by the setting  
of the SEL0 pin for channel 0 and the SEL1 pin for Channel 1.  
CLKxx, nCLKxx pair can accept the following differential  
input levels: LVPECL, LVDS, LVHSTL, SSTL, HCSL  
Output frequency: 900MHz (typical)  
The differential input has a common mode range that can accept  
most differential input types such as LVPECL, LVDS, LVHSTL,  
SSTL, and HCSL. The ICS85356I can therefore be used as a  
differential translator to translate almost any differential input type  
Translates any single ended input signal to 3.3V  
LVPECL levels with resistor bias on nCLKxx input  
Output skew: 75ps (typical)  
to LVPECL. It can also be used in ECL mode by setting V =0V  
CC  
Propagation delay: 1.15ns (typical)  
and VEE to -3.0V to - 3.8V.  
LVPECL mode operating voltage supply range:  
The ICS85356I adds negligible jitter to the input clock and can  
operate at high frequencies in excess of 900MHz thus making  
it ideal for use in demanding applications such as SONET,  
Fibre Channel, 1 Gigabit/10 Gigabit Ethernet.  
VCC = 3V to 3.8V, VEE = 0V  
ECL mode operating voltage supply range:  
VCC = 0V, VEE = -3V to -3.8V  
-40°C to 85°C ambient operating temperature  
Lead-Free package available  
Compatible with MC100LVEL56  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
CLK0A  
nCLK0A  
nc  
CLK0B  
nCLK0B  
CLK1A  
nCLK1A  
nc  
VCC  
Q0  
nQ0  
SEL0  
COM_SEL  
SEL1  
VCC  
Q1  
nQ1  
1
2
3
4
5
6
7
8
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
CLK0A  
nCLK0A  
nc  
CLK0B  
nCLK0B  
CLK1A  
nCLK1A  
nc  
VCC  
Q0  
nQ0  
SEL0  
COM_SEL  
SEL1  
VCC  
Q1  
nQ1  
1
2
3
4
5
6
7
8
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
CLK0A  
nCLK0A  
0
Q0  
nQ0  
CLK0B  
1
nCLK0B  
SEL0  
COM_SEL  
SEL1  
CLK1B  
nCLK1B  
9
10  
CLK1B  
nCLK1B  
9
10  
VEE  
VEE  
ICS85356I  
20-LeadTSSOP  
6.5mm x 4.4mm x 0.92mm  
G Package  
ICS85356I  
20-Lead SOIC  
7.5mm x 12.8mm x 2.3mm  
M Package  
CLK1A  
nCLK1A  
0
Q1  
nQ1  
CLK1B  
1
Top View  
Top View  
nCLK1B  
85356AMI  
www.icst.com/products/hiperclocks.html  
REV. A OCTOBER 7, 2004  
1
ICS85356I  
2:1, DIFFERENTIAL-TO-3.3V  
DUAL LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
VCC  
Type  
Description  
Core supply pin.  
Pulldown Non-inverting differential clock input.  
14, 20  
Power  
Input  
1
2
CLK0A  
nCLK0A  
nc  
Input  
Pullup  
Inverting differential clock input.  
No connect.  
3, 8  
4
Unused  
Input  
CLK0B  
nCLK0B  
CLK1A  
nCLK1A  
CLK1B  
nCLK1B  
VEE  
Pulldown Non-inverting differential clock input.  
Pullup Inverting differential clock input.  
Pulldown Non-inverting differential clock input.  
Pullup Inverting differential clock input.  
Pulldown Non-inverting differential clock input.  
5
Input  
6
Input  
7
Input  
9
Input  
10  
11  
12, 13  
15  
16  
17  
18, 19  
Input  
Pullup  
Inverting differential clock input.  
Power  
Output  
Input  
Negative supply pins.  
nQ1, Q1  
SEL1  
Differential output pairs. LVPECL interface levels.  
Clock select input. LVCMOS / LVTTL interface levels.  
Pullup  
COM_SEL  
SEL0  
Input  
Pulldown Common select input. LVCMOS / LVTTL interface levels.  
Input  
Pullup  
Clock select input. LVCMOS / LVTTL interface levels.  
Differential output pairs. LVPECL interface levels.  
nQ0, Q0  
Output  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
4
RPULLUP  
51  
51  
K  
RPULLDOWN Input Pulldown Resistor  
KΩ  
TABLE 3. CONTROL INPUT FUNCTION TABLE  
Inputs  
Outputs  
COM_SEL  
SEL1  
SEL0  
Q0  
nQ0  
Q1  
nQ1  
0
0
0
0
1
0
0
1
1
X
0
1
0
1
X
CLK0A  
CLK0B  
CLK0A  
CLK0B  
CLK0B  
nCLK0A  
nCLK0B  
nCLK0A  
nCLK0B  
nCLK0B  
CLK1A  
CLK1A  
CLK1B  
CLK1B  
CLK1B  
nCLK1A  
nCLK1A  
nCLK1B  
nCLK1B  
nCLK1B  
85356AMI  
www.icst.com/products/hiperclocks.html  
REV. A OCTOBER 7, 2004  
2
ICS85356I  
2:1, DIFFERENTIAL-TO-3.3V  
DUAL LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
CC  
Inputs, V  
-0.5V to VCC + 0.5V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
PackageThermal Impedance, θ  
46.2°C/W (0 lfpm)  
-65°C to 150°C  
JA  
StorageTemperature, T  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = 3.3V 0.3V, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VCC  
IEE  
Positive Supply Voltage  
Power Supply Current  
3.0  
3.3  
3.6  
40  
V
mA  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = 3.3V 0.3V, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VIH  
VIL  
Input High Voltage SEL0, SEL1, COM_SEL  
2
VCC + 0.3  
V
Input Low Voltage SEL0, SEL1, COM_SEL  
-0.3  
0.8  
5
V
SEL0, SEL1  
Input High Current  
V
CC = VIN = 3.6V  
µA  
µA  
µA  
µA  
IIH  
COM_SEL  
VCC = VIN = 3.6V  
VCC = 3.6V, VIN = 0V  
VCC = 3.6V, VIN = 0V  
150  
SEL0, SEL1  
Input Low Current  
-150  
-5  
IIL  
COM_SEL  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VCC = 3.3V 0.3V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
CLK0A, CLK0B,  
CLK1A, CLK1B  
VCC = VIN = 3.6V  
150  
5
µA  
µA  
IIH  
Input High Current  
nCLK0A, nCLK0B,  
nCLK1A, nCLK1B  
VCC = VIN = 3.6V  
CLK0A, CLK0B,  
CLK1A, CLK1B  
nCLK0A, nCLK0B,  
nCLK1A, nCLK1B  
V
CC = 3.6V, VIN = 0V  
-5  
µA  
µA  
IIL  
Input Low Current  
VCC = 3.6V, VIN = 0V  
-150  
VPP  
Peak-to-Peak Voltage  
0.15  
1.0  
V
V
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
VEE + 0.5  
VCC - 0.85  
NOTE 1: Common mode input voltage is defined as VIH.  
NOTE 2: For single ended applications, the maximum input voltage for CLKx, nCLKx is VCC + 0.3V.  
85356AMI  
www.icst.com/products/hiperclocks.html  
REV. A OCTOBER 7, 2004  
3
ICS85356I  
2:1, DIFFERENTIAL-TO-3.3V  
DUAL LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = 3.3V 0.3V, TA = -40°C TO 85°C  
Symbol  
VOH  
Parameter  
Test Conditions  
Minimum  
VCC - 1.4  
VCC - 2.0  
0.6  
Typical  
Maximum Units  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Output Voltage Swing  
VCC - 1.0  
VCC - 1.7  
1.0  
V
V
V
VOL  
VSWING  
ƒ700MHz  
NOTE 1: Outputs terminated with 50to VCC - 2V.  
TABLE 5. AC CHARACTERISTICS, VCC = 3.3V 0.3V, TA = -40°C TO 85°C  
Symbol Parameter  
fMAX Output Frequency  
tPD  
Test Conditions  
Minimum  
Typical  
900  
Maximum Units  
MHz  
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 3  
Output Rise Time  
ƒ900MHz  
0.85  
1.15  
75  
1.45  
150  
580  
580  
100  
ns  
ps  
ps  
ps  
ps  
tsk(o)  
tR  
20% to 80%  
20% to 80%  
200  
200  
tF  
Output Fall Time  
todc  
Duty Cycle Skew  
All parameters measured at ƒ622MHz unless noted otherwise.  
This part does not add measurable jitter.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
85356AMI  
www.icst.com/products/hiperclocks.html  
REV. A OCTOBER 7, 2004  
4
ICS85356I  
2:1, DIFFERENTIAL-TO-3.3V  
DUAL LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
VCC  
Qx  
nCLKxA,  
nCLKxB  
LVPECL  
VPP  
VCMR  
Cross Points  
nQx  
CLKxA,  
CLKxB  
VEE  
-1.3V 0.165V  
VEE  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nQx  
Qx  
nCLKxA,  
nCLKxB  
CLKxA,  
CLKxB  
nQ0, nQ1  
nQy  
Q0, Q1  
Qy  
tPD  
tsk(o)  
OUTPUT SKEW  
PROPAGATION DELAY  
nQ0, nQ1  
Q0, Q1  
80%  
tF  
80%  
VSWING  
20%  
Pulse Width  
Clock  
20%  
tPERIOD  
Outputs  
tR  
tPW  
odc =  
tPERIOD  
OUTPUT RISE/FALL TIME  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
85356AMI  
www.icst.com/products/hiperclocks.html  
REV. A OCTOBER 7, 2004  
5
ICS85356I  
2:1, DIFFERENTIAL-TO-3.3V  
DUAL LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 2 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = VCC/2 is  
generated by the bias resistors R1, R2 and C1.This bias circuit  
should be located as close as possible to the input pin.The ratio  
of R1 and R2 might need to be adjusted to position theV_REF in  
the center of the input voltage swing. For example, if the input  
clock swing is only 2.5V andVCC = 3.3V, V_REF should be 1.25V  
and R2/R1 = 0.609.  
VCC  
R1  
1K  
Single Ended Clock Input  
V_REF  
CLKx  
nCLKx  
C1  
0.1u  
R2  
1K  
FIGURE 1. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
TERMINATION FOR LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs.The two different layouts mentioned  
are recommended only as guidelines.  
50transmission lines. Matched impedance techniques should  
be used to maximize operating frequency and minimize signal  
distortion. Figures 2A and 2B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs.Therefore, terminating  
resistors (DC current path to ground) or current sources must  
be used for functionality. These outputs are designed to drive  
3.3V  
Zo = 50  
125  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 2A. LVPECL OUTPUT TERMINATION  
FIGURE 2B. LVPECL OUTPUT TERMINATION  
85356AMI  
www.icst.com/products/hiperclocks.html  
REV. A OCTOBER 7, 2004  
6
ICS85356I  
Integrated  
Circuit  
Systems, Inc.  
2:1, DIFFERENTIAL-TO-3.3V  
D
UAL LVPECL / ECL CLOCK  
MULTIPLEXER  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL here are examples only. Please consult with the vendor of the  
and other differential signals.BothVSWING and VOH must meet the driver component to confirm the driver termination requirements.  
VPP and VCMR input requirements. Figures 3A to 3E show inter- For example in Figure 3A, the input termination applies for ICS  
face examples for the HiPerClockS CLK/nCLK input driven by HiPerClockS LVHSTL drivers. If you are using an LVHSTL driver  
the most common driver types.The input interfaces suggested from another vendor, use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
Input  
LVPECL  
nCLK  
HiPerClockS  
Input  
LVHSTL  
R1  
50  
R2  
50  
ICS  
HiPerClockS  
R1  
50  
R2  
50  
LVHSTL Driver  
R3  
50  
FIGURE 3A. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
ICS HIPERCLOCKS LVHSTL DRIVER  
FIGURE 3B. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
125  
R4  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiv er  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 3C. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 3D. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
C1  
C2  
LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
nCLK  
HiPerClockS  
Input  
R5  
100 - 200  
R6  
100 - 200  
R1  
84  
R2  
84  
R5,R6 locate near the driver pin.  
FIGURE 3E. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER WITH AC COUPLE  
85356AMI  
www.icst.com/products/hiperclocks.html  
REV. A OCTOBER 7, 2004  
7
ICS85356I  
2:1, DIFFERENTIAL-TO-3.3V  
DUAL LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS85356I.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS85356I is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 0.3V = 3.6V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.6V * 40mA = 144mW  
Power (outputs)MAX = 30.2mW/Loaded Output pair  
If all outputs are loaded, the total power is 2 * 30.2mW = 60.4mW  
Total Power_MAX (3.6V, with all outputs switching) = 144mW + 60.4mW = 204.4mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 39.7°C/W perTable 6A below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.204W * 39.7°C/W = 93.1°C. This is well below the limit of 125°C  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
Table 6A. Thermal Resistance θJA for 20-pin SOIC, Forced Convection  
θJA byVelocity (Linear Feet per Minute)  
0
200  
65.7°C/W  
39.7°C/W  
500  
57.5°C/W  
36.8°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
83.2°C/W  
46.2°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
Table 6B. Thermal Resistance θJA for 20-pin TSSOP, Forced Convection  
θJA byVelocity (Linear Feet per Minute)  
0
200  
98.0°C/W  
66.6°C/W  
500  
88.0°C/W  
63.5°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
73.2°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
85356AMI  
www.icst.com/products/hiperclocks.html  
REV. A OCTOBER 7, 2004  
8
ICS85356I  
2:1, DIFFERENTIAL-TO-3.3V  
DUAL LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 4.  
VCC  
Q1  
VOUT  
RL = 50  
VCC - 2V  
Figure 4. LVPECL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination voltage  
ofV - 2V.  
CC  
For logic high, VOUT = V  
= V  
– 1.0V  
OH_MAX  
CC_MAX  
)
= 1.0V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, VOUT = V  
= V  
– 1.7V  
OL_MAX  
CC_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CC_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
L
CC  
L
[(2V - 1V)/50] * 1V = 20.0mW  
))  
Pd_L = [(V – (V - 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
L
CC  
L
[(2V - 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW  
85356AMI  
www.icst.com/products/hiperclocks.html  
REV. A OCTOBER 7, 2004  
9
ICS85356I  
2:1, DIFFERENTIAL-TO-3.3V  
DUAL LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
RELIABILITY INFORMATION  
TABLE 7A. θJAVS. AIR FLOW TABLE FOR 20 LEAD SOIC  
θJA byVelocity (Linear Feet per Minute)  
0
200  
65.7°C/W  
39.7°C/W  
500  
57.5°C/W  
36.8°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
83.2°C/W  
46.2°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TABLE 7B. θJAVS. AIR FLOW TABLE FOR 20 LEAD TSSOP  
θJA byVelocity (Linear Feet per Minute)  
0
200  
98.0°C/W  
66.6°C/W  
500  
88.0°C/W  
63.5°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
73.2°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS85356I is: 446  
85356AMI  
www.icst.com/products/hiperclocks.html  
REV. A OCTOBER 7, 2004  
10  
ICS85356I  
2:1, DIFFERENTIAL-TO-3.3V  
DUAL LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
PACKAGE OUTLINE - M SUFFIX FOR 20 LEAD SOIC  
TABLE 8A. PACKAGE DIMENSIONS  
Millimeters  
Minimum Maximum  
SYMBOL  
N
A
20  
--  
2.65  
--  
A1  
A2  
B
0.10  
2.05  
0.33  
0.18  
12.60  
7.40  
2.55  
0.51  
0.32  
13.00  
7.60  
C
D
E
e
1.27 BASIC  
H
h
10.00  
0.25  
0.40  
0°  
10.65  
0.75  
1.27  
8°  
L
α
Reference Document: JEDEC Publication 95, MS - 013, MO - 119  
85356AMI  
www.icst.com/products/hiperclocks.html  
REV. A OCTOBER 7, 2004  
11  
ICS85356I  
2:1, DIFFERENTIAL-TO-3.3V  
DUAL LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
PACKAGE OUTLINE - G SUFFIX FOR 20 LEAD TSSOP  
TABLE 8B. PACKAGE DIMENSIONS  
Millimeters  
Minimum Maximum  
SYMBOL  
N
A
20  
--  
1.20  
0.15  
1.05  
0.30  
0.20  
6.60  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
6.40  
c
D
E
6.40 BASIC  
0.65 BASIC  
E1  
e
4.30  
4.50  
L
0.45  
0°  
0.75  
8°  
α
aaa  
--  
0.10  
REFERENCE DOCUMENT: JEDEC PUBLICATION 95, MO-153  
85356AMI  
www.icst.com/products/hiperclocks.html  
REV. A OCTOBER 7, 2004  
12  
ICS85356I  
2:1, DIFFERENTIAL-TO-3.3V  
DUAL LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
ICS85356AMI  
Marking  
Package  
Count  
38 per tube  
1000  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS85356AMI  
ICS85356AMI  
ICS85356AGI  
ICS85356AGI  
ICS85356AGIL  
20 lead SOIC  
ICS85356AMIT  
ICS85356AGI  
20 lead SOIC on Tape and Reel  
20 lead TSSOP  
72 per tube  
2500  
ICS85356AGIT  
ICS85356AGILF  
20 lead TSSOP on Tape and Reel  
20 lead "Lead Free" TSSOP  
72 per tube  
20 lead "Lead Free" TSSOP on Tape  
and Reel  
ICS85356AGILFT  
ICS85356AGIL  
2500  
-40°C to 85°C  
The aforementioned trademark, HiPerClockS™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product  
for use in life support devices or critical medical instruments.  
85356AMI  
www.icst.com/products/hiperclocks.html  
REV. A OCTOBER 7, 2004  
13  
ICS85356I  
2:1, DIFFERENTIAL-TO-3.3V  
DUAL LVPECL / ECL CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
REVISION HISTORY SHEET  
Description of Change  
Rev  
Table  
Page  
Date  
7
13  
Added Differential Clock Input Interface section.  
Ordering Information Table - added Lead Free part number.  
Updated data sheet format.  
A
10/7/04  
85356AMI  
www.icst.com/products/hiperclocks.html  
REV. A OCTOBER 7, 2004  
14  

相关型号:

ICS85356AGILF

2:1, DIFFERENTIAL-TO-3.3V DUAL LVPECL / ECL CLOCK MULTIPLEXER
ICSI

ICS85356AGILF

Low Skew Clock Driver, 85356 Series, 2 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-20
IDT

ICS85356AGILFT

2:1, DIFFERENTIAL-TO-3.3V DUAL LVPECL / ECL CLOCK MULTIPLEXER
ICSI

ICS85356AGILFT

Low Skew Clock Driver, 85356 Series, 2 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-20
IDT

ICS85356AGIT

2:1, DIFFERENTIAL-TO-3.3V DUAL LVPECL / ECL CLOCK MULTIPLEXER
ICSI

ICS85356AGLF

Low Skew Clock Driver, 1 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS85356AGT

Low Skew Clock Driver, 1 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS85356AM

Low Skew Clock Driver, PDSO20, SOIC-20
IDT

ICS85356AMI

2:1, DIFFERENTIAL-TO-3.3V DUAL LVPECL / ECL CLOCK MULTIPLEXER
ICSI

ICS85356AMILF

Low Skew Clock Driver, 2 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.30 MM HEIGHT, SOIC-20
IDT

ICS85356AMILFT

Low Skew Clock Driver, 2 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.30 MM HEIGHT, SOIC-20
IDT

ICS85356AMIT

2:1, DIFFERENTIAL-TO-3.3V DUAL LVPECL / ECL CLOCK MULTIPLEXER
ICSI