ICS9214 [ICSI]

Rambus XDR Clock Generator; Rambus公司的XDR时钟发生器
ICS9214
型号: ICS9214
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

Rambus XDR Clock Generator
Rambus公司的XDR时钟发生器

时钟发生器
文件: 总16页 (文件大小:217K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Integrated  
Circuit  
ICS9214  
Systems, Inc.  
RambusTM XDRTM Clock Generator  
General Description  
Features  
400 – 500 MHz clock source  
4 open-drain differential output drives with short term  
jitter < 40ps  
Spread spectrum compatible  
Reference clock is differential or single-ended, 100 or  
133 MHz  
The ICS9214 clock generator provides the necessary clock  
signals to support the Rambus XDRTM memory subsystem  
and Redwood logic interface. The clock source is a reference  
clock that may or may not be modulated for spread spectrum.  
The ICS9214 provides 4 differential clock pairs in a space  
saving 28-pin TSSOP package and provides an off-the-shelf  
high-performance interface solution.  
SMBus programmability for:  
- frequency multiplier  
- output enable  
- operating mode  
Supports frequency multipliers of: 3, 4, 5, 6, 8, 9/2,  
15/2 and 15/4  
Support systems where XDR subsystem is  
asynchronous to other system clocks  
2.5V power supply  
Figure 1 shows the major components of the ICS9214 XDR  
Clock Generator. These include the a PLL, a Bypass  
Multiplexer and four differential output buffers. The outputs  
can be disabled by a logic low on the OE pin. An output is  
enabled by the combination of the OE pin being high, and 1  
in its SMBus Output control register bit.  
The PLL receives a reference clock, CLK_INT/C and outputs  
a clock signal at a frequency equal to the input frequency  
times a multiplier. Table 2 shows the multipliers selectable  
via the SMBus interface. This clock signal is then fed to the  
differential output buffers to drive the enabled clocks. Disabled  
outputs are set to Hi-Z. The Bypass mode routes the input  
clock, CLK_INT/C, directly to the differential output buffers,  
bypassing the PLL.  
Up to four ICS9214 devices can be cascaded on the same  
SMBus. Table 3 shows the SMBus addressing and control for  
the four devices.  
Block Diagram  
Pin Configuration  
OE  
AVDD2.5  
AGND  
IREFY  
1
2
3
4
5
6
7
8
9
28 VDD2.5  
OE  
RegA  
27 ODCLK_T0  
26 ODCLK_C0  
25 GND  
24 ODCLK_T1  
23 ODCLK_C1  
22 VDD2.5  
ODCLK_T0  
BYPASS#/PLL  
ODCLK_C0  
AGND  
Bypass  
MUX  
CLK_INT  
CLK_INC  
VDD2.5  
GND  
SMBCLK  
SMBDAT 10  
OE 11  
OE  
RegB  
ODCLK_T1  
ODCLK_C1  
CLK_INT  
CLK_INC  
PLL  
21 GND  
OE  
RegC  
20 ODCLK_T2  
19 ODCLK_C2  
18 GND  
ODCLK_T2  
ODCLK_C2  
SMB_A0 12  
SMB_A1 13  
BYPASS#/PLL 14  
17 ODCLK_T3  
16 ODCLK_C3  
15 VDD2.5  
SMBCLK  
OE  
RegD  
ODCLK_T3  
ODCLK_C3  
28-Pin 4.4mm TSSOP  
SMBDAT SMB_A0 SMB_A1  
0809D–04/07/06  
Integrated  
Circuit  
ICS9214  
Systems, Inc.  
Pin Descriptions  
PIN #  
1
2
PIN NAME  
AVDD2.5  
AGND  
PIN TYPE  
PWR  
DESCRIPTION  
2.5V Analog Power pin for Core PLL  
Analog Ground pin for Core PLL  
PWR  
This pin establishes the reference current for the differential  
3
IREFY  
OUT  
clock pairs. This pin requires a fixed precision resistor tied to  
ground in order to establish the appropriate current.  
Analog Ground pin for Core PLL  
"True" reference clock input.  
"Complementary" reference clock input.  
Power supply, nominal 2.5V  
4
5
6
7
8
AGND  
CLK_INT  
CLK_INC  
VDD2.5  
GND  
PWR  
IN  
IN  
PWR  
PWR  
IN  
Ground pin.  
9
10  
SMBCLK  
SMBDAT  
Clock pin of SMBUS circuitry, 5V tolerant  
Data pin of SMBUS circuitry, 5V tolerant  
Active high input for enabling outputs.  
I/O  
11  
OE  
IN  
0 = tri-state outputs, 1= enable outputs  
12  
13  
SMB_A0  
SMB_A1  
IN  
IN  
SMBus address bit 0 (LSB)  
SMBus address bit 1  
Input to select Bypass(fan-out) or PLL (ZDB) mode  
0 = Bypass mode, 1= PLL mode  
14 BYPASS#/PLL  
IN  
15  
16  
VDD2.5  
PWR  
OUT  
Power supply, nominal 2.5V  
"Complementary" side of open drain differential clock output.  
This open drain output needs an external resistor network..  
"True" side of open drain differential clock output. This open  
drain output needs an external resistor network..  
Ground pin.  
"Complementary" side of open drain differential clock output.  
This open drain output needs an external resistor network..  
"True" side of open drain differential clock output. This open  
drain output needs an external resistor network..  
Ground pin.  
ODCLK_C3  
17  
18  
19  
ODCLK_T3  
GND  
OUT  
PWR  
OUT  
ODCLK_C2  
20  
ODCLK_T2  
IN  
21  
22  
GND  
VDD2.5  
IN  
PWR  
Power supply, nominal 2.5V  
"Complementary" side of open drain differential clock output.  
This open drain output needs an external resistor network..  
"True" side of open drain differential clock output. This open  
drain output needs an external resistor network..  
Ground pin.  
"Complementary" side of open drain differential clock output.  
This open drain output needs an external resistor network..  
"True" side of open drain differential clock output. This open  
drain output needs an external resistor network..  
Power supply, nominal 2.5V  
23  
ODCLK_C1  
OUT  
24  
25  
26  
ODCLK_T1  
GND  
OUT  
PWR  
OUT  
ODCLK_C0  
27  
28  
ODCLK_T0  
VDD2.5  
OUT  
PWR  
0809D—04/07/06  
2
Integrated  
Circuit  
ICS9214  
Systems, Inc.  
General SMBus serial interface information for the ICS9214  
How to Write:  
Controller (host) sends a start bit.  
• Controller (host) sends the write address D8(H)  
• ICS clock will acknowledge  
How to Read:  
• Controller (host) will send start bit.  
• Controller (host) sends the write address D8(H)  
• ICS clock will acknowledge  
• Controller (host) sends the begining byte location = N  
• ICS clock will acknowledge  
• Controller (host) sends the begining byte  
location = N  
• Controller (host) sends the data byte count = X  
• ICS clock will acknowledge  
• Controller (host) starts sending Byte N through  
Byte N + X -1  
• ICS clock will acknowledge  
• Controller (host) will send a separate start bit.  
• Controller (host) sends the read address D9(H)  
• ICS clock will acknowledge  
(see Note 2)  
• ICS clock will send the data byte count = X  
• ICS clock sends Byte N + X -1  
• ICS clock will acknowledge each byte one at a time  
• ICS clock sends Byte 0 through byte X (if X(H)  
was written to byte 8).  
• Controller (host) sends a Stop bit  
• Controller (host) will need to acknowledge each byte  
• Controllor (host) will send a not acknowledge bit  
• Controller (host) will send a stop bit  
Index Block Write Operation  
Index Block Read Operation  
Controller (Host)  
Controller (Host)  
ICS (Slave/Receiver)  
ICS (Slave/Receiver)  
starT bit  
T
T
starT bit  
Slave Address D8(H)  
Slave Address D8(H)  
WR  
WRite  
WR  
WRite  
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
Beginning Byte = N  
Data Byte Count = X  
Beginning Byte N  
Beginning Byte = N  
RT  
Repeat starT  
Slave Address D9(H)  
RD  
ReaD  
ACK  
Data Byte Count = X  
Beginning Byte N  
ACK  
ACK  
Byte N + X - 1  
ACK  
P
stoP bit  
Byte N + X - 1  
N
P
Not acknowledge  
stoP bit  
0809D—04/07/06  
3
Integrated  
Circuit  
ICS9214  
Systems, Inc.  
SMB Table: Output Control Register  
Control  
Function  
Byte 0  
Pin #  
Name  
Type  
0
1
PWD1  
-
Test Mode  
MULT2  
Reserved for Vendor  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Disable  
Enable  
0
0
0
1
1
1
1
1
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
-
Multiplier Select  
Multiplier Select  
Multiplier Select  
Output Control  
Output Control  
Output Control  
Output Control  
See Table 2.  
-
-
MULT1  
MULT0  
ODCLK_T/C0  
ODCLK_T/C1  
ODCLK_T/C2  
ODCLK_T/C3  
27,26  
24,23  
20,19  
17,16  
Disable  
Disable  
Disable  
Disable  
Enable  
Enable  
Enable  
Enable  
Disable = Output in high-impedance state  
Enable = Output is switching  
SMB Table: Frequency Multiplier Control Register  
Control  
Function  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Byte 1  
Pin #  
Name  
Type  
0
1
PWD  
-
-
-
-
-
-
-
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
0
0
0
0
0
0
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Reserved  
-
Disable  
Enable  
Test Mode  
Reserved for Vendor  
RW  
0
Bit 0  
SMB Table: Revision & Vendor ID Register  
Control  
Function  
Byte 2  
Pin #  
Name  
Type  
0
1
PWD  
-
-
-
-
RID4  
RID3  
RID2  
RID1  
RID0  
VID2  
R
R
R
R
R
R
-
-
-
-
-
-
-
-
-
-
-
-
X
X
X
X
X
0
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Revision ID  
Vendor ID  
VID1  
VID0  
R
R
-
-
-
-
0
1
Bit 1  
Bit 0  
NOTES:  
1. PWD = Power Up Default  
0809D—04/07/06  
4
Integrated  
Circuit  
ICS9214  
Systems, Inc.  
PLL Multiplier  
Table 2 shows the frequency multipliers in the PLL, selectable by programming the MULT0, MULT1 and MULT2 bits in the  
SMBus Multiplier Control register. Power up default is 4.  
Table 2. PLL Multiplier Selection  
Byte 0  
Output Frequency (MHz)  
Frequency  
Multiplier  
CLK_INT/C =  
100 MHz1  
CLK_INT/C =  
133 MHz1  
Bit 6  
Bit 5  
Bit 4  
MULT2  
MULT1  
MULT0  
0
0
0
0
0
1
3
4
3003  
4002  
400  
533  
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
5
6
500  
600  
800  
450  
750  
375  
667  
800  
3
8
-
9/2  
15/2  
15/4  
600  
3
-
500  
NOTES  
1 Output frequencies are based on nominal input frequencies of 100 MHz and 133 MHz. The PLL  
multipliers are also applicable to spread spectrum modulated input clocks.  
2 Default muliplier value at power up  
3 Outputs at these settings do not conform to the AC Output Characteristics, or are not supported.  
4 Shaded areas are under development and are not yet supported  
Device ID and SMBus Device Address  
The device ID (SMB_A(1:0)) is part of the SMBus device address. The least significant bit of the address designates a write  
or read operation. Table 3 shows the addresses for four ICS9214 devices on the same SMBus.  
Table 3. SMBus Device Addresses  
ICS9214  
8-bit SMBus Device Address, Including Oper.  
Device Operation  
Hex Address  
SMB_A1  
SMB_A0  
WR#/RD  
Write  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
0
1
0
1
0
1
0
0
0
0
Read  
Write  
1
0
1
1
1
0
1
Read  
11011  
Write  
2
Read  
Write  
3
Read  
DF  
1
0809D—04/07/06  
5
Integrated  
Circuit  
ICS9214  
Systems, Inc.  
Operating Modes  
Table 4: Operating Modes  
Byte 0  
Byte 1  
BYPASS#/  
PLL  
OE  
ODCLK_T/C3 ODCLK_T/C2 ODCLK_T/C1 ODCLK_T/C0  
L
X
X
L
X
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
X
X
X
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
X
X
X
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
X
X
X
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
X
X
X
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Z
Z
Z
Z
Reserved for Vendor Test  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
CLK_INT/C1  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
CLK_INT/C  
Z
CLK_INT/C  
CLK_INT/C  
CLK_INT/C  
Z
Z
Z
CLK_INT/C  
CLK_INT/C  
CLK_INT/C  
CLK_INT/C  
CLK_INT/C  
Z
CLK_INT/C  
CLK_INT/C  
CLK_INT/C  
Z
Z
Z
Z
Z
Z
Z
CLK_INT/C  
CLK_INT/C  
CLK_INT/C  
CLK_INT/C  
CLK_INT/C  
CLK_INT/C  
CLK_INT/C  
CLK_INT/C  
CLK_INT/C  
Z
CLK_INT/C  
CLK_INT/C  
CLK_INT/C  
Z
Z
Z
CLK_INT/C  
CLK_INT/C  
CLK_INT/C  
CLK_INT/C  
CLK_INT/C  
Z
CLK_INT/C  
CLK_INT/C  
H
H
02  
12 12 12 12  
CLK_INT/C  
Notes  
1 Bypass Mode  
2 Power up default mode  
0809D—04/07/06  
6
Integrated  
Circuit  
ICS9214  
Systems, Inc.  
Absolute Maximum Ratings  
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . 4.0 V  
Logic Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND –0.5 V to VDD +0.5 V  
Ambient Operating Temperature . . . . . . . . . . . . 0°C to +70°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings  
are stress specifications only and functional operation of the device at these or any other conditions above those listed in the  
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended  
periods may affect product reliability.  
DC Characteristics - Inputs  
TA = 0°C to +70°C; Supply Voltage AVDD2.5, VDD2.5 = 2.5 V +/- 0.125V (unless otherwise stated)  
SYMBOL  
DD2.5, AVDD  
DD2.5, IVDD  
MIN  
TYP  
MAX  
2.625  
125  
UNITS  
V
mA  
PARAMETER  
Supply Voltage  
Supply Current  
High-level input  
voltage  
CONDITIONS  
V
I
2.375  
VIHCLK  
VILCLK  
VIXCLK  
0.6  
-0.15  
0.2  
0.95  
0.15  
0.55  
V
V
V
Low-level input  
voltage  
CLK_INT, CLK_INC  
Crossing point voltage  
Difference in crossing  
point voltage  
VIXCLK  
VTH  
0.15  
0.5VDD2.5  
2.625  
V
V
V
Input threshold  
voltage  
0.35  
High-level input  
voltage for single-  
ended CLK_IN  
Low-level input  
voltage for single-  
ended CLK_IN  
High-level input  
voltage  
Low-level input  
voltage  
High-level input  
voltage - SMBus  
Low-level input  
voltage - SMBus  
Singled-ended  
CLK_IN1  
VIHSE  
VTH + 0.3  
VILSE  
VTH - 0.3  
-0.15  
V
OE, SMB_A0,  
SMB_A1,  
BYPASS#/PLL  
VIH  
VIL  
1.4  
-0.15  
1.4  
2.625  
0.8  
V
V
V
V
VIHSMB  
VILSMB  
3.4652  
0.8  
SMBCLK, SMBDAT  
-0.15  
Notes:  
1 When using singled-ended clock input, VTH is supplied to CLK_INTC as shown in Figure 2.  
Duty cycle of singled-ended CLK_IN is measured at VTH  
2 This range of SMBus input high voltages allows the 9214 to co-exist with 3.3V, 2.5V and 1.8V  
devices on the same SMBus.  
0809D—04/07/06  
7
Integrated  
Circuit  
ICS9214  
Systems, Inc.  
DC Characteristics - Outputs  
TA = 0°C to +70°C; Supply Voltage AVDD2.5, VDD2.5 = 2.5 V +/- 0.125V (unless otherwise stated)  
PARAMETER  
SYMBOL  
CONDITIONS  
Power within spec to  
outputs within spec  
SMBus or Mode Select  
transition to outputs valid  
and within spec  
MIN  
TYP  
MAX  
UNITS  
ms  
tPU  
Power up latency  
3
State transition latency1  
tCO  
VOX  
3
ms  
V
Differential output  
crossing voltage  
Output Voltage Swing  
(peak-to-peak singled  
ended)  
Measured as shown in Fig.  
0.9  
1.1  
350  
3
Measured as shown in Fig.  
3. Excludes over and  
undershoot.  
VCOS  
300  
mV  
Measured at ODCLK_T/C  
Absolute output low voltage  
0.85  
0.98  
V
V
VOLABS  
pins  
Reference Voltage for  
swing control current  
Ratio of output low  
current to reference  
current at typical VDD2.5  
VISET  
VDD = 2.3V, VOUT = 1V  
1.02  
7.2  
IREF is equal to VISET/RRC  
.
IOL/IREF  
6.8  
45  
7
-
Tolerance of RRC <=+/-1%.  
Measured at ODCLK_T/C  
pins with termination per  
Figure 3.  
Minimum current at  
VOLABS  
IOLABS  
-
mA  
Low-level output voltage  
SMBus  
Low-level output current  
VOLSMB  
IOLSMB  
IOZ  
IOL = 4 mA  
-
6
-
0.4  
-
V
VOL= 0.8 V  
mA  
µΑ  
SMBus  
Tristate output current  
Differential clock output pins  
50  
Notes:  
There is no output latency or glitches if a value is written to an output register.  
that is the same as its current contents.  
0809D—04/07/06  
8
Integrated  
Circuit  
ICS9214  
Systems, Inc.  
AC Characteristics-Inputs  
TA = 0°C to +70°C; Supply Voltage AVDD2.5, VDD2.5 = 2.5 V +/- 0.125V (unless otherwise stated)  
PARAMETER  
SYMBOL  
CONDITION  
MIN  
TYP  
MAX UNITS  
CLK_INT/CLK_INC cycle time1  
tCYCLEIN  
7
11  
ns  
2
Cycle-to-Cycle Jitter  
185  
60  
ps  
%
t
cyc-tcyc  
dtin  
Input clock duty cycle  
CLK_INT/CLK_INC rise and fall  
time  
40  
over 10,000 cycles  
20% to 80% of input  
voltage  
tR, tF  
175  
700  
ps  
Difference between input rise  
and fall time on same pin of a  
single device  
20% to 80% of input  
voltage  
tR-F  
-
150  
ps  
Spread spectrum modulation  
frequency  
3
30  
33  
0.6  
kHz  
%
fINM  
Triangular modulation  
Spread spectrum modulation  
index  
3
mINDEX  
Non-triangular modulation  
0.54  
%
20% to 80% of input  
voltage  
CLK_INT, CLK_INC  
VI = VDD2.5 or GND  
Bypass Mode  
tsl(I)  
Input clock slew rate  
1
4
V/ns  
Input Capacitance5  
Input Capacitance5  
CLK_INT cycle time  
SMBus clock frequency  
Notes:  
CINCLK  
CIN  
tCYCLETST  
fSMB  
7
10  
40  
pF  
pF  
ns  
4
10  
100  
kHz  
1. Measured at (VIH(nom) - VIL(nom))/2 and is the absolute value of the worst case deviation.  
2. Measured at crossing points for differential clock input or at VTH for single-ended clock input  
3. If input modulation is used. Input modulation is not necessary.  
4. The amount of allowed spreading for non-triangular modulation is determined  
by the induced downstream tracking skew.  
5. Capacitance measured at f = 1 MHz, DC bias = 0.9V, VAC <100mV.  
0809D—04/07/06  
9
Integrated  
Circuit  
ICS9214  
Systems, Inc.  
AC Characteristics-Outputs  
TA = 0°C to +70°C; Supply Voltage AVDD2.5, VDD2.5 = 2.5 V +/- 0.125V (unless otherwise stated)  
PARAMETER1  
Output clock cycle time  
Short term jitter (over 1 to  
6 clock cycles)  
SYMBOL  
tCYCLE  
CONDITION  
MIN  
TYP  
MAX UNITS  
1.5  
-
-
2.5  
40  
30  
ns  
ps  
ps  
f = 400 to 635 MHz  
f = 635 to 800 MHz  
tJ2  
Output Phase error when  
tracking SSC  
tERR,SSC  
-100  
100  
ps  
ps  
%
TA = 0°C to +70°C,  
AVDD2.5, VDD2.5 =  
2.5 V +/- 0.125V  
3
Change in skew  
-
15  
tSKEW  
Long term average output  
duty cycle  
DC  
45  
55  
Cycle-to-cycle duty cycle  
f = 400 to 635 MHz  
f = 635 to 800 MHz  
20% to 80% of output  
voltage  
-
-
40  
30  
ps  
ps  
tDCERR  
error  
tR, tF  
Output rise and fall times  
100  
300  
100  
-
ps  
ps  
Difference between  
output rise and fall time  
on same pin of a single  
device  
20% to 80% of output  
voltage, f = 400 to 800 MHz  
tR-F  
-
Dynamic output  
4
VOL = 0.9 V  
1000  
ZOUT  
impedance  
Notes:  
1. Max and min output clock cycle times are based on nominal output frequencies  
of 400 and 667 MHz respectively. For spread spectrum modulated input clocks,  
the output clocks track the input modulation.  
2. Output short-term jitter is the absolute value fo the worst case deviation and is  
defined in the Jitter section.  
3. tSKEW is the timing difference between any two of the four differential clocks and  
is measured at common mode voltage.  
4. Zout is defined at the output pins.  
5. Guaranteed by design and characterization, not 100% tested in production  
Thermal Characteristics  
Parameter  
Symbol Conditions  
Min.  
Typ.  
120  
95  
Max.  
Units  
Still air  
θJA  
θJA  
θJA  
θJC  
°C/W  
°C/W  
°C/W  
°C/W  
Thermal Resistance Junction to  
Ambient  
1 m/s air flow  
3 m/s air flow  
80  
Thermal Resistance Junction to Case  
20  
Thermal Resistance Junction to Top of  
Case  
Maximum Case Temp  
ΨJT  
Still Air  
°C/W  
°C  
4.5  
120  
0809D—04/07/06  
10  
Integrated  
Circuit  
ICS9214  
Systems, Inc.  
Clock Output Drivers  
Figure 2 shows the clock driver equivalent circuit. The differential driver produces a specified voltage swing on the channel  
by switching the currents going into ODCLK_T and ODCLK_C. The external resistor RRC at the IREFY pin sets the maximum  
current. The minimum current is zero.  
The voltage at the IREFY pin, VIREFY, is by design equal to 1 V nominally, and the driver current is seven times the current  
flowing through RRC. So, the output low current can be estimated as IOL = 7/ RRC  
.
The driver output characteristics are defined together with the external resistors, R1, R2, and R3. The output clock signals are  
specified at the measurement points indicated in Figure 2. Table 5 shows example values for the resistors.  
R1, R2, and R3 and the clock driver output impedance, ZOUT, must match the impedance of the channel, ZCH , to minimize  
secondary reflections. ZOUT is specified as 1000 Ohms, minimum to accomplish this. The effective impedance can be  
estimated by:  
(1000R1/(1000+R1)+R2) R3/(1000R1/(1000+R1)+R2+R3)  
Pull-up resistor RT terminates the transmission line at the load to minimize clock signal reflection signal reflections. Table 5  
shows the resistor values for establishing and effective source termination impedance of 49.2 Ohms to match a 50 Ohm  
channel. The termination voltages are 2.5 V for VTS and 1.2 V for VT.The resistor values R1 = 38.3 Ohms, R2 = 19.1 Ohms, R3  
= 54.9 Ohms and RRC = 200 Ohms can be used to match a 28 Ohm channel.  
Table 5. Example Resistor Values and Termination Voltages for a 50 Ohm Channel1  
Symbol  
R1  
Parameter  
Value  
39.2  
66.5  
93.1  
49.9  
200  
Tolerance  
+/- 1%  
+/- 1%  
+/- 1%  
+/- 1%  
+/- 1%  
+/-5%  
Unit  
Termination resistor  
Termination resistor  
Termination resistor  
Termination resistor  
Swing control resistor  
Source termination voltage  
Termination voltage  
R2  
R3  
RT  
RRC  
VTS  
VT  
2.5  
V
1.2  
+/-5%  
V
Notes:  
1 A different set of resistors is used in Figure 2 when testing  
for maximum output current of the clock driver (IOLABS).  
These resistors are: R1 = 34, R2 = 31.8, R3 = 48.7,  
RT=28, RRC = 147ꢀ  
Supply Voltage  
VTH  
CLK_INC  
CLK_INT  
Input  
Input  
CLK_INT  
XDR  
XDR  
Clock Generator  
Clock Generator  
b. Single-ended input  
a. Differential input  
Figure 1. Differential and single-ended reference clock inputs  
0809D—04/07/06  
11  
Integrated  
Circuit  
ICS9214  
Systems, Inc.  
Input Clock Signal  
The ICS9214 receives either a differential or single-ended reference clock (CLK_INT/C). When the reference input clock is  
from a differential clock source, it must meet the voltage levels and timing requirements listed in the DC Characteristics –  
Inputs and AC Characteristics – Inputs tables.  
For a singled-ended clock input, an external voltage divider and a supply voltage, as shown in Figure 2, provide a reference  
voltage VTH at the CLK_INC pin to determine the proper switching point for CLK_INT. The range of VTH is specified in the DC  
Characteristics – Inputs table.  
Measurement  
Point  
VTS  
R1  
VT  
RT  
ODCLK_T  
ZCH  
R2  
R3  
Differential Driver  
Swing Current  
Control  
Measurement  
Point  
VTS  
VT  
RT  
R1  
R2  
ISET  
ODCLK_C  
ZCH  
R
RC  
R3  
Figure 2. Example System Clock Driver Equivalent Circuit  
VH  
80%  
V(t)  
20%  
VL  
tF  
tR  
Figure 3. Input and OutputVoltageWaveforms  
ODCLK_T  
ODCLK_C  
Vx+  
Vx,nom  
Vx-  
Figure 4. Crossing-pointVoltage  
0809D—04/07/06  
12  
Integrated  
Circuit  
ICS9214  
Systems, Inc.  
Power Sequencing  
Supply voltages for the ICS9214 must be applied before, or at the same time and external input and output signals.  
ODCLK_T  
ODCLK_C  
tCYCLE,i  
tJ = tCYCLE,  
tCYCLE,i+1  
-
tCYCLE, i+1 over 10,000 consecutive cycles  
Figure 5. Cycle-to-cycle Jitter  
ODCLK_T  
ODCLK_C  
t4CYCLE, i+1  
t4CYCLE i+1 over 10,000 consecutive cycles  
t4CYCLE, i  
tJ = t4CYCLE, i  
-
Figure 6. Short-term Jitter  
Cycle (i)  
Cycle (i+1)  
ODCLK_T  
ODCLK_C  
tPW- (i)  
tPW+ (i)  
tPW- (i+1)  
tCYCLE (i+1)  
tPW+ (i+1)  
tCYCLE (i)  
tDC,ERR = tPW+(i) - tPW+(i+1) and tPW-(i) - tPW-(i+1)  
Figure 7. Cycle-to-cycle Duty Cycle Error  
f
NOM  
(1-P  
)*f  
M,IN NOM  
0.5/f  
1/f  
M,IN  
M,IN  
t
Figure 8. Input frequency Modulation  
0809D—04/07/06  
13  
Integrated  
Circuit  
ICS9214  
Systems, Inc.  
Phase Noise  
The 9214 meets the single side band phase noise spectral purity for offset frequencies between 1 MHz and 100 MHz as  
described by the equation:  
10log[1+(50 x 106/f)2.4] -138 dBc/Hz  
This equation is shown in Figure 9. Phase Noise Plot  
-100  
10 log[1 + ( 50x106/ f )2.4] -138  
-110  
( Upper Lim it )  
-120  
-130  
-140  
-150  
6
7
8
9
10  
10  
10  
10  
Offset Frequency f , Hz  
Figure 9 : Phase Noise Plot  
Sample points are for this equation are shown in Table 6. Phase Noise Data Points  
Offset  
Frequency  
(MHz)  
1
5
10  
15  
20  
40  
80  
100  
SSB Spectral  
Purity  
-97  
-114  
-121  
-125.2  
-
-133.7  
-136.8  
-137.3  
128  
(dbc/Hz)  
Table 6 : Phase Noise Data Points  
0809D—04/07/06  
14  
Integrated  
Circuit  
ICS9214  
Systems, Inc.  
4.40 mm. Body, 0.65 mm. Pitch TSSOP  
(173 mil)  
(25.6 mil)  
In Millimeters  
COMMON DIMENSIONS  
In Inches  
COMMON DIMENSIONS  
SYMBOL  
MIN  
--  
0.05  
0.80  
0.19  
0.09  
MAX  
1.20  
0.15  
1.05  
0.30  
0.20  
MIN  
--  
.002  
.032  
.007  
.0035  
MAX  
.047  
.006  
.041  
.012  
.008  
A
A1  
A2  
b
c
D
E
SEE VARIATIONS  
6.40 BASIC  
SEE VARIATIONS  
0.252 BASIC  
E1  
e
L
4.30  
0.65 BASIC  
0.45  
4.50  
.169  
0.0256 BASIC  
.018 .030  
SEE VARIATIONS  
.177  
0.75  
N
SEE VARIATIONS  
α
0°  
--  
8°  
0.10  
0°  
--  
8°  
.004  
aaa  
VARIATIONS  
D mm.  
D (inch)  
N
MIN  
9.60  
MAX  
9.80  
MIN  
.378  
MAX  
.386  
28  
Reference Doc.: JEDEC Publication 95, MO-153  
10-0035  
Ordering Information  
ICS9214yG LF-T  
Example:  
ICS XXXX y G LF- T  
Designation for tape and reel packaging  
Annealed Lead Free (Optional)  
Package Type  
G = TSSOP  
Revision Designator (will not correlate with datasheet revision)  
Device Type  
Prefix  
ICS = Standard Device  
0809D—04/07/06  
15  
Integrated  
Circuit  
ICS9214  
Systems, Inc.  
Revision History  
Rev.  
Issue Date Description  
Page #  
Updated SMBus table Byte 2, Bit 3 from:0 to:1.  
Updated PLL Multiplier Selection Table, from: Byte 1 to: Byte 0, and Bit 2,1,0,  
to: Bit 6,5,4.  
0.1  
3/30/2005  
4-5,15  
Updated Ordering Information from "Lead Free" to "Annealed Lead Free"  
Added Phase noise spec  
Removed unsupported speeds from PLL Multiplier Selection,  
Changed minimum output raise, fall times from 140ps to 100 ps  
A
B
4/6/2005 Compliant with Rev 0.81 of XCG spec.  
1. Changed write address from D2 to a valid address (D8)  
4/22/2005 2. Changed read address from D3 to a valid address (D9)  
Various  
3
C
D
11/11/2005 Added the 15/4 entry in the gear table to the list of supported frequencies  
4/7/2006 Added Thermal Characteristics Table.  
5
10  
0809D—04/07/06  
16  

相关型号:

ICS9214DGLF

PLL Based Clock Driver, 9214 Series, 4 True Output(s), 0 Inverted Output(s), PDSO28, 0.173 INCH, 0.65 MM PITCH, LEAD FREE, MO-153, TSSOP-28
IDT

ICS9214G

Clock Generator
IDT

ICS9214GLF

Clock Generator
IDT

ICS9214YG-T

PLL Based Clock Driver, 9214 Series, 4 True Output(s), 0 Inverted Output(s), PDSO28, 0.173 INCH, 0.65 MM PITCH, MO-153, TSSOP-28
IDT

ICS9214YGLF-T

Rambus XDR Clock Generator
ICSI

ICS9214YGLF-T

RambusTM XDRTM Clock Generator
ICSI

ICS9214_07

RambusTM XDRTM Clock Generator
ICSI

ICS9219

Direct Rambus Clock Generator Lite
ICSI

ICS9219G-T

Clock Generator, PDSO16
IDT

ICS9219GLF-T

Clock Generator, PDSO16
IDT

ICS9219YG-T

Processor Specific Clock Generator, 533.3MHz, PDSO16, 4.40 MM, 0.65 MM PITCH, MO-153, TSSOP-16
IDT

ICS9219YGLF-T

Direct Rambus Clock Generator Lite
ICSI