ICS9DB306BLT [ICSI]

PCI Express, Jitter Attenuator; PCI Express的,抖动衰减器
ICS9DB306BLT
型号: ICS9DB306BLT
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

PCI Express, Jitter Attenuator
PCI Express的,抖动衰减器

逻辑集成电路 光电二极管 驱动 衰减器 PC
文件: 总16页 (文件大小:273K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS9DB306  
PCI EXPRESS,  
JITTER ATTENUATOR  
Integrated  
Circuit  
Systems, Inc.  
GENERAL DESCRIPTION  
Features  
The ICS9DB306 is a high performance 1-to-6  
Six differential LVPECL output pairs  
1 differential clock input  
ICS  
Differential-to LVPECL Jitter Attenuator designed  
for use in PCI Express™ systems. In some PCI  
Express™ systems, such as those found in desktop  
PCs, the PCI Express™ clocks are generated from  
a low bandwidth, high phase noise PLL frequency  
HiPerClockS™  
CLK and nCLK supports the following input types:  
LVPECL, LVDS, LVHSTL, SSTL, HCSL  
synthesizer. In these systems, a zero delay buffer may be  
required to attenuate high frequency random and deterministic  
jitter components from the PLL synthesizer and from the system  
board. The ICS9DB306 has 2 PLL bandwidth modes. In low  
bandwidth mode, the PLL loop BW is about 500kHz and this  
setting will attenuate much of the jitter from the reference clock  
input while being high enough to pass a triangular input spread  
spectrum profile. There is also a high bandwidth mode which  
Maximum output frequency: 140MHz  
Output skew: 135ps (maximum)  
Cycle-to-Cycle jitter: 25ps (maximum)  
RMS phase jitter @ 100MHz, (1.5MHz - 22MHz):  
3ps (typical)  
sets the PLL bandwidth at 1MHz which will pass more spread 3.3V operating supply  
spectrum modulation.  
0°C to 70°C ambient operating temperature  
For serdes which have x30 reference multipliers instead of x25  
multipliers, 5 of the 6 PCI Express™ outputs (PCIEX1:5) can be  
set for 125MHz instead of 100MHz by configuring the appropri-  
ate frequency select pins (FS0:1). Output PCIEX0 will always  
run at the reference clock frequency (usually 100MHz) in desk-  
top PC PCI Express™ Applications.  
Lead-Free package fully RoHS compliant  
Industrial temperature information available upon request  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
1 Disabled  
nOE0  
1
2
3
4
28  
27  
26  
25  
VEE  
PCIEXT1  
PCIEXC1  
PCIEXT2  
PCIEXC2  
VCC  
VCC  
0 Enabled  
PCIEXC0  
PCIEXT0  
FS0  
nCLK  
CLK  
PLL_BW  
VCCA  
VEE  
0
1
PCIEXT0  
nPCIEXC0  
÷5  
24  
23  
22  
21  
20  
5
6
7
8
Buffer  
nOE0  
nOE1  
VCC  
9
CLK  
Loop  
PCIEXT1  
nPCIEXC1  
0
1
Phase  
Detector  
BYPASS  
FS1  
0 ÷4  
PCIEXC3  
10  
11  
12  
13  
19  
18  
17  
16  
15  
VCO  
nCLK  
Filter  
PCIEXT3  
PCIEXC4  
PCIEXT4  
VEE  
1 ÷5  
PCIEXT2  
nPCIEXC2  
PCIEXT5  
PCIEXC5  
VCC  
14  
FS0  
÷5  
ICS9DB306  
28-LeadTSSOP, 173-MIL  
4.4mm x 9.7mm x 0.92mm  
body package  
Internal Feedback  
PCIEXT3  
nPCIEXC3  
0
1
0 ÷5  
1 ÷4  
L Package  
TopView  
PCIEXT4  
nPCIEXC4  
ICS9DB306  
28-Lead, 209-MIL SSOP  
5.3mm x 10.2mm x 1.75mm  
body package  
PCIEXT5  
nPCIEXC5  
FS1  
F Package  
TopView  
BYPASS  
nOE1  
1 Disabled  
0 Enabled  
9DB306BL  
www.icst.com/products/hiperclocks.html  
REV. A APRIL 7, 2005  
1
ICS9DB306  
PCI EXPRESS,  
JITTER ATTENUATOR  
Integrated  
Circuit  
Systems, Inc.  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
1, 14, 20  
VEE  
Power  
Negative supply pins.  
PCIEXT1,  
PCIEXC1  
PCIEXT2,  
PCIEXC2  
2, 3  
Output  
Differential output pairs. LVPECL interface levels.  
4, 5  
Output  
Power  
Differential output pairs. LVPECL interface levels.  
Core supply pins.  
6, 9, 15, 28  
VCC  
Output enable. When HIGH, forces true outputs (PCIEXTx) to go  
Pulldown LOW and the inverted outputs (PCIEXCx) to go HIGH. When LOW,  
outputs are enabled. LVCMOS/LVTTL interface levels.  
7, 8  
nOE0, nOE1  
Input  
PCIEXC3,  
PCIEXT3  
PCIEXC4,  
PCIEXT4  
PCIEXC5,  
PCIEXT5  
10, 11  
12, 13  
Output  
Output  
Output  
Differential output pairs. LVPECL interface levels.  
Differential output pairs. LVPECL interface levels.  
16, 17  
18  
Differential output pairs. LVPECL interface levels.  
FS1  
Pulldown Frequency select pin. LVCMOS/LVTTL interface levels.  
Bypass select pin. When HIGH, the PLL is in bypass mode, and the  
Pulldown  
19  
BYPASS  
Input  
device can function as a 1:6 buffer. LVCMOS/LVTTL interface levels.  
21  
22  
23  
VCCA  
PLL_BW  
CLK  
Power  
Input  
Input  
Analog supply pin. Requires 24Ω series resistor.  
Pullup  
Selects PLL Bandwidth input. LVCMOS/LVTTL interface levels.  
Pulldown Non-inverting differential clock input.  
Pullup/  
24  
25  
nCLK  
Input  
Input  
Inverting differential clock input. VCC/2 default when left floating.  
Pulldown  
FS0  
Pullup Frequency select pin. LVCMOS/LVTTL interface levels.  
PCIEXT0,  
PCIEXC0  
26, 27  
Output  
Differential output pairs. LVPECL interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum Typical  
Maximum Units  
Input Capacitance  
Input Pullup Resistor  
4
pF  
KΩ  
KΩ  
RPULLUP  
51  
51  
RPULLDOWN Input Pulldown Resistor  
TABLE 3A. RATIO OF OUTPUT FREQUENCY TO  
INPUT FREQUENCY FUNCTION TABLE, FS0  
TABLE 3B. RATIO OF OUTPUT FREQUENCY TO  
INPUT FREQUENCY FUNCTION TABLE, FS1  
Inputs  
Outputs  
PCIEX1  
5/4  
Inputs  
Outputs  
PCIEX4  
1
FS0  
0
PCIEX0  
PCIEX2  
FS1  
0
PCIEX3  
PCIEX5  
1
1
5/4  
1
1
1
1
1
1
5/4  
5/4  
5/4  
TABLE 3E. PLL BANDWIDTH  
FUNCTION TABLE  
TABLE 3F. PLL MODE  
FUNCTION TABLE  
Inputs  
TABLE 3C. OUTPUT ENABLE  
FUNCTION TABLE, nOE0  
TABLE 3D. OUTPUT ENABLE  
FUNCTION TABLE, nOE1  
Inputs  
Inputs  
Outputs  
PCIEX0:2  
Enabled  
Inputs  
Outputs  
PCIEX3:5  
Enabled  
Bandwidth  
PLL_BW  
PLL Mode  
BYPASS  
nOE0  
nOE1  
0
1
500kHz  
1MHz  
1
0
Disabled  
Enabled  
0
1
0
1
Disabled  
Disabled  
9DB306BL  
www.icst.com/products/hiperclocks.html  
REV. A APRIL 7, 2005  
2
ICS9DB306  
PCI EXPRESS,  
JITTER ATTENUATOR  
Integrated  
Circuit  
Systems, Inc.  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
CC  
Inputs, V  
-0.5V to VCC + 0.5V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
PackageThermal Impedance, θ  
49.8°C/W (0 lfpm)  
-65°C to 150°C  
JA  
StorageTemperature, T  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VCC  
VCCA  
ICC  
Core Supply Voltage  
3.135  
3.135  
3.3  
3.3  
3.465  
3.465  
135  
V
Analog Supply Voltage  
Power Supply Current  
Analog Supply Current  
V
mA  
mA  
ICCA  
25  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VIH  
VIL  
Input High Voltage  
2
VCC + 0.3  
0.8  
mV  
mV  
Input Low Voltage  
-0.3  
nOE0, nOE1, FS1,  
BYPASS  
V
CC = VIN = 3.465V  
150  
5
µA  
µA  
µA  
µA  
IIH  
Input High Current  
FS0, PLL_BW  
nOE0, nOE1, FS1,  
BYPASS  
V
CC = 3.465V, VIN = 0V  
-5  
IIL  
Input Low Current  
FS0, PLL_BW  
-150  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
VCC = VIN = 3.465V  
VCC = 3.465V, VIN = 0V  
Minimum Typical Maximum Units  
IIH  
Input High Current CLK, nCLK  
Input Low Current CLK, nCLK  
150  
150  
µA  
µA  
V
IIL  
VPP  
VCMR  
Peak-to-Peak Input Voltage  
0.15  
1.3  
Common Mode Input Voltage; NOTE 1, 2  
VEE + 0.5  
VCC - 0.85  
V
NOTE 1: Common mode voltage is defined as VIH.  
NOTE 2: For single ended applications, the maximum input voltage for CLK, nCLK is VCC + 0.3V.  
9DB306BL  
www.icst.com/products/hiperclocks.html  
REV. A APRIL 7, 2005  
3
ICS9DB306  
PCI EXPRESS,  
JITTER ATTENUATOR  
Integrated  
Circuit  
Systems, Inc.  
TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical  
Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCC - 1.4  
VCC - 2.0  
0.6  
VCC - 0.9  
VCC - 1.7  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50Ω to VCC - 2V.  
TABLE 5. AC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions  
Minimum Typical Maximum Units  
fMAX  
Output Frequency  
140  
135  
25  
MHz  
ps  
tsk(o)  
tjit(cc)  
Output Skew; NOTE 1, 2  
55  
3
Cycle-to-Cycle Jitter, NOTE 2  
ps  
RMS Phase Jitter (Random);  
NOTE 3  
Integration Range:  
1.5MHz - 22MHz  
tjit(Ø)  
ps  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
20ꢀ to 80ꢀ  
200  
48  
700  
52  
ps  
NOTE 1: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 3: Please refer to the Phase Noise Plot following this section.  
9DB306BL  
www.icst.com/products/hiperclocks.html  
REV. A APRIL 7, 2005  
4
ICS9DB306  
PCI EXPRESS,  
JITTER ATTENUATOR  
Integrated  
Circuit  
Systems, Inc.  
TYPICAL PHASE NOISE AT 100MHZ  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
PCI Express™ Filter  
100MHz  
RMS Phase Jitter (Random)  
1.5MHz to 22MHz = 3ps (typical)  
-80  
-90  
-100  
-110  
-120  
Raw Phase Noise Data  
-130  
-140  
-150  
-160  
-170  
-180  
Phase Noise Result by adding  
PCI Express™ Filter to raw data  
-190  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FREQUENCY (HZ)  
The illustrated phase noise plot was taken using a low phase test. Due to the tracking ability of a PLL, it will track the input  
noise signal generator, the noise floor of the signal generator is signal up to its loop bandwidth.Therefore, if the input phase noise  
less than that of the device under test.  
is greater than that of the VCO, it will increase the output phase  
noise performance of the device. It is recommended that the  
Using this configuration allows one to see the true spectral pu- phase noise performance of the input is verified in order to  
rity or phase noise performance of the PLL in the device under achieve the above phase noise performance.  
9DB306BL  
www.icst.com/products/hiperclocks.html  
REV. A APRIL 7, 2005  
5
ICS9DB306  
PCI EXPRESS,  
JITTER ATTENUATOR  
Integrated  
Circuit  
Systems, Inc.  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
VCC  
Qx  
nCLK  
CLK  
VPP  
VCMR  
Cross Points  
LVPECL  
nQx  
VEE  
VEE  
-1.3V 0.165V  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
PCIEXC0:5  
PCIEXC0:5x  
PCIEXT0:5x  
PCIEXT0:5  
tcycle n  
tcycle n+1  
PCIEXC0:5y  
tjit(cc) = tcycle n –tcycle n+1  
1000 Cycles  
PCIEXT0:5y  
tsk(o)  
OUTPUT SKEW  
CYCLE-TO-CYCLE JITTER  
PCIEXC0:5  
PCIEXT0:5  
80ꢀ  
tF  
80ꢀ  
VSWING  
20ꢀ  
Pulse Width  
Clock  
20ꢀ  
tPERIOD  
Outputs  
tR  
tPW  
odc =  
tPERIOD  
OUTPUT RISE/FALL TIME  
OUTPUT DUTY CYCLE/PULSE WIDTH PERIOD  
9DB306BL  
www.icst.com/products/hiperclocks.html  
REV. A APRIL 7, 2005  
6
ICS9DB306  
PCI EXPRESS,  
JITTER ATTENUATOR  
Integrated  
Circuit  
Systems, Inc.  
APPLICATION INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins are  
vulnerable to random noise.The ICS9DB306 provides separate  
power supplies to isolate any high switching noise from the out-  
puts to the internal PLL.VCC andVCCA should be individually con-  
nected to the power supply plane through vias, and bypass ca-  
pacitors should be used for each pin.To achieve optimum jitter  
performance, power supply isolation is required. Figure 1 illus-  
trates how a 24Ω resistor along with a 10μF and a .01μF by-  
pass capacitor should be connected to each VCCA pin.  
3.3V  
VCC  
.01μF  
24Ω  
VCCA  
.01μF  
10μF  
FIGURE 1. POWER SUPPLY FILTERING  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 2 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = VCC/2 is  
generated by the bias resistors R1, R2 and C1.This bias circuit  
should be located as close as possible to the input pin.The ratio  
of R1 and R2 might need to be adjusted to position theV_REF in  
the center of the input voltage swing. For example, if the input  
clock swing is only 2.5V andVCC = 3.3V, V_REF should be 1.25V  
and R2/R1 = 0.609.  
VCC  
R1  
1K  
Single Ended Clock Input  
V_REF  
CLKx  
nCLKx  
C1  
0.1u  
R2  
1K  
FIGURE 2. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
9DB306BL  
www.icst.com/products/hiperclocks.html  
REV. A APRIL 7, 2005  
7
ICS9DB306  
PCI EXPRESS,  
JITTER ATTENUATOR  
Integrated  
Circuit  
Systems, Inc.  
TERMINATION FOR LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs.The two different layouts mentioned  
are recommended only as guidelines.  
50Ω transmission lines. Matched impedance techniques should  
be used to maximize operating frequency and minimize signal  
distortion. Figures 3A and 3B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs.Therefore, terminating  
resistors (DC current path to ground) or current sources must  
be used for functionality. These outputs are designed to drive  
3.3V  
Z
o = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 3A. LVPECL OUTPUT TERMINATION  
FIGURE 3B. LVPECL OUTPUT TERMINATION  
9DB306BL  
www.icst.com/products/hiperclocks.html  
REV. A APRIL 7, 2005  
8
ICS9DB306  
PCI EXPRESS,  
JITTER ATTENUATOR  
Integrated  
Circuit  
Systems, Inc.  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL here are examples only. Please consult with the vendor of the  
and other differential signals.BothVSWING and VOH must meet the driver component to confirm the driver termination requirements.  
VPP and VCMR input requirements. Figures 4A to 4D show inter- For example in Figure 4A, the input termination applies for ICS  
face examples for the HiPerClockS CLK/nCLK input driven by HiPerClockS LVHSTL drivers. If you are using an LVHSTL driver  
the most common driver types.The input interfaces suggested from another vendor, use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
Input  
LVPECL  
nCLK  
HiPerClockS  
Input  
LVHSTL  
R1  
50  
R2  
50  
ICS  
HiPerClockS  
R1  
50  
R2  
50  
LVHSTL Driver  
R3  
50  
FIGURE 4A. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
ICS HIPERCLOCKS LVHSTL DRIVER  
FIGURE 4B. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
125  
R4  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiv er  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 4C. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 4D. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
9DB306BL  
www.icst.com/products/hiperclocks.html  
REV. A APRIL 7, 2005  
9
ICS9DB306  
PCI EXPRESS,  
JITTER ATTENUATOR  
Integrated  
Circuit  
Systems, Inc.  
SCHEMATIC EXAMPLE  
Figure 5 shows an example of ICS9DB306 application  
schematic.In this example, the device is operated atVCC = 3.3V.  
LVPECL output drivers, one of terminations approaches is shown  
in this schematic. For additional termination approaches, please  
The decoupling capacitor should be located as close as pos- refer to the LVPECLTermination Application Note.  
sible to the power pin.The input is driven by a HCSL driver. For  
Zo = 50  
VCC  
+
R11  
1K  
VCC  
Zo = 50  
-
R7  
24  
VCCA  
LVPECL  
U1  
ICS9DB306  
VCC  
VCC  
R4  
50  
R5  
50  
C16  
C11  
10uF  
0.1uF  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
14  
VCC  
VEE  
PCIEXT4  
PCIEXC4  
PCIEXT3  
PCIEXC3  
VCC  
13  
12  
11  
10  
9
PCIEXC5  
PCIEXT5  
FS1  
BYPASS  
VEE  
VCCA  
PLL_BW  
CLK  
nCLK  
FS0  
PCIEXT0  
PCIEXC0  
VCC  
R6  
50  
VCC  
8
7
6
5
4
3
nOE1  
nOE0  
VCC  
R12 33  
Zo = 50  
Zo = 50  
PCIEXC2  
PCIEXT2  
PCIEXC1  
PCIEXT1  
VEE  
R8  
1K  
R9  
1K  
2
1
HCSL  
R13 33  
R1  
50  
R2  
50  
R10  
1K  
Zo = 50  
Zo = 50  
+
-
LVPECL  
(U1-15)  
(U1-28)  
(U1-6)  
(U1-9)  
VCC  
R14 R15  
50 50  
C1  
0.1uF  
C2  
0.1uF  
C3  
0.1uF  
C3  
0.1uF  
VCC=3.3V  
R16  
50  
FIGURE 5. EXAMPLE OF ICS9DB306 SCHEMATIC  
9DB306BL  
www.icst.com/products/hiperclocks.html  
REV. A APRIL 7, 2005  
10  
ICS9DB306  
PCI EXPRESS,  
JITTER ATTENUATOR  
Integrated  
Circuit  
Systems, Inc.  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS9DB306.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS9DB306 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 135mA = 467.8mW  
Power (outputs)MAX = 30mW/Loaded Output pair  
If all outputs are loaded, the total power is 6 * 30mW = 180mW  
Total Power_MAX (3.465V, with all outputs switching) = 467.8mW + 180mW = 647.8mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total =Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 43.9°C/W perTable 6 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.648W * 43.9°C/W = 98.4°C. This is well below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 6. THERMAL RESISTANCE θJA FOR 28-PIN TSSOP, FORCED CONVECTION  
θJA byVelocity (Linear Feet per Minute)  
0
200  
68.7°C/W  
43.9°C/W  
500  
60.5°C/W  
41.2°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
82.9°C/W  
49.8°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
9DB306BL  
www.icst.com/products/hiperclocks.html  
REV. A APRIL 7, 2005  
11  
ICS9DB306  
PCI EXPRESS,  
JITTER ATTENUATOR  
Integrated  
Circuit  
Systems, Inc.  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 5.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
FIGURE 5. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage ofV - 2V.  
CCO  
For logic high, VOUT = V  
= V  
– 0.9V  
OH_MAX  
CCO_MAX  
)
= 0.9V  
OH_MAX  
(V  
- V  
CCO_MAX  
For logic low, VOUT = V  
= V  
– 1.7V  
OL_MAX  
CCO_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CCO_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
L
L
[(2V - 0.9V)/50Ω] * 0.9V = 19.8mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50Ω] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
9DB306BL  
www.icst.com/products/hiperclocks.html  
REV. A APRIL 7, 2005  
12  
ICS9DB306  
PCI EXPRESS,  
JITTER ATTENUATOR  
Integrated  
Circuit  
Systems, Inc.  
RELIABILITY INFORMATION  
TABLE 7A. θJAVS. AIR FLOW TABLE FOR 28 LEAD TSSOP PACKAGE  
θJA byVelocity (Linear Feet per Minute)  
0
200  
68.7°C/W  
43.9°C/W  
500  
60.5°C/W  
41.2°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
82.9°C/W  
49.8°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TABLE 7B. θJAVS. AIR FLOW TABLE FOR 28 LEAD SSOP PACKAGE  
θJA byVelocity (Linear Feet per Minute)  
0
200  
500  
Multi-Layer PCB, JEDEC Standard Test Boards  
49°C/W  
36°C/W  
30°C/W  
TRANSISTOR COUNT  
The transistor count for ICS9DB306 is: 2190  
9DB306BL  
www.icst.com/products/hiperclocks.html  
REV. A APRIL 7, 2005  
13  
ICS9DB306  
PCI EXPRESS,  
JITTER ATTENUATOR  
Integrated  
Circuit  
Systems, Inc.  
PACKAGE OUTLINE - L SUFFIX FOR 28 LEAD TSSOP  
PACKAGE OUTLINE - F SUFFIX FOR 28 LEAD SSOP  
TABLE 8A. PACKAGE DIMENSIONS  
TABLE 8B. PACKAGE DIMENSIONS  
Millimeters  
Millimeters  
SYMBOL  
SYMBOL  
Minimum  
Maximum  
Minimum  
Maximum  
N
A
28  
N
A
28  
2.00  
--  
1.20  
0.15  
1.05  
0.30  
0.20  
9.80  
A1  
A2  
b
0.05  
1.65  
0.22  
0.09  
9.90  
7.40  
5.00  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
9.60  
1.85  
0.38  
0.25  
10.50  
8.20  
5.60  
c
c
D
D
E
E
6.40 BASIC  
0.65 BASIC  
E1  
e
E1  
e
4.30  
4.50  
0.65 BASIC  
L
0.55  
0°  
0.95  
8°  
L
0.45  
0°  
0.75  
8°  
α
α
Reference Document: JEDEC Publication 95, MO-150  
aaa  
--  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
9DB306BL  
www.icst.com/products/hiperclocks.html  
REV. A APRIL 7, 2005  
14  
ICS9DB306  
PCI EXPRESS,  
JITTER ATTENUATOR  
Integrated  
Circuit  
Systems, Inc.  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
Marking  
Package  
Count  
Temperature  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
ICS9DB306BL  
ICS9DB306BLT  
ICS9DB306BLLF  
ICS9DB306BL  
ICS9DB306BL  
ICS9DB306BLLF  
28 Lead TSSOP  
48 per Tube  
1000  
28 Lead TSSOP on Tape and Reel  
28 Lead "Lead-Free" TSSOP  
48 per Tube  
28 Lead "Lead-Free" TSSOP on  
Tape and Reel  
ICS9DB306BLLFT  
ICS9DB306BLLF  
1000  
0°C to 70°C  
ICS9DB306BF  
ICS9DB306BFT  
ICS9DB306BF  
ICS9DB306BF  
28 Lead SSOP  
46 per Tube  
1000  
0°C to 70°C  
0°C to 70°C  
28 Lead SSOP on Tape and Reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS  
compliant.  
The aforementioned trademark, HiPerClockS™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are  
not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS  
product for use in life support devices or critical medical instruments.  
9DB306BL  
www.icst.com/products/hiperclocks.html  
REV. A APRIL 7, 2005  
15  
ICS9DB306  
PCI EXPRESS,  
JITTER ATTENUATOR  
Integrated  
Circuit  
Systems, Inc.  
REVISION HISTORY SHEET  
Description of Change  
Added PLL Mode Function Table.  
Rev  
Table  
3F  
Page  
Date  
A
2
4/7/05  
9DB306BL  
www.icst.com/products/hiperclocks.html  
REV. A APRIL 7, 2005  
16  

相关型号:

ICS9DB306LLFT

Clock Driver
IDT

ICS9DB401

Four Output Differential Buffer for PCI Express
ICSI

ICS9DB401BFLF

PLL Based Clock Driver, 9DB Series, 4 True Output(s), 0 Inverted Output(s), PDSO28, 0.209 INCH, GREEN, MO-150,SSOP-28
IDT

ICS9DB401BFLFT

PLL Based Clock Driver, 9DB Series, 4 True Output(s), 0 Inverted Output(s), PDSO28, 0.209 INCH, GREEN, MO-150,SSOP-28
IDT

ICS9DB401BGLF

PLL Based Clock Driver, 9DB Series, 4 True Output(s), 0 Inverted Output(s), PDSO28, 4.40 MM, 0.65 MM PITCH, GREEN, MO-153, TSSOP-28
IDT

ICS9DB401BGLFT

PLL Based Clock Driver, 9DB Series, 4 True Output(s), 0 Inverted Output(s), PDSO28, 4.40 MM, 0.65 MM PITCH, GREEN, MO-153, TSSOP-28
IDT

ICS9DB401C

Four Output Differential Buffer for PCI Express
IDT

ICS9DB401CFLF

PLL Based Clock Driver, 9DB Series, 4 True Output(s), 0 Inverted Output(s), PDSO28, 0.209 INCH, GREEN, MO-150,SSOP-28
IDT

ICS9DB401CFLFT

Four Output Differential Buffer for PCI Express
IDT

ICS9DB401CGLF

PLL Based Clock Driver, 9DB Series, 4 True Output(s), 0 Inverted Output(s), PDSO28, 0.40 X 0.65 MM, ROHS COMPLIANT, MO-153, TSSOP-28
IDT

ICS9DB401CGLFT

Four Output Differential Buffer for PCI Express
IDT

ICS9DB401CGT

PLL Based Clock Driver, 9DB Series, 4 True Output(s), 0 Inverted Output(s), PDSO28, 0.40 X 0.65 MM, MO-153, TSSOP-28
IDT