ICSSSTUBF32866AZ(LF)T [ICSI]

25-Bit Configurable Registered Buffer for DDR2; 25位可配置寄存缓冲器的DDR2
ICSSSTUBF32866AZ(LF)T
型号: ICSSSTUBF32866AZ(LF)T
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

25-Bit Configurable Registered Buffer for DDR2
25位可配置寄存缓冲器的DDR2

双倍数据速率
文件: 总28页 (文件大小:293K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICSSSTUBF32866A  
Advance Information  
Integrated  
Circuit  
Systems,Inc.  
25-Bit Configurable Registered Buffer for DDR2  
Pin Configuration  
Recommended Application:  
DDR2 Memory Modules  
1
2
3
4
5
6
Provides complete DDR DIMM solution with  
ICS97ULP877  
Ideal for DDR2 667, and 800  
A
B
C
D
E
F
Product Features:  
25-bit 1:1 or 14-bit 1:2 configurable registered buffer  
with parity check functionality  
Supports SSTL_18 JEDEC specification on data  
inputs and outputs  
Supports LVCMOS switching levels on CSR and  
RESET inputs  
Low voltage operation  
VDD = 1.7V to 1.9V  
Available in 96 BGA package  
Drop-in replacement for ICSSSTUA32864  
Green packages available  
G
H
J
K
L
M
N
P
R
T
FunctionalityTruthTable  
96 Ball BGA  
(Top View)  
Inputs  
Outputs  
QCS  
Dn,  
DODT,  
DCKE  
QODT,  
QCKE  
RST  
DCS  
CSR  
CK  
CK  
Qn  
H
H
H
H
H
H
H
H
H
H
H
H
L
H
X
L
L
L
L
L
L
L
L
L
L
H
H
Q
0
Q
0
Q
0
L or H  
L or H  
L or H  
L or H  
L or H  
L or H  
L
L
L
L
L
L
H
H
H
L
L
H
X
H
H
Q
0
Q
0
Q
0
L
L
L
H
H
H
L
L
L
H
H
H
X
H
H
Q
0
Q
0
Q
0
Q
0
H
H
L
L
H
H
H
H
Q
0
H
X
H
Q
0
Q
0
Q
0
H
H
L or H  
X or  
L or H  
X or  
X or  
X or  
X or  
L
L
L
L
Floating Floating Floating Floating Floating  
1240—07/17/06  
ADVANCE INFORMATION documents contain information on products in the formative or design phase development. Characteristic data and other specifications are design goals.  
ICS reserves the right to change or discontinue these products without notice. Third party brands and names are the property of their respective owners.  
ICSSSTUBF32866A  
Advance Information  
Ball Assignments  
25 bit 1:1 Register  
DCKE  
D2  
PPO  
D15  
D16  
VREF  
GND  
VDD  
VDD  
GND  
VDD  
QCKE  
Q2  
NC  
A
B
C
D
E
F
Q15  
Q16  
D3  
Q3  
DODT  
D5  
QERR  
D17  
GND  
VDD  
GND  
VDD  
QODT  
Q5  
NC  
Q17  
D6  
D18  
GND  
GND  
Q6  
Q18  
G
H
J
PAR_IN RST  
VDD  
VDD  
C1  
C0  
CK  
DCS  
GND  
GND  
QCS  
NC  
CK  
D8  
CSR  
VDD  
VDD  
ZOH  
Q8  
ZOL  
D19  
GND  
GND  
Q19  
K
L
D9  
D20  
D21  
D22  
D23  
D24  
D25  
VDD  
GND  
VDD  
GND  
VDD  
VREF  
VDD  
GND  
VDD  
GND  
VDD  
VDD  
Q9  
Q20  
Q21  
Q22  
Q23  
Q24  
Q25  
D10  
D11  
D12  
D13  
D14  
Q10  
Q11  
Q12  
Q13  
Q14  
M
N
P
R
T
1
2
3
4
5
6
C0 = 0, C1 = 0  
14 bit 1:2 Registers  
D1  
PPO  
NC  
VREF  
GND  
VDD  
VDD  
GND  
VDD  
Q1A  
Q2A  
Q3A  
Q1B  
Q2B  
Q3B  
DCKE  
D2  
PPO  
NC  
VREF  
GND  
VDD  
VDD  
GND  
VDD  
QCKEA QCKEB  
A
B
C
D
E
F
A
B
C
D
E
F
D2  
D3  
Q2A  
Q3A  
Q2B  
Q3B  
NC  
D3  
NC  
D4  
D5  
QERR  
NC  
GND  
VDD  
GND  
VDD  
Q4A  
Q5A  
Q4B  
Q5B  
DODT  
D5  
QERR  
NC  
GND  
VDD  
GND  
VDD  
QODTA QODTB  
Q5A  
Q6A  
Q5B  
Q6B  
D6  
NC  
GND  
GND  
Q6A  
Q6B  
D6  
NC  
GND  
GND  
G
H
J
G
H
J
PAR_IN RST  
VDD  
VDD  
C1  
C0  
PAR_IN RST  
VDD  
VDD  
C1  
C0  
CK  
DCS  
GND  
GND  
QCSA  
QCSB  
CK  
DCS  
GND  
GND  
QCSA  
QCSB  
CK  
D8  
CSR  
NC  
VDD  
VDD  
ZOH  
Q8A  
ZOL  
Q8B  
CK  
D8  
CSR  
NC  
VDD  
VDD  
ZOH  
Q8A  
ZOL  
Q8B  
GND  
GND  
GND  
GND  
K
L
K
L
D9  
NC  
NC  
NC  
NC  
NC  
NC  
VDD  
GND  
VDD  
GND  
VDD  
VREF  
VDD  
GND  
VDD  
GND  
VDD  
VDD  
Q9A  
Q9B  
D9  
NC  
NC  
NC  
NC  
NC  
NC  
VDD  
GND  
VDD  
GND  
VDD  
VREF  
VDD  
GND  
VDD  
GND  
VDD  
VDD  
Q9A  
Q9B  
D10  
Q10A  
Q10B  
D10  
D11  
D12  
D13  
D14  
Q10A  
Q11A  
Q12A  
Q13A  
Q14A  
Q10B  
Q11B  
Q12B  
Q13B  
Q14B  
M
N
P
R
T
M
N
P
R
T
DODT  
D12  
QODTA QODTB  
Q12A  
Q13A  
Q12B  
Q13B  
D13  
DCKE  
QCKEA QCKEB  
1
2
3
4
5
6
1
2
3
4
5
6
Register A (C0 = 0, C1 = 1)  
Register B (C0 = 1, C1 = 1)  
1240—07/17/06  
2
ICSSSTUBF32866A  
Advance Information  
General Description  
This 25-bit 1:1 or 14-bit 1:2 configurable registered buffer is designed for 1.7-V to 1.9-V VDD operation.  
All clock and data inputs are compatible with the JEDEC standard for SSTL_18. The control inputs are LVCMOS. All  
outputs are 1.8-V CMOS drivers that have been optimized to drive the DDR-II DIMM load. ICSSSTUBF32866A  
operates from a differential clock (CK and CK). Data are registered at the crossing of CK going high, and CK going  
low.  
The C0 input controls the pinout configuration of the 1:2 pinout from A configuration (when low) to B configuration (when  
high). The C1 input controls the pinout configuration from 25-bit 1:1 (when low) to 14-bit 1:2 (when high).  
A - Pair Configuration (CO1 = 0, CI1 = 1 and CO2 = 0, CI2 = 1)  
Parity that arrives one cycle after the data input to which it applies is checked on the PAR_IN of the first register.  
The second register produces to PPO and QERR signals. The QERR of the first register is left floating. The valid  
error information is latched on the QERR output of the second register. If an error occurs QERR is latched low for  
two cycles or until Reset is low.  
B - Single Configuration (CO = 0, C1 = 0)  
The device supports low-power standby operation. When the reset input (RST) is low, the differential input receivers  
are disabled, and undriven (floating) data, clock and reference voltage (VREF) inputs are allowed. In addition, when  
RST is low all registers are reset, and all outputs are forced low. The LVCMOS RST and Cn inputs must always be  
held at a valid logic high or low level.To ensure defined outputs from the register before a stable clock has been supplied,  
RST must be held in the low state during power up.  
In the DDR-II RDIMM application, RST is specified to be completely asynchronous with respect to CK and CK.  
Therefore, no timing relationship can be guaranteed between the two. When entering reset, the register will be cleared  
and the outputs will be driven low quickly, relative to the time to disable the differential input receivers. However, when  
coming out of reset, the register will become active quickly, relative to the time to enable the differential input receivers.  
As long as the data inputs are low, and the clock is stable during the time from the low-to-high transition of RST until  
the input receivers are fully enabled, the design of the ICSSSTUBF32866A must ensure that the outputs will remain  
low, thus ensuring no glitches on the output.  
The device monitors both DCS and CSR inputs and will gate the Qn outputs from changing states when both DCS and  
CSR inputs are high. If either DCS or CSR input is low, the Qn outputs will function normally.The RST input has priority  
over the DCS and CSR control and will force the outputs low. If the DCS-control functionality is not desired, then the  
CSR input can be hardwired to ground, in which case, the setup-time requirement for DCS would be the same as for  
the other D data inputs. Package options include 96-ball LFBGA (MO-205CC).  
Parity and Standby Functionality Truth Table  
Inputs  
Outputs  
Sum of Inputs = H  
Rst  
DCS  
CSR  
CK  
CK  
PAR_IN  
PPO  
QERR  
(D1 - D25)  
Even  
Odd  
Even  
Odd  
Even  
Odd  
X
H
H
H
H
H
H
H
L
L
L
X
X
X
X
L
L
L
H
H
L
L
H
H
L
L
H
L
L
H
H
L
L
H
H
H
L
H
H
X
H
PPO0  
QERR0  
H
X
X
L or H  
L or H  
X
X
PPO0  
QERR0  
X or  
X or  
X or  
X or  
X or  
Floating  
L
X or Floating  
L
H
Floating Floating Floating Floating  
1. CO = 0 and CI = 0, Data inputs are D2, D3, D5, D6, D8 - D25.  
CO = 0 and CI = 1, Data inputs are D2, D3, D5, D6, D8 - D14  
CO = 1 and CI = I, Data inputs are D1 - D6, D8 - D10, D12, D13  
2. PAR_IN arrives one clock cycle after the data to which it applies when CO = 0.  
3. PAR_IN arrives two clock cycles after the data to which it applies when CO = 1.  
4. Assume QERR is high at the CKand CKcrossing. If QERR is low it stays latched low for two  
clock cycles on until Rst is low.  
1240—07/17/06  
3
ICSSSTUBF32866A  
Advance Information  
Ball Assignment  
Electrical  
Characteristics  
Terminal Name  
Description  
GND  
VDD  
Ground  
Ground input  
1.8V nominal  
0.9V nominal  
Input  
Power supply voltage  
VREF  
ZOH  
Input reference voltage  
Reserved for future use  
Reserved for future use  
Positive master clock input  
Negative master clock input  
Configuration control inputs  
ZOL  
Input  
CK  
Differential input  
Differential input  
LVCMOS inputs  
CK  
C0, C1  
Asynchronous reset input - resets registers and disables VREF data and  
clock differential-input receivers  
RST  
CSR, DCS  
D1 - D25  
DODT  
LVCMOS input  
SSTL_18 input  
SSTL_18 input  
SSTL_18 input  
SSTL_18 input  
Chip select inputs - disables D1 - D24 outputs switching when both inputs  
are high  
Data input - clock in on the crossing of the rising edge of CK and the  
falling edge of CK  
The outputs of this register bit will not be suspended by the DCS and  
CSR control  
The outputs of this register bit will now be suspended by the DCS and  
CSR control  
DCKE  
Q1 - Q25  
QCS  
Data ouputs that are suspended by the DCS and CSR control  
Data output that will not be suspended by the DCS and CSR control  
Data output that will not be suspended by the DCS and CSR control  
Data output that will not be suspended by the DCS and CSR control  
Partial parity out indicates off parity of inputs D1 - D25.  
1.8V CMOS  
1.8V CMOS  
1.8V CMOS  
1.8V CMOS  
1.8V CMOS  
SSTL_18 input  
QODT  
QCKE  
PPO  
PAR_IN  
Parity input arrives one clock cycle after the corresponding data input  
Output error bit-generated one clock cycle after the corresponding data  
output  
Open drain  
output  
QERR  
1240—07/17/06  
4
ICSSSTUBF32866A  
Advance Information  
Block Diagram for 1:1 mode (positive logic)  
RST  
CK  
CK  
VREF  
DCKE  
D
C1  
C1  
QCKEA  
QODTA  
R
D
DODT  
R
DCS  
1D  
C1  
QCSA  
R
CSR  
D1  
0
1
1D  
Q1A  
C1  
Q1B*  
R
To 21 Other Channels  
*Note: Disabled in 1:1 configuration  
1240—07/17/06  
5
ICSSSTUBF32866A  
Advance Information  
Block Diagram for 1:2 mode (positive logic)  
RST  
CK  
CK  
VREF  
DCKE  
1D  
C1  
QCKEA  
QCKEB*  
R
DODT  
1D  
QODTA  
C1  
QODTB*  
R
DCS  
1D  
QCSA  
C1  
QCSB*  
R
CSR  
D1  
0
1
1D  
Q1A  
C1  
Q1B*  
R
To 10 Other Channels  
*Note: Disabled in 1:1 configuration  
1240—07/17/06  
6
ICSSSTUBF32866A  
Advance Information  
2. Device standard (cont'd)  
G2  
RST  
H1  
CK  
J1  
CK  
LPS0  
(internal node)  
D2•D3,  
D5•D6,  
D8-D25  
22  
D2•D3,  
D5•D6,  
D8•D25  
Q2 Q3,  
Q5 Q6,  
Q8 Q25  
CE  
D
A3, T3  
22  
V
REF  
CK  
Q
22  
R
D2•D3,  
D5•D6,  
D8•D25  
22  
Parity  
Generator  
G5  
C1  
1
0
0
1
A2  
PPO  
D
Q
D
R
Q
D
R
Q
CK  
CK  
CE  
CK  
R
G1  
G6  
PAR_IN  
D2  
QERR  
C0  
CK  
0
1
2•Bit  
Counter  
R
LPS1  
(internal node)  
D
R
Q
CK  
Parity logic diagram for 1:1 register configuration (positive logic): C0=0, C1=0  
Figure 6  
1240—07/17/06  
7
ICSSSTUBF32866A  
Advance Information  
2. Device standard (cont'd)  
G2  
RST  
H1  
CK  
J1  
CK  
LPS0  
(internal node)  
D2•D3,  
D5•D6,  
D8-D14  
Q2A•Q3A,  
Q5A•Q6A,  
Q8A•Q14A  
11  
D2•D3,  
D5•D6,  
D8•D14  
11  
11  
CE  
D
A3, T3  
V
REF  
CK  
Q
11  
R
Q2B•Q3B,  
Q5B•Q6B,  
Q8B•Q14B  
D2•D3,  
D5•D6,  
D8•D14  
11  
Parity  
Generator  
G5  
C1  
1
0
0
A2  
PPO  
D
Q
1
D
R
Q
D
Q
CK  
CK  
CE  
CK  
R
R
G1  
G6  
PAR_IN  
D2  
QERR  
C0  
CK  
2•Bit  
Counter  
R
0
1
LPS1  
(internal node)  
D
R
Q
CK  
Figure 7 — Parity logic diagram for 1:2 register-A configuration (positive logic); C0=0, C1=1  
1240—07/17/06  
8
ICSSSTUBF32866A  
Advance Information  
2. Device standard (cont'd)  
G2  
RST  
H1  
CK  
J1  
CK  
LPS0  
(internal node)  
D1•D6,  
D8-D13  
11  
11  
Q1A•Q6A,  
D1•D6,  
D8•D13  
CE  
D
A3, T3  
Q8A•Q13A  
V
REF  
CK  
Q
11  
11  
R
Q1B•Q6B,  
Q8B•Q13B  
D1•D6,  
D8•D13  
11  
Parity  
Generator  
G5  
C1  
1
0
0
A2  
PPO  
D
R
Q
1
D
R
Q
D
R
Q
CK  
CK  
CE  
CK  
G1  
G6  
PAR_IN  
D2  
QERR  
C0  
CK  
2•Bit  
Counter  
R
0
1
LPS1  
(internal node)  
D
R
Q
CK  
Parity logic diagram for 1:2 register-B configuration (positive logic); CO=1, C1=1  
Figure 8  
1240—07/17/06  
9
ICSSSTUBF32866A  
Advance Information  
2. Device standard (cont'd)  
RST  
DCS  
CSR  
n
n + 1  
n + 2  
n + 3  
n + 4  
CK  
CK  
t
t
t
h
su  
act  
D1•D25  
t
, t  
pdm pdmss  
CK to Q  
Q1•Q25  
PAR_IN  
t
t
su  
h
t
pd  
CK to PPO  
PPO  
t
t
, t  
PHL PLH  
PHL  
CK to QERR  
CK to QERR  
QERR  
Data to QERR Latency  
H, L, or X  
H or L  
Figure 9 — Timing diagram for SSTU32866 used as a single device; C0=0, C1=0;  
RST Switches from L to H  
After RST is switched from low to high, all data and PAR_IN inputs signals must be set and held low for a minimum time of t  
max, to avoid false error.  
ACT  
If the data is clocked in on the n clock pulse, the QERR output signal will be generated on the n+2 clock pulse, and it will be valid on  
the n+3 clock pulse.  
1240—07/17/06  
10  
ICSSSTUBF32866A  
Advance Information  
2. Device standard (cont'd)  
RST  
DCS  
CSR  
n
n + 1  
n + 2  
n + 3  
n + 4  
CK  
CK  
t
t
su  
h
D1•D25  
Q1•Q25  
t
, t  
pdm pdmss  
CK to  
t
t
su  
h
PAR_IN  
PPO  
t
pd  
CK to PPO  
t
or t  
PLH  
PHL  
CK to QERR  
Data to PPO Latency  
QERR  
Data to QERR Latency  
Output signal is dependent on  
the prior unknown input event  
Unknown input  
event  
H or L  
Figure 10  
Timing diagram for SSTU32866 used as a single device; C0=0, C1=0;  
RST being held high  
If the data is clocked in on the n clock pulse, the QERR output signal will be generated on the n+2 clock pulse, and it will be valid on  
the n+3 clock pulse. If an error occurs and the QERR output is driven low, it stays latched low for a minimum of two clock cycles or  
until RST is driven low.  
1240—07/17/06  
11  
ICSSSTUBF32866A  
Advance Information  
2. Device standard (cont'd)  
RST  
t
inact  
DCS  
CSR  
CK  
CK  
D1•D25  
t
RPHL  
RST to Q  
Q1•Q25  
PAR_IN  
t
RPHL  
RST to PPO  
PPO  
QERR  
t
RPLH  
RST to QERR  
H, L, or X  
H or L  
Figure 11 — Timing diagram for SSTU32866 used as a single device; C0=0, C1=0;  
RST switches from H to L  
After RST is switched from high to low, all data and clock unouts signals must be set and held at valid logic levels (not floating) for  
a minimum time of t max.  
INACT  
1240—07/17/06  
12  
ICSSSTUBF32866A  
Advance Information  
2. Device standard (cont'd)  
RST  
DCS  
CSR  
n
n + 1  
n + 2  
n + 3  
n + 4  
CK  
CK  
t
t
t
h
su  
act  
D1•D14  
t
, t  
pdm pdmss  
CK to Q  
Q1•Q14  
PAR_IN  
t
t
su  
h
t
pd  
CK to PPO  
PPO  
t
t
, t  
PHL PLH  
PHL  
CK to QERR  
QERR#  
(not used)  
CK to QERR  
Data to QERR#  
Latency  
H, L, or X  
H or L  
Figure 12 — Timing diagram for the first SSTU32866 (1:2 register-A configuration) device used in  
pair; C0=0, C1=1; RST switches from L to H  
After RST is switched from low to high, all data and PAIR_IN inputs signals must be set and held low for a minimum time of t  
max, to avoid false error  
ACT  
If the data is clocked in on the n clock pulse, the QERR output signal will be generated on the n+1 clock pulse, and it will be valid on  
the n+2 clock pulse.  
1240—07/17/06  
13  
ICSSSTUBF32866A  
Advance Information  
2. Device standard (cont'd)  
RST  
DCS  
CSR  
n
n + 1  
n + 2  
n + 3  
n + 4  
CK  
CK  
t
t
su  
h
D1•D14  
t
, t  
pdm pdmss  
CK to Q  
Q1•Q14  
PAR_IN  
t
t
su  
h
t
pd  
CK to PPO  
PPO  
t
or t  
PLH  
PHL  
CK to QERR  
Data to PPO  
Latency  
QERR  
(not used)  
Data to QERR  
Latency  
Output signal is dependent on  
the prior unknown input event  
Unknown input  
event  
H or L  
Figure 13 — Timing diagram for the first SSTU32866 (1:2 register-A configuration) device used in  
pair; C0=0, C1=1; RST being held high  
If the data is clocked in on the clock pulse, the QERR output signal will be generated on the n+1 clock pulse, and it will be valid on  
the n+2 clock pulse. If an error occurs and the QERR output is driven low, it stays latched low for a minimum of two clock cycles or  
until RST is driven low.  
1240—07/17/06  
14  
ICSSSTUBF32866A  
Advance Information  
2. Device standard (cont'd)  
RST#  
t
inact  
DCS#  
CSR#  
CK  
CK#  
D1•D14  
t
RPHL  
RST# to Q  
Q1•Q14  
PAR_IN  
t
RPHL  
RST# to PPO  
PPO  
QERR#  
(not used)  
t
RPLH  
RST# to QERR#  
H, L, or X  
H or L  
Figure 14 — Timing diagram for the first SSTU32866 (1:2 register-A configuration) device used in  
pair; C0=0, C1=1; RST# switches from H to L  
RST# is switched from high to low, all data and clock inputs signals must be held at valid logic levels (not floating) for a  
After  
minimum time of tIN ACT max  
1240—07/17/06  
15  
ICSSSTUBF32866A  
Advance Information  
2. Device standard (cont'd)  
RST#  
DCS#  
CSR#  
n
n + 1  
n + 2  
n + 3  
n + 4  
CK  
CK#  
t
t
t
h
su  
act  
D1•D14  
Q1•Q14  
t
, t  
pdm pdmss  
CK to Q  
t
t
su  
h
†‡  
PAR_IN  
t
pd  
CK to PPO  
PPO  
(not used)  
t
t
, t  
PHL PLH  
PHL  
CK to QERR#  
CK to QERR#  
§
QERR#  
Data to QERR# Latency  
H, L, or X  
H or L  
Figure 15 — Timing diagram for the second SSTU32866 (1:2 register-B configuration) device used in  
pair; C0=1, C1=1; RST# switches from L to H  
After RST# switched from low to high, all data and PAR_IN inputs signals must be set and held low for a minimum time of t  
max, to avoid false error.  
ACT  
§
PAR_IN is driven from PPO of the first SSTU32866 device.  
If the data is clocked in on the n clock pulse, the QERR# output signal will be generated on the n+2 clock pulse, and it will be valid on  
the n+3 clock pulse.  
1240—07/17/06  
16  
ICSSSTUBF32866A  
Advance Information  
2. Device standard (cont'd)  
RST#  
DCS#  
CSR#  
n
n + 1  
n + 2  
n + 3  
n + 4  
CK  
CK#  
t
t
su  
h
D1•D14  
t
, t  
pdm pdmss  
CK to Q  
Q1•Q14  
PAR_IN  
t
t
su  
h
t
pd  
CK to PPO  
PPO  
t
or t  
PLH  
PHL  
CK to QERR#  
Data to PPO  
Latency  
QERR#  
(not used)  
Data to QERR#  
Latency  
Output signal is dependent on  
the prior unknown input event  
Unknown input  
event  
H or L  
Figure 16 — Timing diagram for the second SSTU32866 (1:2 register-B cofiguration) device used in  
pair; C0=1, C1=1; RST# being held high  
PAR_IN is driven from PPO of the first SSTU32866 device  
If the data is clocked in on the n clock pulse, the QERR# output signal will be generated on the n+2 clock pulse, and it will be valid on  
the n+3 clock pulse. If an erro occurs and the QERR# output is driven low, it stays latched low for a minimum of two clock cycles or  
until RST# is driven low.  
1240—07/17/06  
17  
ICSSSTUBF32866A  
Advance Information  
2. Device standard (cont'd)  
RST#  
t
inact  
DCS#  
CSR#  
CK  
CK#  
D1•D14  
Q1•Q14  
PAR_IN  
t
RPHL  
RST# to Q  
t
RPHL  
RST# to PPO  
PPO  
(not used)  
QERR#  
t
RPLH  
RST# to QERR#  
H, L, or X  
H or L  
Figure 17 — Timing diagram for the second SSTU32866 (1:2 register-B configuration) device used in  
pair; C0=1, C1=1; RST# switches from H to L  
After RST# is switched from high to low, all data and clock input signals must be held at valid logic levels (not floating) for a  
munimum time of tINACT max.  
1240—07/17/06  
18  
ICSSSTUBF32866A  
Advance Information  
* Register Configurations  
DATA INPUT:  
DATA OUTPUT:  
CO  
CI  
D2, D3, D5, D6, D2, D3, D5, D6,  
D8 - D25 D8 - D25  
0
0
D2, D3, D5, D6, D2, D3, D5, D6,  
0
1
1
1
D8 - D14  
D8 - D14  
D1 - D6, D8 -  
D1 - D6, D8 -  
D10, D12, D13  
D10, D12, D13  
1240—07/17/06  
19  
ICSSSTUBF32866A  
Advance Information  
Absolute Maximum Ratings  
Notes:  
Storage Temperature . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 2.5V  
Input Voltage1,2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to +2.5V  
Output Voltage1,2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to VDD + 0.5V  
Input Clamp Current . . . . . . . . . . . . . . . . . . . . 50 mA  
Output Clamp Current . . . . . . . . . . . . . . . . . . . 50mA  
Continuous Output Current. . . . . . . . . . . . . . . 50mA  
VDD or GND Current/Pin . . . . . . . . . . . . . . . . 100mA  
1. The input and output negative voltage  
ratings may be excluded if the input  
andoutputclampratingsareobserved.  
2. This value is limited to 2.5V maximum.  
3. The package thermal impedance is  
calculated in accordance with  
JESD 51.  
Package Thermal Impedance3 . . . . . . . . . . . . . . . 36°C  
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These  
ratings are stress specifications only and functional operation of the device at these or any other conditions above those  
listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions  
for extended periods may affect product reliability.  
Recommended Operating Conditions  
DESCRIPTION  
PARAMETER  
VDDQ  
VREF  
VTT  
MIN  
1.7  
TYP  
1.8  
MAX  
1.9  
UNITS  
I/O Supply Voltage  
Reference Voltage  
0.49 x VDD 0.5 x VDD  
0.51 x VDD  
VREF + 0.04  
VDDQ  
Termination Voltage  
VREF - 0.04  
0
VREF  
VI  
Input Voltage  
VIH (DC)  
VIH (AC)  
VIL (DC)  
VIL (AC)  
VIH  
DC Input High Voltage  
AC Input High Voltage  
DC Input Low Voltage  
AC Input Low Voltage  
Input High Voltage Level  
Input Low Voltage Level  
Common mode Input Range  
Differential Input Voltage  
High-Level Output Current  
Low-Level Output Current  
VREF + 0.125  
VREF + 0.250  
Data Inputs  
V
VREF - 0.125  
VREF - 0.250  
0.65 x VDDQ  
RST#  
VIL  
0.35 x VDDQ  
1.125  
VICR  
0.675  
0.600  
CK, CK#  
VID  
IOH  
-8  
8
mA  
°C  
IOL  
Operating Free-Air Temperature  
TA  
0
70  
1Guaranteed by design, not 100% tested in production.  
Note: Rst# and Cn inputs must be helf at valid logic levels (not floating) to ensure proper device operation. The  
differential inputs must not be floating unless Rst# is low.  
1240—07/17/06  
20  
ICSSSTUBF32866A  
Advance Information  
Electrical Characteristics - DC  
TA = 0 - 70°C; VDD = 1.8 +/-0.1V (unless otherwise stated)  
CONDITIONS  
SYMBOL  
PARAMETERS  
VDD  
MIN  
1.2  
-5  
TYP MAX  
-1.2  
UNITS  
V
VIK  
VOH  
VOL  
II  
II = -18mA  
IOH = -6mA  
IOL = 6mA  
1.7V  
1.7V  
1.9V  
0.5  
5
100  
All Inputs  
Standby (Static)  
VI = VDD or GND  
RESET# = GND  
VI = VIH(AC) or VIL(AC)  
RESET# = VDD  
µA  
µA  
IDD  
,
1.9V  
1.8V  
Operating (Static)  
mA  
40  
RESET# = VDD  
,
Dynamic operating  
(clock only)  
µ/clock  
MHz  
VI = VIH(AC) or VIL(AC)  
,
39  
CLK and CLK# switching  
50% duty cycle.  
IO = 0  
RESET# = VDD  
,
Dynamic Operating  
(per each data input)  
1:1 mode  
IDDD  
VI = VIH(AC) or VIL (AC)  
,
19  
35  
CLK and CLK# switching  
50% duty cycle. One data  
input switching at half  
clock frequency, 50%  
duty cycle  
µA/ clock  
MHz/data  
Dynamic Operating  
(per each data input)  
1:2 mode  
Data Inputs  
CLK and CLK#  
RESET#  
VI = VREF 350mV  
2.5  
2
3.5  
3
pF  
Ci  
V
ICR = 1.25V, VI(PP) = 360mV  
VI = VDD or GND  
2.5  
Notes:  
1 - Guaranteed by design, not 100% tested in production.  
Output Buffer Characteristics  
Output edge rates over recommended operating free-air temperature range (See figure 7)  
V
MIN  
1
DD = 1.8V 0.1V  
PARAMETER  
UNIT  
MAX  
dV/dt_r  
4
4
1
V/ns  
V/ns  
V/ns  
dV/dt_f  
1
1
dV/dt_  
1. Difference between dV/dt_r (rising edge rate) and dV/dt_f (falling edge rate)  
1240—07/17/06  
21  
ICSSSTUBF32866A  
Advance Information  
Timing Requirements  
(over recommended operating free-air temperature range, unless otherwise noted)  
V
DD = 1.8V 0.1V  
SYMBOL  
PARAMETERS  
UNITS  
MIN  
MAX  
fclock  
tW  
Clock frequency  
-
410  
MHz  
ns  
Pulse duration, CK, CK HIGH or LOW  
1
-
-
tACT  
Differential inputs active time (See Notes 1 and 2)  
10  
15  
ns  
ns  
tINACT Differential inputs inactive time (See Notes 1 and 3)  
-
DCS# before CK , CK# ,  
CSR# high  
tsu  
tsu  
tsu  
Setup time  
Setup time  
Setup time  
0.55  
0.55  
0.35  
ns  
ns  
ns  
CSR# before CK, CK#,  
DCS# high  
DCS# before CK , CK# ,  
CSR# low  
DODT, DCKE and data before  
tsu  
tsu  
Setup time  
Setup time  
Hold time  
0.35  
0.35  
0.35  
ns  
ns  
ns  
CK , CK#  
PAR_IN before CK , CK#  
DCS#, DODT, DCKE and Q  
after CK , CK#  
tH  
PAR_IN after CK, CK#↓  
0.35  
ns  
Hold time  
1 - Guaranteed by design, not 100% tested in production.  
2 - For data signal input slew rate of 1V/ns.  
3 - For data signal input slew rate of 0.5V/ns and < 1V/ns.  
Notes:  
4 - CLK/CLK# signal input slew rate of 1V/ns.  
Switching Characteristics  
(over recommended operating free-air temperature range, unless otherwise noted)  
Measurement  
Conditions  
Symbol  
Parameter  
MIN  
MAX Units  
fmax  
Max input clock frequency  
410  
MHz  
Propagation delay, single  
bit switching  
Propagation delay  
Low to High propagation  
delay  
tPDM  
tPD  
CKto CK#QN  
1.1  
0.5  
1.2  
1.5  
1.7  
3
ns  
ns  
ns  
CKto CK#to PPO  
tLH  
CK to CK# to QERR#  
↑ ↓  
High to low propagation  
delay  
Propagation delay  
simultaneous switching  
High to low propagation  
delay  
High to low propagation  
delay  
Low to High propagation  
delay  
tHL  
tPDMSS  
tPHL  
CKto CK#to QERR#  
CKto CK#QN  
Rst# to QN↓  
1
-
2.4  
1.6  
3
ns  
ns  
ns  
ns  
ns  
tPHL  
Rst# to PPO↓  
3
tPLH  
Rst# to QERR#↑  
3
2. Guaranteed by design, not 100% tested in production.  
1240—07/17/06  
22  
ICSSSTUBF32866A  
Advance Information  
VDD  
DUT  
RL = 1000Ω  
TL=350ps, 50Ω  
TL=50Ω  
CK#  
CK  
Out  
Test Point  
CK Inputs  
CL = 30 pF  
(see Note 1)  
RL = 1000•  
Test Point  
RL = 100•  
LOAD CIRCUIT  
Test Point  
VCMOS  
RST#  
Input  
VDD  
0 V  
tact  
90%  
VID  
VDD/2  
VDD/2  
CK  
CK  
VICR  
VICR  
tinact  
tPLH  
tPHL  
IDD  
(see  
Note 2)  
10%  
VOH  
VOL  
Output  
VTT  
VTT  
VOLTAGE AND CURRENT WAVEFORMS  
INPUTS ACTIVE AND INACTIVE TIMES  
VOLTAGE WAVEFORMS – PROPAGATION DELA TIMES  
VID  
tw  
Input  
VICR  
VICR  
VOLTAGE WAVEFORMS – PULSE DURATION  
VID  
LVCMOS  
RST#  
Input  
VIH  
VIL  
VDD/2  
CK  
VICR  
tRPHL  
CK  
VOH  
VOL  
th  
tsu  
Output  
VTT  
VIH  
VIL  
Input  
VREF  
VREF  
VOLTAGE WAVEFORMS – PROPAGATION DELA TIMES  
VOLTAGE WAVEFORMS – SETUP AND HOLD TIMES  
Figure 6Parameter Measurement Information (V = 1.8 V 0.1 V)  
DD  
Notes: 1. CL incluces probe and jig capacitance.  
2. IDD tested with clock and data inputs held at VDD or GND, and Io = 0mA.  
3. All input pulses are supplied by generators having the following chareacteristics: PRR 10 MHz,  
Zo=50, input slew rate = 1 V/ns 20% (unless otherwise specified).  
4. The outputs are measured one at a time with one transition per measurement.  
5. VREF = VDD/2  
6. VIH = VREF + 250 mV (ac voltage levels) for differential inputs. VIH = VDD for LVCMOS input.  
7. VIL = VREF - 250 mV (ac voltage levels) for differential inputs. VIL = GND for LVCMOS input.  
8. VID = 600 mV  
9. tPLH and tPHL are the same as tPDM  
.
1240—07/17/06  
23  
ICSSSTUBF32866A  
Advance Information  
VDD  
DUT  
RL = 50  
Test Point  
Out  
CL = 10 pF  
(see Note 1)  
LOAD CIRCUIT – HIGH-TO-LOW SLEW-RATE MEASUREMENT  
Output  
VOH  
80%  
20%  
dt_f  
VOL  
dv_f  
VOLTAGE WAVEFORMS – HIGH-TO-LOW SLEW-RATE MEASUREMENT  
DUT  
Out  
Test Point  
CL = 10 pF  
(see Note 1)  
RL = 50Ω  
LOAD CIRCUIT – LOW-TO-HIGH SLEW-RATE MEASUREMENT  
dt_r  
dv_r  
VOH  
80%  
20%  
Output  
VOL  
VOLTAGE WAVEFORMS – LOW-TO-HIGH SLEW-RATE MEASUREMENT  
(VDD = 1.8 V 0.1 V)  
Figure 7 - Output Slew - Rate Measurement Information  
Notes: 1. CL includes probe and jig capacitance.  
2. All input pulses are supplied by generators having the following characteristics: PRR 10MHz, ZO  
50, input slew rate = 1 V/ns 20% (unless otherwise specified).  
=
1240—07/17/06  
24  
ICSSSTUBF32866A  
Advance Information  
3 Test circuits and switching waveforms (cont’d)  
3.3 Error output load circuit and voltage measurement information (V = 1.8 V 0.1 V)  
DD  
All input pulses are supplied by generators having the following characteristics: PRR 10 MHz;  
Z = 50 ; input slew rate = 1 V/ns 20%, unless otherwise specified.  
o
V
DD  
DUT  
R
= 1K  
L
Out  
Test Point  
C
= 10 pF  
L
(see Note 1)  
LOAD CIRCUIT – HIGH-TO-LOW SLEW-RATE MEASUREMENT  
(1) C includes probe and jig capacitance.  
L
Figure 28 — Load circuit, error output measurements  
LVCMOS  
RST#  
V
CC  
V
/2  
CC  
Input  
0 V  
V
t
PLH  
OH  
Output  
Waveform 2  
0.15 V  
_ _ _ _ _ _ _ _ _ _ _  
0 V  
Voltage waveforms, open-drain output low-to-high transition time with respect to reset input  
Figure 29 —  
V
I
(PP)  
Timing  
Inputs  
V
V
ICR  
ICR  
t
PHL  
_ _ _ _ _ _ _ _ _ _ _  
V
Output  
Waveform 1  
V
CC  
OL  
/2  
CC  
V
Figure 30  
Voltage waveforms, open-drain output high-to-low transition time with respect to clock inputs  
V
I
(PP)  
Timing  
Inputs  
V
ICR  
V
ICR  
t
PHL  
V
0
OH  
V
Output  
Waveform 2  
0.15 V  
Figure 31  
Voltage waveforms, open-drain output low-to-high transition time with respect to clock inputs  
1240—07/17/06  
25  
ICSSSTUBF32866A  
Advance Information  
Test circuits and switching waveforms (cont’d)  
3.4 Partial-parity-out load circuit and voltage measurement information (V = 1.8 V ± 0.1 V)  
DD  
All input pulses are supplied by generators having the following characteristics: PRR 10 MHz;  
Z = 50 input slew rate = 1 V/ns ± 20%, unless otherwise specified.  
o
DUT  
Out  
Test Point  
5 pF  
C
=
L
R
L
=
1 kΩ  
(see Note A)  
(1) CL includes probe and jig capacitance.  
Figure 32 — Partial-parity-out load circuit,  
CK  
V
V
V
ICR  
i(p-p)  
V
ICR  
CK  
t
t
PHL  
PLH  
OH  
V
OUTPUT  
TT  
V
OL  
002aaa375  
VTT = VDD /2  
PLH an tPHL are the same as tPD  
t
.
V
I(PP) = 600 mV  
Figure 33 — Partial-parity-out voltage waveforms; propagation delay times with respect to clock inputs  
LVCMOS RST#  
V
IH  
INPUT  
V
/2  
DD  
V
V
V
IL  
t
PHL  
OH  
OL  
OUTPUT  
V
TT  
002aaa376  
VTT = VDD /2  
t
PLH an tPHL are the same as tPD  
.
VIH = VREF + 250 mV (AC voltage levels for differential inputs. VIH = VDD for LVCMOS inputs.  
V
IL = VREF - 250 mV (AC voltage levels) for differential inputs. VIL = VDD for LVCMOS inputs.  
Figure 34 — Partial-parity-out voltage waveforms; propagation delay times with respect to reset input  
1240—07/17/06  
26  
ICSSSTUBF32866A  
Advance Information  
C
Seating  
Plane  
Numeric Designations  
for Horizontal Grid  
A1  
b
REF  
T
3 2 1  
4
A
B
C
D
Alpha Designations  
for Vertical Grid  
(Letters I, O, Q & S  
not used)  
D
d TYP  
D1  
- e - TYP  
TOP VIEW  
E
c
REF  
TYP  
- e -  
h
TYP  
E1  
0.12  
C
ALL DIMENSIONS IN MILLIMETERS  
----- BALL GRID -----  
Max.  
REF. DIMENSIONS  
D
E
T
e
HORIZ  
VERT  
TOTAL  
d
h
b
c
Min/Max  
Min/Max  
Min/Max  
13.50 Bsc  
11.50 Bsc  
5.50 Bsc  
5.00 Bsc  
1.20/1.40  
1.00/1.20  
0.80 Bsc  
0.65 Bsc  
6
6
16  
16  
96  
96  
0.40/0.50  
0.35/0.45  
0.25/0.41  
0.25/0.35  
0.75  
0.875  
0.75  
0.875  
Note: Ball grid total indicates maximum ball count for package. Lesser quantity may be used.  
* Source Ref.: JEDEC Publication 95, MO-205  
10-0055C  
Ordering Information  
ICSSSTUBF32866Az(LF)T  
Example:  
ICS XXXX y z (LF) T  
Designation for tape and reel packaging  
Lead Free, RoHS Compliant (Optional)  
Package Type  
H = LFBGA (standard size: 5.5 x 13.50)  
HM = TFBGA (reduced size: 5.0 x 11.50)  
Revision Designator (will not correlate with datasheet revision)  
Device Type  
Prefix  
ICS = Standard Device  
1240—07/17/06  
27  
ICSSSTUBF32866A  
Advance Information  
Revision History  
Rev.  
Issue Date Description  
6/29/2006 Initial Release  
Page #  
0.1  
-
1240—07/17/06  
28  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY