ICS87993I [ICSI]

1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH; 1到5差分至3.3V LVPECL PLL时钟驱动器W /动态时钟开关
ICS87993I
型号: ICS87993I
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH
1到5差分至3.3V LVPECL PLL时钟驱动器W /动态时钟开关

时钟驱动器 开关
文件: 总16页 (文件大小:186K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS87993I  
1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL  
PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH  
Integrated  
Circuit  
Systems, Incꢀ  
GENERAL DESCRIPTION  
FEATURES  
The ICS87993I is a PLL clock driver designed 5 differential 3.3V LVPECL outputs  
specifically for redundant clock tree designs. The  
device receives two differential LVPECL clock  
signals from which it generates 5 new differen-  
tial LVPECL clock outputs. Two of the output pairs  
Selectable differential clock inputs  
HiPerClockS™  
CLKx, nCLKx pair can accept the following differential  
input levels: LVPECL, LVDS, LVHSTL, HCSL, SSTL  
regenerate the input signal frequency and phase while the  
other three pairs generate 2x, phase aligned clock outputs.  
External PLL feedback is used to also provide zero delay  
buffer performance.  
VCO range: 200MHz to 500MHz  
External feedback for “zero delay” clock regeneration  
with configurable frequencies  
The ICS87993I Dynamic Clock Switch (DCS) circuit continu-  
ously monitors both input CLK signals. Upon detection of a  
failure (CLK stuck HIGH or LOW for at least 1 period), the  
INP_BAD for that CLK will be latched (H). If that CLK is the  
primary clock, the DCS will switch to the good secondary  
clock and phase/frequency alignment will occur with minimal  
output phase disturbance. The typical phase bump caused  
by a failed clock is eliminated.  
Cycle-to-cycle jitter (RMS): 20ps (maximum)  
Output skew: 70ps (maximum), within one bank  
3.3V supply voltage  
-40°C to 85°C ambient operating temperature  
Pin compatible with MPC993  
PIN ASSIGNMENT  
24 23 22 21 20 19 18 17  
25  
26  
27  
28  
29  
30  
31  
32  
nQA1  
16  
15  
14  
13  
12  
11  
10  
9
VCC  
QA1  
INP0BAD  
INP1BAD  
CLK_SELECTED  
VEE  
ICS87993I  
32-Lead QFP (LQFP)  
7mm x 7mm x 1.4mm  
package body  
nQA0  
QA0  
VCC  
VCCA  
nEXT_FB  
EXT_FB  
VEE  
Y Package  
Top View  
MAN_OVERRIDE  
PLL_SEL  
1
2
3
4
5
6
7
8
BLOCK DIAGRAM  
PLL_SEL  
CLK_SELECTED  
INP1BAD  
Dynamic Switch  
INP0BAD  
Logic  
MAN_OVERRIDE  
ALARM_RESET  
nQB0  
QB0  
nQB1  
QB1  
SEL_CLK  
nCLK0  
CLK0  
nQB2  
QB2  
÷2  
÷4  
nCLK1  
CLK1  
nQA0  
QA0  
PLL  
nEXT_FB  
EXT_FB  
nQA1  
QA1  
nMR  
87993AYI  
www.icst.com/products/hiperclocks.html  
REV. B May 21, 2003  
1
ICS87993I  
1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL  
PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH  
Integrated  
Circuit  
Systems, Incꢀ  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
Active LOW Master Reset. When logic LOW, the internal dividers are  
reset causing the true outputs Qx to go low and the inverted outputs  
nQx to go high. When logic HIGH, the internal dividers and the outputs  
are enabled. LVCMOS / LVTTL interface levels.  
When LOW, resets the input bad flags and aligns CLK_SELECTED  
with SEL_CLK. LVCMOS / LVTTL interface levels.  
1
nMR  
Input  
Input  
Pullup  
2
nALARM_RESET  
Pullup  
3
4
CLK0  
Input Pulldown Non-inverting differential clock input.  
nCLK0  
Input  
Pullup Inverting differential clock input.  
Clock select input. When LOW, selects CLK0, nCLK0 inputs. When  
HIGH, selects CLK1, nCLK1 inputs. LVCMOS / LVTTL interface levels.  
5
SEL_CLK  
Input Pulldown  
6
7
CLK1  
nCLK1  
VEE  
Input Pulldown Non-inverting differential clock input.  
Input  
Pullup Inverting differential clock input.  
Negative supply pins.  
8, 9, 12  
10  
Power  
EXT_FB  
nEXT_FB  
Input Pulldown Differential external feedback.  
11  
Input  
Pullup  
Differential external feedback.  
LOW, when CLK0, nCLK0 is selected, HIGH, when CLK1, nCLK1  
is selected. LVCMOS / LVTTL interface levels.  
13  
CLK_SELECTED Output  
Indicates detection of a bad input reference clock 1 with respect to the  
feedback signal. The output is active HIGH and will remain HIGH until  
the alarm reset is asserted.  
14  
INP1BAD  
Output  
Indicates detection of a bad input reference clock 0 with respect to the  
feedback signal. The output is active HIGH and will remain HIGH until  
the alarm reset is asserted.  
15  
INP0BAD  
VCC  
Output  
Power  
16, 17,  
24, 29  
Core supply pins.  
18, 19  
20, 21  
22, 23  
25, 26  
27, 28  
30  
nQB2, QB2  
nQB1, QB1  
nQB0, QB0  
nQA1, QA1  
nQA0, QA0  
VCCA  
Output  
Output  
Output  
Output  
Output  
Power  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Analog supply pin.  
Manual override. When HIGH, disables internal clock switch circuitry.  
LVCMOS / LVTTL interface levels.  
31  
MAN_OVERRIDE Input Pulldown  
Selects between the PLL and reference clock as the input to the  
dividers. When LOW, selects reference clock.When HIGH, selects PLL.  
LVCMOS / LVTTL interface levels.  
32  
PLL_SEL  
Input  
Pullup  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
Input Capacitance  
Input Pullup Resistor  
Input Pulldown Resistor  
4
pF  
K  
KΩ  
RPULLUP  
RPULLDOWN  
51  
51  
87993AYI  
www.icst.com/products/hiperclocks.html  
REV. B May 21, 2003  
2
ICS87993I  
1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL  
PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH  
Integrated  
Circuit  
Systems, Incꢀ  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device. These ratings are stress specifications only. Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
CC  
Inputs, V  
-0.5V to VCC + 0.5 V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, θJA 47.9°C/W (0 lfpm)  
Storage Temperature, T -65°C to 150°C  
STG  
TABLE 3A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = 3.3V±5%, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VCC  
VCCA  
IEE  
Core Supply Voltage  
3.135  
3.135  
3.3  
3.3  
80  
3.465  
3.465  
180  
V
Analog Supply Voltage  
Power Supply Current  
Analog Supply Current  
V
mA  
mA  
ICCA  
15  
20  
TABLE 3B. LVCMOS/LVTTL DC CHARACTERISTICS, VCC = VCCA = 3.3V±5%, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VIH  
VIL  
Input High Voltage  
LVCMOS Inputs  
LVCMOS Inputs  
2
3.3  
0.8  
V
V
Input Low Voltage  
Input High Current  
-0.3  
SEL_CLK,  
V
IN = VCC = 3.465V  
5
µA  
µA  
µA  
µA  
MAN_OVERRIDE  
nALARM_RESET,  
PLL_SEL, nMR  
SEL_CLK,  
MAN_OVERRIDE  
nALARM_RESET,  
PLL_SEL, nMR  
IIH  
VIN = VCC = 3.465V  
120  
VIN = 0V, VCC = 3.465V  
-5  
IIL  
Input Low Current  
V
IN = 0V, VCC = 3.465V  
-120  
2.4  
VOH  
VOL  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
V
V
0.5  
NOTE 1: Outputs terminated with 50to VCC/2. See Parameter Measurement Information Section,  
"3.3V Output Load AC Test Circuit diagram".  
TABLE 3C. DIFFERENTIAL DC CHARACTERISTICS, VCC = VCCA = 3.3V±5%, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
CLK0, CLK1,  
EXT_FB  
nCLK0, nCLK1,  
nEXT_FB  
CLK0, CLK1,  
EXT_FB  
nCLK0, nCLK1,  
nEXT_FB  
VIN = VCC = 3.465V  
5
µA  
µA  
µA  
µA  
IIH  
Input High Current  
V
IN = VCC = 3.465V  
VIN = 0V, VCC = 3.465V  
IN = 0V, VCC = 3.465V  
120  
-5  
IIL  
Input Low Current  
V
-120  
VPP  
Peak-to-Peak Input Voltage  
0.15  
1.3  
V
V
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
VEE + 0.5  
VCC - 0.85  
NOTE 1: Common mode voltage is defined as VIH.  
NOTE 2: For single ended appliations, the maximum input voltage for CLK, nCLK is VCC + 0.3V.  
87993AYI  
www.icst.com/products/hiperclocks.html  
REV. B May 21, 2003  
3
ICS87993I  
1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL  
PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH  
Integrated  
Circuit  
Systems, Incꢀ  
TABLE 3D. LVPECL DC CHARACTERISTICS, VCC = VCCA = 3.3V±5%, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCC - 1.4  
VCC - 2.0  
0.6  
VCC - 1.0  
VCC - 1.7  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50to VCC - 2V.  
TABLE 4. AC CHARACTERISTICS, VCC = VCCA = 3.3V±5%, TA = -40°C TO 85°C  
Symbol  
fVCO  
Parameter  
Test Conditions  
Minimum Typical Maximum  
Units  
MHz  
%
PLL VCO Lock Range  
200  
25  
500  
75  
tPWI  
CLKx to Q  
PLL_SEL = LOW  
2.8  
3.45  
0
4.1  
ns  
PLL_SEL = HIGH  
fVCO 360MHz  
PLL_SEL = HIGH  
fVCO 500MHz  
-150  
170  
200  
ps  
ps  
tPD  
Propagation Delay  
Output Rise Time  
CLKx to EXT_FB;  
NOTE 2  
-150  
200  
0
t
R / tF  
20% to 80% @ 50MHz  
800  
70  
ps  
ps  
ps  
Within Bank  
All Outputs  
Output Skew;  
NOTE 3  
tsk(o)  
100  
75MHz Output;  
NOTE 1, 4  
150MHz Output;  
NOTE 1, 4  
75MHz Output;  
NOTE 1, 5  
150MHz Output;  
NOTE 1, 5  
20  
10  
50  
25  
ps/cycle  
ps/cycle  
ps/cycle  
ps/cycle  
Rate of change  
of Periods  
Tested at  
typical conditions  
PER/CYCLE  
200  
100  
400  
200  
odc  
tjit(cc)  
tL  
Output Duty Cycle  
f 360MHz  
45  
55  
20  
10  
%
ps  
Cycle-to-Cycle Jitter (RMS); NOTE 1  
PLL Lock Time; NOTE 1  
ms  
All parameters measured at fMAX unless noted otherwise.  
NOTE 1: These parameters are guaranteed by characterization. Not tested in production.  
NOTE 2: Defined as the time difference between the input reference clock and the averaged feedback input signal,  
when the PLL is locked and the input reference frequency is stable.  
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 4: Specification holds for a clock switch between two signals no greater than 400ps out of phase.  
Delta period change per cycle is averaged over the clock switch excursion.  
NOTE 5: Specification holds for a clock switch between two signals no greater than ±π out of phase.  
Delta period change per cycle is averaged over the clock switch excursion.  
87993AYI  
www.icst.com/products/hiperclocks.html  
REV. B May 21, 2003  
4
ICS87993I  
1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL  
PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH  
Integrated  
Circuit  
Systems, Incꢀ  
PARAMETER MEASUREMENT INFORMATION  
VCC, VCCA = 2V  
VCC  
SCOPE  
Qx  
nCLK0,  
nCLK1  
LVPECL  
VPP  
VCMR  
Cross Points  
CLK0,  
CLK1  
nQx  
VEE  
VEE = -1.3V ± 0.165V  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nQAx,  
nQBx  
nQx  
Qx  
nQAx,  
nQBx  
tcycle n  
tcycle n+1  
nQy  
Qy  
tjit(cc) = tcycle n tcycle n+1  
tsk(o)  
1000 Cycles  
OUTPUT SKEW  
CYCLE-TO-CYCLE JITTER  
nQAx,  
nQBx  
nQAx,  
nQBx  
80%  
80%  
VSWING  
20%  
Pulse Width  
Clock  
20%  
tPERIOD  
Outputs  
tF  
tR  
tPW  
odc =  
tPERIOD  
OUTPUT RISE/FALL TIME  
odc & tPERIOD  
87993AYI  
www.icst.com/products/hiperclocks.html  
REV. B May 21, 2003  
5
ICS87993I  
1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL  
PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH  
Integrated  
Circuit  
Systems, Incꢀ  
APPLICATION INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS87993I provides sepa-  
rate power supplies to isolate any high switching  
noise from the outputs to the internal PLL. VCC and VCCA should  
be individually connected to the power supply plane through  
vias, and bypass capacitors should be used for each pin. To  
achieve optimum jitter performance, power supply isolation is  
required. Figure 1 illustrates how a 10resistor along with a  
10µF and a .01µF bypass capacitor should be connected to  
each VCCA pin.  
3.3V  
VCC  
.01µF  
.01µF  
10Ω  
VCCA  
10 µF  
FIGURE 1. POWER SUPPLY FILTERING  
TERMINATION FOR LVPECL OUTPUTS  
drive 50transmission lines. Matched impedance techniques  
should be used to maximize operating frequency and minimize  
signal distortion. Figures 2A and 2B show two different layouts  
which are recommended only as guidelines. Other suitable clock  
layouts may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs. The two different layouts mentioned  
are recommended only as guidelines.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, terminat-  
ing resistors (DC current path to ground) or current sources  
must be used for functionality. These outputs are designed to  
3.3V  
Zo = 50Ω  
5
2
5
Zo  
Zo  
2
FIN  
FOUT  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
Zo = 50Ω  
RTT  
1
3
2
3
2
Zo  
RTT =  
Zo  
Zo  
(VOH + VOL / VCC 2) 2  
FIGURE 2A. LVPECL OUTPUT TERMINATION  
FIGURE 2B. LVPECL OUTPUT TERMINATION  
87993AYI  
www.icst.com/products/hiperclocks.html  
REV. B May 21, 2003  
6
ICS87993I  
1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL  
PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH  
Integrated  
Circuit  
Systems, Incꢀ  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 3 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = VCC/2 is  
generated by the bias resistors R1, R2 and C1. This bias circuit  
should be located as close as possible to the input pin. The ratio  
of R1 and R2 might need to be adjusted to position the V_REF in  
the center of the input voltage swing. For example, if the input  
clock swing is only 2.5V and VCC = 3.3V, V_REF should be 1.25V  
and R2/R1 = 0.609.  
VCC  
R1  
1K  
Single Ended Clock Input  
V_REF  
CLKx  
nCLKx  
C1  
0.1u  
R2  
1K  
FIGURE 3. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
87993AYI  
www.icst.com/products/hiperclocks.html  
REV. B May 21, 2003  
7
ICS87993I  
1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL  
PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH  
Integrated  
Circuit  
Systems, Incꢀ  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL here are examples only. Please consult with the vendor of the  
and other differential signals. Both VSWING and VOH must meet the driver component to confirm the driver termination requirements.  
VPP and VCMR input requirements. Figures 4A to 4E show inter- For example in Figure 4A, the input termination applies for ICS  
face examples for the HiPerClockS CLK/nCLK input driven by HiPerClockS LVHSTLdrivers. If you are using an LVHSTLdriver  
the most common driver types. The input interfaces suggested from another vendor, use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
Input  
LVPECL  
nCLK  
HiPerClockS  
Input  
LVHSTL  
R1  
50  
R2  
50  
ICS  
HiPerClockS  
R1  
50  
R2  
50  
LVHSTL Driver  
R3  
50  
FIGURE 4A. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
ICS HIPERCLOCKS LVHSTL DRIVER  
FIGURE 4B. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
R4  
125  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiver  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 4C. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 4D. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
C1  
C2  
LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
nCLK  
HiPerClockS  
Input  
R5  
100 - 200  
R6  
100 - 200  
R1  
84  
R2  
84  
R5,R6 locate near the driver pin.  
FIGURE 4E. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER WITH AC COUPLE  
87993AYI  
www.icst.com/products/hiperclocks.html  
REV. B May 21, 2003  
8
ICS87993I  
1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL  
PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH  
Integrated  
Circuit  
Systems, Incꢀ  
SCHEMATIC EXAMPLE  
Figure 5A shows a schematic example of the ICS87993I. In this Bank Aor Bank B depending on the application. The decoupling  
example, the CLK0/nCLK0 input is selected as primary. The in- capacitors should be physically located near the power pin.  
put is driven by an LVPECL driver. Feedback can be either from For ICS87993I, the unused outputs can be left floating.  
VCC  
VCC  
VCC  
R16  
1K  
R15  
1K  
Zo = 50  
Zo = 50  
+
-
R7  
10  
VCCA  
C11  
0.01u  
VCC  
LVCMOS  
C16  
10u  
R2  
50  
R1  
50  
U1  
C5 (Option)  
R3  
50  
VCC  
0.1u  
1
2
3
4
5
6
7
8
24  
nMR  
nALM_RS  
CLK0  
nCLK0  
CLK_SEL  
CLK1  
nCLK1  
VEE  
VCC  
QB0  
nQB0  
QB1  
nQB1  
QB2  
Zo = 50 Ohm  
Zo = 50 Ohm  
23  
22  
21  
20  
19  
18  
17  
CLK_SEL  
nQB2  
VCC  
LVPECL Driv er  
R2  
1K  
R9  
50  
R10  
50  
ICS87993I  
C7 (Option)  
0.1u  
R11  
50  
VCC  
LVCMOS  
Zo = 50 Ohm  
Zo = 50 Ohm  
R5  
50  
R4  
50  
LVCMOS  
LVPECL Driv er  
C8 (Option)  
0.1u  
R6  
50  
R12  
50  
R13  
50  
LVCMOS  
C6 (Option)  
0.1u  
R14  
50  
(U1-16)  
(U1-17)  
(U1-24) (U1-29)  
VCC  
C1  
0.1uF  
C2  
0.1uF  
C3  
0.1uF  
C4  
0.1uF  
FIGURE 5A. ICS87993I LVPECL SCHEMATIC EXAMPLE  
87993AYI  
www.icst.com/products/hiperclocks.html  
REV. B May 21, 2003  
9
ICS87993I  
1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL  
PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH  
Integrated  
Circuit  
Systems, Incꢀ  
The following component footprints are used in this layout  
example:  
trace delay might be restricted by the available space on the board  
and the component location. While routing the traces, the clock  
signal traces should be routed first and should be locked prior to  
routing other signal traces.  
All the resistors and capacitors are size 0603.  
POWER AND GROUNDING  
The differential 50output traces should have same  
Place the decoupling capacitors as close as possible to the power  
pins. If space allows, placement of the decoupling capacitor on  
the component side is preferred. This can reduce unwanted in-  
ductance between the decoupling capacitor and the power pin  
caused by the via.  
length.  
Avoid sharp angles on the clock trace. Sharp angle turns  
cause the characteristic impedance to change on the  
transmission lines.  
Keep the clock traces on the same layer. Whenever pos-  
sible, avoid placing vias on the clock traces. Placement  
of vias on the traces can affect the trace characteristic  
impedance and hence degrade signal integrity.  
Maximize the power and ground pad sizes and number of vias  
capacitors. This can reduce the inductance between the power  
and ground planes and the component power and ground pins.  
To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow a separation of at least three trace  
widths between the differential clock trace and the other  
signal trace.  
The RC filter consisting of R7, C11, and C16 should be placed  
as close to the VDDA pin as possible.  
CLOCK TRACES AND TERMINATION  
Poor signal integrity can degrade the system performance or  
cause system failure. In synchronous high-speed digital systems,  
the clock signal is less tolerant to poor signal integrity than other  
signals. Any ringing on the rising or falling edge or excessive ring  
back can cause system failure. The shape of the trace and the  
Make sure no other signal traces are routed between the  
clock trace pair.  
The series termination resistors should be located as close  
to the driver pins as possible.  
GND  
VCC  
C4  
R7  
C16 C11  
U1  
C3  
VCCA  
Pin 1  
VIA  
50 Ohm  
Traces  
C2  
C1  
FIGURE 5B. PCB BOARD LAYOUT FOR ICS87993I  
www.icst.com/products/hiperclocks.html  
87993AYI  
REV. B May 21, 2003  
10  
ICS87993I  
1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL  
PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH  
Integrated  
Circuit  
Systems, Incꢀ  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS87993I.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS87993I is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 180 = 624mW  
Power (outputs)MAX = 30.2mW/Loaded Output pair  
If all outputs are loaded, the total power is 5 * 30.2mW = 151mW  
Total Power_MAX (3.465V, with all outputs switching) = 624mW + 151mW = 775mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device. The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA =Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W per Table 5 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.775W * 42.1°C/W = 117.6°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 5. THERMAL RESISTANCE qJA FOR 32-PIN LQFP, FORCED CONVECTION  
qJA by Velocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
55.9°C/W  
50.1°C/W  
47.9°C/W  
42.1°C/W  
39.4°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
87993AYI  
www.icst.com/products/hiperclocks.html  
REV. B May 21, 2003  
11  
ICS87993I  
1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL  
PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH  
Integrated  
Circuit  
Systems, Incꢀ  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 6.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 6. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage of V - 2V.  
CC  
For logic high, V = V  
= V  
– 1.0V  
OUT  
OH_MAX  
CC_MAX  
)
= 1.0V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, V = V  
= V  
– 1.7V  
OUT  
OL_MAX  
CC_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CC_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
/R ] * (V  
Pd_H = [(V  
(V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
) =  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
L
L
[(2V - 1V)/50] * 1V = 20.0mW  
))  
/R ] * (V  
Pd_L = [(V  
(V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW  
87993AYI  
www.icst.com/products/hiperclocks.html  
REV. B May 21, 2003  
12  
ICS87993I  
1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL  
PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH  
Integrated  
Circuit  
Systems, Incꢀ  
RELIABILITY INFORMATION  
TABLE 6. θJAVS. AIR FLOW TABLE  
qJA by Velocity (Linear Feet per Minute)  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS87993I is: 2745  
87993AYI  
www.icst.com/products/hiperclocks.html  
REV. B May 21, 2003  
13  
ICS87993I  
1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL  
PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH  
Integrated  
Circuit  
Systems, Incꢀ  
PACKAGE OUTLINE - Y SUFFIX  
TABLE 7. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBA  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
--  
--  
--  
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
A2  
b
0.05  
1.35  
0.30  
0.09  
1.40  
0.37  
c
--  
D
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
0.80 BASIC  
0.60  
D1  
D2  
E
E1  
E2  
e
L
0.45  
0.75  
q
--  
0
°
7°  
ccc  
--  
--  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
87993AYI  
www.icst.com/products/hiperclocks.html  
REV. B May 21, 2003  
14  
ICS87993I  
1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL  
PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH  
Integrated  
Circuit  
Systems, Incꢀ  
TABLE 8. ORDERING INFORMATION  
Part/Order Number  
ICS87993AYI  
Marking  
Package  
32 Lead LQFP  
Count  
250 per tray  
1000  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
ICS87993AYI  
ICS87993AYI  
ICS87993AYIT  
32 Lead LQFP on Tape and Reel  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or  
for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal  
commercial and industrial applications. Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not recommended without  
additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices  
or critical medical instruments.  
87993AYI  
www.icst.com/products/hiperclocks.html  
REV. B May 21, 2003  
15  
ICS87993I  
1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL  
PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH  
Integrated  
Circuit  
Systems, Incꢀ  
REVISION HISTORY SHEET  
Description of Change  
Rev  
Table  
Page  
Date  
4
AC Table - deleted Note 6.  
T4  
A
1/16/03  
7
1
Added "Wiring the Differential Input to Accept Single Ended Levels".  
Features Section - changed VCO max. from 360MHz to 500MHz.  
T1  
T2  
2
2
3
Pin Descriptions Table - revised nMR description.  
Pin Characteristics Table - changed CIN from max. 4pF to typical 4pF.  
Absolute Maximum Ratings - changed VO to IO and included Continuous  
Current and Surge Current  
B
5/21/03  
AC Characteristics Table - changed fVCO from 360MHz to 500MHz.  
T4  
4
t
PD - added test conditions to CLKx to EXT_FB. Added another line with  
500MHz test conditions.  
odc - added test conditions.  
Added Differential Clock Input Interface in the Application Information section.  
8
Added Schematic Example.  
9 & 10  
87993AYI  
www.icst.com/products/hiperclocks.html  
REV. B May 21, 2003  
16  

相关型号:

ICS889474AK

Low Skew Clock Driver, 889474 Series, 2 True Output(s), 0 Inverted Output(s), 4 X 4 MM, 0.90 MM HEIGHT, MO-220, VFQFN-24
IDT

ICS889474AKLF

Low Skew Clock Driver, 889474 Series, 2 True Output(s), 0 Inverted Output(s), 4 X 4 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, MO-220, VFQFN-24
IDT

ICS889474AKLFT

Low Skew Clock Driver, 889474 Series, 2 True Output(s), 0 Inverted Output(s), 4 X 4 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, MO-220, VFQFN-24
IDT

ICS889474AKT

Low Skew Clock Driver, 889474 Series, 2 True Output(s), 0 Inverted Output(s), 4 X 4 MM, 0.90 MM HEIGHT, MO-220, VFQFN-24
IDT

ICS889831

LOW SKEW, 1-TO-4 DIFFERENTIAL LVPECL-TO-LVPECL/ECL FANOUT BUFFER
ICSI

ICS889831AK

LOW SKEW, 1-TO-4 DIFFERENTIAL LVPECL-TO-LVPECL/ECL FANOUT BUFFER
ICSI

ICS889831AKLF

LOW SKEW, 1-TO-4 DIFFERENTIAL LVPECL-TO-LVPECL/ECL FANOUT BUFFER
ICSI

ICS889831AKLFT

LOW SKEW, 1-TO-4 DIFFERENTIAL LVPECL-TO-LVPECL/ECL FANOUT BUFFER
ICSI

ICS889831AKT

LOW SKEW, 1-TO-4 DIFFERENTIAL LVPECL-TO-LVPECL/ECL FANOUT BUFFER
ICSI

ICS889832

LOW SKEW, 1-TO-4 DIFFERENTIAL-TOLVDS FANOUT BUFFER
IDT

ICS889832AK

LOW SKEW, 1-TO-4 DIFFERENTIAL-TOLVDS FANOUT BUFFER
IDT

ICS889832AK

Low Skew Clock Driver, 889832 Series, 4 True Output(s), 0 Inverted Output(s), 3 X 3 MM, 0.95 MM HEIGHT, MO-220, VFQFN-16
SPECTRUM