ICS8737-11 [ICSI]

LOW SKEW ±1/±2 DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR; 低偏移± 1 / ± 2差分至3.3V的LVPECL时钟发生器
ICS8737-11
型号: ICS8737-11
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

LOW SKEW ±1/±2 DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR
低偏移± 1 / ± 2差分至3.3V的LVPECL时钟发生器

时钟发生器
文件: 总13页 (文件大小:129K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS8737-11  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW  
÷1/÷2  
DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR  
GENERAL DESCRIPTION  
FEATURES  
The ICS8737-11 is a low skew, high performance 2 divide by 1 differential 3.3V LVPECL outputs;  
Differential-to-3.3V LVPECL Clock Generator/  
Divider and a member of the HiPerClockS™  
family of High Performance Clock Solutions from  
ICS. The ICS8737-11 has two selectable clock  
2 divide by 2 differential 3.3V LVPECLoutputs  
HiPerClockS™  
Selectable CLK, nCLK or LVPECL clock inputs  
CLK, nCLK pair can accept the following differential input  
inputs. The CLK, nCLK pair can accept most standard differ-  
ential input levels. The PCLK, nPCLK pair can accept  
LVPECL, CML, or SSTL input levels.The clock enable is  
internally synchronized to eliminate runt pulses on the  
outputs during asynchronous assertion/deassertion of the  
clock enable pin.  
levels: LVDS, LVPECL, LVHSTL, SSTL, HCSL  
PCLK, nPCLK supports the following input types:  
LVPECL, CML, SSTL  
Maximum output frequency up to 650MHz  
Translates any single ended input signal (LVCMOS, LVTTL,  
GTL) to LVPECL levels with resistor bias on nCLK input  
Guaranteed output and part-to-part skew characteristics  
make the ICS8737-11 ideal for clock distribution applications  
demanding well defined performance and repeatability.  
Output skew: 60ps (maximum)  
Part-to-part skew: 200ps (maximum)  
Bank skew: Bank A - 20ps (maximum),  
Bank B - 35ps (maximum)  
Propagation delay: 1.7ns (maximum)  
3.3V operating supply  
0°C to 70°C ambient operating temperature  
Industrial temperature information available upon request  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
QA0  
nQA0  
VEE  
CLK_EN  
CLK_SEL  
CLK  
1
2
3
4
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
QA0  
nQA0  
VCC  
QA1  
nQA1  
QB0  
nQB0  
VCC  
D
CLK_EN  
QA1  
nQA1  
Q
LE  
5
nCLK  
PCLK  
nPCLK  
nc  
CLK  
nCLK  
PCLK  
nPCLK  
÷1  
÷2  
6
7
8
9
0
1
MR  
VCC  
QB1  
nQB1  
QB0  
nQB0  
10  
CLK_SEL  
MR  
ICS8737-11  
20-Lead TSSOP  
6.50mm x 4.40mm x 0.92 package body  
G Package  
QB1  
nQB1  
Top View  
8737AG-11  
www.icst.com/products/hiperclocks.html  
REV. A JULY 13, 2001  
1
ICS8737-11  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW  
÷1/÷2  
DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
1
VEE  
Power  
Power  
Negative supply pin. Connect to ground.  
Synchronizing clock enable. When HIGH, clock outputs follow clock input.  
When LOW, Q outputs are forced low, nQ outputs are forced high.  
LVTTL / LVCMOS interface levels.  
Clock Select input. When HIGH, selects PCLK, nPCLK inputs.  
When LOW, selects CLK, nCLK inputs. LVTTL / LVCMOS interface levels.  
2
CLK_EN  
Pullup  
Pulldown  
3
CLK_SEL  
Input  
4
CLK  
nCLK  
PCLK  
nPCLK  
nc  
Input  
Input  
Pulldown Non-inverting differential clock input.  
Pullup Inverting differential clock input.  
Pulldown Non-inverting differential LVPECL clock input.  
5
6
Input  
7
Input  
Pullup  
Inverting differential LVPECL clock input.  
No connect.  
8
Unused  
Input  
9
MR  
Pulldown Master reset. Resets the output divider.  
Positive supply pins. Connect to 3.3V.  
10, 13, 18  
11, 12  
14, 15  
16, 17  
19, 20  
VCC  
Power  
nQB1, QB1 Output  
nQB0, QB0 Output  
nQA1, QA1 Output  
nQA0, QA0 Output  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
NOTE: Pullup and Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
CLK, nCLK  
4
4
pF  
pF  
PCLK, nPCLK  
CIN  
Input Capacitance  
CLK_SEL,  
4
pF  
CLK_EN, MR  
RPULLUP  
Input Pullup Resistor  
51  
51  
K
K
RPULLDOWN Input Pulldown Resistor  
8737AG-11  
www.icst.com/products/hiperclocks.html  
REV. A JULY 13, 2001  
2
ICS8737-11  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW  
÷1/÷2  
DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR  
TABLE 3A. CONTROL INPUT FUNCTION TABLE  
Inputs  
Outputs  
MR CLK_EN CLK_SEL Selected Source QA0 thru QA1 nQA0 thru nQA1 QB0 thru QB1 nQB0 thru nQB1  
1
0
0
0
0
X
0
0
1
1
X
0
1
0
1
X
LOW  
HIGH  
Disabled; HIGH  
Disabled; HIGH  
Enabled  
LOW  
HIGH  
Disabled; HIGH  
Disabled; HIGH  
Enabled  
CLK, nCLK  
PCLK, nPCLK  
CLK, nCLK  
PCLK, nPCLK  
Disabled; LOW  
Disabled; LOW  
Enabled  
Disabled; LOW  
Disabled; LOW  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge  
as shown if Figure 1.  
In the active mode, the state of the outputs are a function of the CLK , nCLK and PCLK, nPCLK inputs as described  
in Table 3B.  
Enabled  
Disabled  
nCLK, nPCLK  
CLK, PCLK  
CLK_EN  
nQA0 - nQA1,  
nQB0 - nQB1  
QA0 - QA1,  
QB0 - QB1  
FIGURE 1: CLK_EN TIMING DIAGRAM  
TABLE 3B. CLOCK INPUT FUNCTION TABLE  
Inputs  
Outputs  
Input to Output Mode  
Polarity  
CLK or PCLK  
nCLK or nPCLK  
QAx  
LOW  
HIGH  
LOW  
HIGH  
HIGH  
LOW  
nQAx  
HIGH  
LOW  
HIGH  
LOW  
LOW  
HIGH  
QBx  
LOW  
HIGH  
LOW  
HIGH  
HIGH  
LOW  
nQBx  
HIGH  
LOW  
HIGH  
LOW  
LOW  
HIGH  
0
0
Differential to Differential  
Differential to Differential  
Single Ended to Differential  
Single Ended to Differential  
Single Ended to Differential  
Single Ended to Differential  
Non Inverting  
Non Inverting  
Non Inverting  
Non Inverting  
Inverting  
1
1
0
Biased; NOTE 1  
1
Biased; NOTE 1  
Biased; NOTE 1  
Biased; NOTE 1  
0
1
Inverting  
NOTE 1: Please refer to the Application Information section on page 8, Figure 9, which discusses wiring differential input to  
accept single ended levels.  
8737AG-11  
www.icst.com/products/hiperclocks.html  
REV. A JULY 13, 2001  
3
ICS8737-11  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW  
÷1/÷2  
DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, VCC  
Inputs, VI  
4.6V  
-0.5V to VCC + 0.5V  
-0.5V to VCC + 0.5V  
Outputs, VO  
Package Thermal Impedance, θJA  
Storage Temperature, TSTG  
73.2°C/W (0lfpm)  
-65°C to 150°C  
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings  
are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the  
DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended peri-  
ods may affect product reliability.  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = 3.3V±5%, TA = 0°C TO 70°C  
Symbol  
VCC  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
Positive Supply Voltage  
Power Supply Current  
3.135  
3.3  
3.465  
50  
V
IEE  
mA  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = 3.3V±5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VIH  
VIL  
CLK_EN, CLK_SEL, MR  
CLK_EN, CLK_SEL, MR  
2
3.765  
0.8  
V
-0.3  
V
CLK_EN  
VIN = VCC = 3.465V  
VIN = VCC = 3.465V  
5
µA  
µA  
µA  
µA  
IIH  
Input High Current  
Input Low Current  
CLK_SEL, MR  
CLK_EN  
150  
VIN = 0V, VCC = 3.465V  
VIN = 0V, VCC = 3.465V  
-150  
-5  
IIL  
CLK_SEL,MR  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VCC = 3.3V±5%, TA = 0°C TO 70°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
VIN = VCC = 3.465V  
Minimum Typical Maximum Units  
nCLK  
CLK  
5
µA  
µA  
µA  
µA  
V
VIN = VCC = 3.465V  
150  
nCLK  
CLK  
VIN = 0V, VCC = 3.465V  
VIN = 0V, VCC = 3.465V  
-150  
-5  
IIL  
Input Low Current  
VPP  
Peak-to-Peak Input Voltage  
0.15  
1.3  
Common Mode Input Voltage;  
NOTE 1, 2  
VCMR  
V
EE + 0.5  
VCC - 0.85  
V
NOTE 1: For single ended applications, the maximum input voltage for CLK, nCLK is VCC + 0.3V.  
NOTE 2: Common mode voltage is defined as VIH.  
8737AG-11  
www.icst.com/products/hiperclocks.html  
REV. A JULY 13, 2001  
4
ICS8737-11  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW  
÷1/÷2  
DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR  
TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = 3.3V±5%, TA = 0°C TO 70°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
VIN = VCC = 3.465V  
VIN = VCC = 3.465V  
IN = 0V, VCC = 3.465V  
Minimum Typical  
Maximum Units  
150  
5
µA  
µA  
µA  
µA  
V
V
-5  
IIL  
Input Low Current  
VIN = 0V, VCC = 3.465V  
-150  
VPP  
Peak-to-Peak Input Voltage  
0.3  
1
VCMR  
VOH  
Common Mode Input Voltage; NOTE 1, 2  
Output High Voltage; NOTE 3  
VEE + 1.5  
VCC - 1.4  
VCC - 2.0  
0.65  
VCC  
V
VCC - 1.0  
VCC - 1.7  
0.9  
V
VOL  
Output Low Voltage; NOTE 3  
V
VSWING  
Peak-to-Peak Output Voltage Swing  
V
NOTE 1: Common mode voltage is defined as VIH.  
NOTE 2: For single ended applications, the maximum input voltage for PCLK, nPCLK is VCC + 0.3V.  
NOTE 3: Outputs terminated with 50 to VCC - 2V.  
TABLE 5. AC CHARACTERISTICS, VCC = 3.3V±5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
fMAX  
Maximum Output Frequency  
650  
1.7  
1.6  
60  
MHz  
ns  
CLK, nCLK  
1.3  
1.2  
tPD  
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 4  
Bank Skew; NOTE 4  
ƒ 650MHz  
PCLK, nPCLK  
tsk(o)  
tsk(b)  
ps  
ps  
Bank A  
Bank B  
20  
35  
tsk(pp)  
Part-to-Part Skew; NOTE 3, 4  
Output Rise Time  
200  
700  
700  
52  
ps  
ps  
ps  
%
tR  
20% to 80% @ 50MHz  
20% to 80% @ 50MHz  
300  
300  
48  
tF  
Output Fall Time  
odc  
Output Duty Cycle  
50  
All parameters measured at 500MHz unless noted otherwise.  
The cycle-to-cycle jitter on the input will equal the jitter on the output. The part does not add jitter.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages  
and with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
8737AG-11  
www.icst.com/products/hiperclocks.html  
REV. A JULY 13, 2001  
5
ICS8737-11  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW  
÷1/÷2  
DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR  
PARAMETER MEASUREMENT INFORMATION  
VCC  
SCOPE  
Qx  
LVPECL  
VCC = 2.0V  
nQx  
VEE = -1.3V ± 0.135V  
FIGURE 2 - OUTPUT LOAD TEST CIRCUIT  
VCC  
CLK, PCLK  
VPP  
VCMR  
Cross Points  
nCLK, nPCLK  
VEE  
FIGURE 3 - DIFFERENTIAL INPUT LEVEL  
Qx  
nQx  
Qy  
nQy  
tsk(o)  
FIGURE 4 - OUTPUT SKEW  
8737AG-11  
www.icst.com/products/hiperclocks.html  
REV. A JULY 13, 2001  
6
ICS8737-11  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW  
÷1/÷2  
DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR  
Qx  
PART1  
nQx  
Qy  
PART2  
nQy  
tsk(pp)  
FIGURE 5 - PART-TO-PART SKEW  
80%  
80%  
VSWING  
20%  
20%  
Clock Inputs  
and Outputs  
tR  
tF  
FIGURE 6 - INPUT AND OUTPUT RISE AND FALL TIME  
CLK, PCLK  
nCLK, nPCLK  
Q0A0, Q0A1 -  
Q0B0, Q0B1  
nQ0A0, nQ0A1 -  
nQ0B0, nQ0B1  
tPD  
FIGURE 7 - PROPAGATION DELAY  
CLK, PCLK  
nCLK, nPCLK  
Pulse Width  
tPERIOD  
tPW  
odc =  
tPERIOD  
FIGURE 8 - odc & tPERIOD  
8737AG-11  
www.icst.com/products/hiperclocks.html  
REV. A JULY 13, 2001  
7
ICS8737-11  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW  
÷1/÷2  
DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 9 shows how the differential input can be wired to accept single end levels. The reference voltage V_REF ~  
VCC/2 is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to  
the input pin. The ratio of R1 and R2 might need to be adjusted to position the V_REF in the center of the input  
voltage swing. For example, if the input clock swing is only 12.5V and VCC = 3.3V, V_REF should be 1.25V and R2/  
R1 = 0.609.  
VCC  
R1  
1K  
CLK_IN  
+
V_REF  
-
C1  
0.1uF  
R2  
1K  
FIGURE 9 - SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
8737AG-11  
www.icst.com/products/hiperclocks.html  
REV. A JULY 13, 2001  
8
ICS8737-11  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW  
÷1/÷2  
DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS8737-11.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8737-11 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * ICC_MAX = 3.465V * 50mA= 173.25mW  
Power (outputs)MAX = 30.2mW/Loaded Output pair  
If all outputs are loaded, the total power is 4 * 30.2mW = 120.8mW  
Total Power_MAX (3.465V, with all outputs switching) = 173.25mW + 120.8mW = 294.05mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device. The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = junction-to-ambient thermal resistance  
Pd_total = Total device power dissipation (example calculation is in section 1 above)  
TA =Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 66.6°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.294W * 66.6°C/W = 89.58°C. This is well below the limit of 125°C  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
Table 6. Thermal Resistance θJA for 20-pin TSSOP, Forced Convection  
θ
by Velocity (Linear Feet per Minute)  
JA  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
73.2°C/W  
98.0°C/W  
66.6°C/W  
88.0°C/W  
63.5°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
8737AG-11  
www.icst.com/products/hiperclocks.html  
REV. A JULY 13, 2001  
9
ICS8737-11  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW  
÷1/÷2  
DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR  
3. Calculations and Equations.  
LVPECL output driver circuit and termination are shown in Figure 10.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 10 - LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage of V - 2V.  
CC  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = [(V  
Pd_L = [(V  
(V  
- 2V))/R ] * (V  
- V  
)
OH_MAX  
OH_MAX  
CC_MAX  
L
CC_MAX  
(V  
- 2V))/R ] * (V  
- V  
OL_MAX  
)
OL_MAX  
CC_MAX  
L
CC_MAX  
For logic high, V = V  
= V  
– 1.0V  
OUT  
OH_MAX  
CC_MAX  
Using V  
= 3.465, this results in V  
= 2.465V  
= 1.765V  
CC_MAX  
OH_MAX  
OL_MAX  
For logic low, V = V  
= V  
– 1.7V  
OUT  
OL_MAX  
CC_MAX  
Using V  
= 3.465, this results in V  
CC_MAX  
Pd_H = [(2.465V - (3.465V - 2V))/50 ] * (3.465V - 2.465V) = 20.0mW  
Pd_L = [(1.765V - (3.465V - 2V))/50 ] * (3.465V - 1.765V) = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW  
8737AG-11  
www.icst.com/products/hiperclocks.html  
REV. A JULY 13, 2001  
10  
ICS8737-11  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW  
÷1/÷2  
DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR  
RELIABILITY INFORMATION  
TABLE 7. θJAVS. AIR FLOW TABLE  
θ
by Velocity (Linear Feet per Minute)  
JA  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
98.0°C/W  
88.0°C/W  
73.2°C/W  
66.6°C/W  
63.5°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS8737-11 is: 510  
8737AG-11  
www.icst.com/products/hiperclocks.html  
REV. A JULY 13, 2001  
11  
ICS8737-11  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW  
÷1/÷2  
DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR  
PACKAGE OUTLINE - G SUFFIX  
TABLE 8. PACKAGE DIMENSIONS  
Millimeters  
SYMBOL  
MIN  
MAX  
N
A
20  
--  
1.20  
0.15  
1.05  
0.30  
0.20  
6.60  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
6.40  
c
D
E
6.40 BASIC  
0.65 BASIC  
E1  
e
4.30  
4.50  
L
0.45  
0°  
0.75  
8°  
aaa  
--  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
8737AG-11  
www.icst.com/products/hiperclocks.html  
REV. A JULY 13, 2001  
12  
ICS8737-11  
Integrated  
Circuit  
Systems, Incꢀ  
LOW SKEW  
÷1/÷2  
DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
ICS8737AG-11  
Marking  
Package  
Count  
72  
Temperature  
0°C to 70°C  
0°C to 70°C  
ICS8737AG-11  
ICS8737AG-11  
20 lead TSSOP  
ICS8737AG-11T  
20 lead TSSOP on Tape and Reel  
2500  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are  
not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS  
product for use in life support devices or critical medical instruments.  
8737AG-11  
www.icst.com/products/hiperclocks.html  
REV. A JULY 13, 2001  
13  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY