7007S20GG [IDT]

HIGH-SPEED 32K x 8 DUAL-PORT STATIC RAM;
7007S20GG
型号: 7007S20GG
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

HIGH-SPEED 32K x 8 DUAL-PORT STATIC RAM

静态存储器 内存集成电路
文件: 总22页 (文件大小:356K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED  
IDT7007S/L  
32K x 8 DUAL-PORT  
STATIC RAM  
Features  
IDT7007 easily expands data bus width to 16 bits or  
more using the Master/Slave select when cascading  
more than one device  
M/S = H for BUSY output flag on Master,  
M/S = L for BUSY input on Slave  
Interrupt Flag  
On-chip port arbitration logic  
Full on-chip hardware support of semaphore signaling  
between ports  
Fully asynchronous operation from either port  
TTL-compatible, single 5V (±10%) power supply  
Available in 68-pin PGA and PLCC and a 80-pin TQFP  
Industrial temperature range (–40°C to +85°C) is available  
for selected speeds  
True Dual-Ported memory cells which allow simulta-  
neous reads of the same memory location  
High-speed access  
– Military:25/35/55ns(max.)  
– Industrial:20/25/35/55ns(max.)  
– Commercial:15/20/25/35/55ns(max.)  
Low-power operation  
– IDT7007S  
Active:850mW(typ.)  
Standby: 5mW (typ.)  
– IDT7007L  
Active: 850mW (typ.)  
Standby: 1mW (typ.)  
Green parts available, see ordering information  
FunctionalBlockDiagram  
OER  
OEL  
CEL  
CER  
R/WR  
R/W  
L
I/O0L- I/O7L  
I/O0R-I/O7R  
I/O  
I/O  
Control  
Control  
(1,2)  
BUSY (1,2)  
L
BUSY  
R
A
14R  
0R  
A
14L  
Address  
Decoder  
MEMORY  
ARRAY  
Address  
Decoder  
A
0L  
A
15  
15  
ARBITRATION  
INTERRUPT  
SEMAPHORE  
LOGIC  
CE  
L
L
CE  
OE  
R/W  
R
OE  
R
R
R/W  
L
SEM  
R
SEM (2)  
L
M/S  
(2)  
INT  
R
INT  
L
2940 drw 01  
NOTES:  
1. (MASTER): BUSY is output; (SLAVE): BUSY is input.  
2. BUSY and INT outputs are non-tri-stated push-pull.  
AUGUST2014  
1
©2014 Integrated Device Technology, Inc.  
DSC 2940/14  
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Description  
The IDT7007 is a high-speed 32K x 8 Dual-Port Static RAM. The power down feature controlled by CE permits the on-chip circuitry of  
IDT7007isdesignedtobeusedasastand-alone256K-bitDual-PortRAM each port to enter a very LOW standby power mode.  
or as a combination MASTER/SLAVE Dual-Port RAM for 16-bit-or-  
more word systems. Using the IDT MASTER/SLAVE Dual-Port these devices typically operate on only 850mW of power.  
RAM approach in 16-bit or wider memory system applications The IDT7007 is packaged in a 68-pin pin PGA, a 68-pin PLCC,  
results in full-speed, error-free operation without the need for addi- and an 80-pin thin quad flatpack, TQFP. Military grade product is  
tional discrete logic. manufacturedincompliancewiththelatestrevisionofMIL-PRF-38535  
Fabricated using IDT’s CMOS high-performance technology,  
This device provides two independent ports with separate con- QML,ClassB,makingitideallysuitedtomilitarytemperatureapplications  
trol, address, and I/O pins that permit independent, asynchronous demandingthehighestlevelofperformanceandreliability.  
access for reads or writes to any location in memory. An automatic  
PinConfigurations(1,2,3)  
NOTES:  
1. All Vcc pins must be connected to power supply.  
2. All GND pins must be connected to ground.  
3. Package body is approximately .95 in x .95 in x .17 in.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part marking.  
2
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Pin Configurations(1,2,3) (con't.)  
NOTES:  
1. All Vcc pins must be connected to power supply.  
2. All GND pins must be connected to ground.  
3. Package body is approximately 14mm x 14mm x 1.4mm.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part marking.  
3
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Pin Configurations(1,2,3) (con't.)  
NOTES:  
1. All Vcc pins must be connected to power supply  
2. All GND pins must be connected to ground.  
3. Package body is approximately 1.8 in x 1.8 in x .16 in.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part marking.  
PinNames  
Left Port  
Right Port  
Names  
Chip Enables  
CE  
R/W  
OE  
L
CE  
R/W  
OE  
R
L
R
Read/Write Enable  
Output Enable  
Address  
L
R
A
0L - A14L  
I/O0L - I/O7L  
SEM  
INT  
BUSY  
A
0R - A14R  
I/O0R - I/O7R  
SEM  
INT  
BUSY  
M/S  
Data Input/Output  
Semaphore Enable  
Interrupt Flag  
Busy Flag  
L
R
L
R
L
R
Master or Slave Select  
Power  
V
CC  
GND  
Ground  
2940 tbl 01  
4
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Truth Table I: Non-Contention Read/Write Control  
Inputs(1 )  
R/W  
Outputs  
I/O0-7  
Mode  
CE  
H
L
OE  
X
SEM  
H
X
L
High-Z  
DATAIN  
Deselected: Power-Down  
Write to Memory  
X
H
L
H
X
L
H
DATAOUT Read Memory  
High-Z Outputs Disabled  
X
H
X
2940 tbl 02  
NOTE:  
1. A0L — A14L A0R — A14R  
Truth Table II: Semaphore Read/Write Control(1)  
Inputs  
Outputs  
R/W  
I/O0-7  
Mode  
-I/O  
CE  
OE  
SEM  
H
H
L
L
DATAOUT  
Read Semaphore Flag Data Out (I/O  
0
7)  
H
L
X
X
L
L
DATAIN  
Write I/O  
0 into Semaphore Flag  
______  
X
Not Allowed  
2940 tbl 03  
NOTE:  
1. There are eight semaphore flags written to via I/O0 and read from all I/O's. These eight semaphores are addressed by A0 - A2.  
AbsoluteMaximumRatings(1)  
MaximumOperatingTemperature  
andSupplyVoltage(1)  
Symbol  
Rating  
Commercial  
& Industrial  
Military  
Unit  
Ambient  
(2)  
Grade  
Temperature  
-55OC to+125OC  
0OC to +70OC  
-40OC to +85OC  
GND  
0V  
Vcc  
V
TERM  
Terminal Voltage  
with Respect  
to GND  
-0.5 to +7.0  
-0.5 to +7.0  
V
Military  
5.0V  
5.0V  
5.0V  
+
+
+
10%  
10%  
10%  
Te mp e rature  
Under Bias  
-55 to +125  
-65 to +150  
50  
-65 to +135  
-65 to +150  
50  
oC  
oC  
Commercial  
Industrial  
0V  
T
BIAS  
0V  
Storage  
Te mp e rature  
TSTG  
2940 tbl 05  
NOTES:  
1. This is the parameter TA. This is the "instant on" case temperature.  
IOUT  
DC Output  
Current  
mA  
2940 tbl 04  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM  
RATINGS  
RecommendedDCOperating  
Conditions  
may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those  
indicated in the operational sec-tions of this specification is not implied. Exposure  
to absolute maxi-mum rating conditions for extended periods may affect  
reliability.  
Symbol  
Parameter  
Min.  
Typ.  
Max. Unit  
V
CC  
Supply Voltage  
4.5  
5.0  
5.5  
0
V
V
V
2. VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10ns  
maximum, and is limited to < 20mA for the period of VTERM > Vcc + 10%.  
GND  
Ground  
0
0
V
IH  
IL  
Input High Voltage  
Input Low Voltage  
2.2  
6.0(2)  
0.8  
____  
Capacitance(TA = +25°C, f = 1.0Mhz)  
-0.5(1)  
V
____  
V
Symbol  
Parameter(1)  
Input Capacitance  
Output Capacitance  
Conditions(2)  
Max.  
Unit  
2940 tbl 06  
NOTES:  
CIN  
V
IN = 3dV  
9
pF  
1. VIL > -1.5V for pulse width less than 10ns.  
2. VTERM must not exceed Vcc + 10%.  
COUT  
V
OUT = 3dV  
10  
pF  
2940 tbl 07  
NOTES:  
1. This parameter is determined by device characterization but is not production  
tested. TQFP package only.  
2. 3dV represents the interpolated capacitance when the input and output signals  
switch from 0V to 3V or from 3V to 0V.  
5
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VCC = 5.0V ± 10%)  
7007S  
7007L  
Symbol  
|ILI  
|ILO  
Parameter  
Input Leakage Current(1)  
Output Leakage Current  
Output Low Voltage  
Test Conditions  
Min.  
Max.  
10  
Min.  
Max.  
Unit  
µA  
µA  
V
___  
___  
|
V
CC = 5.5V, VIN = 0V to VCC  
5
5
___  
___  
___  
___  
|
10  
CE = VIH, VOUT = 0V to VCC  
OL = 4mA  
OH = -4mA  
V
OL  
OH  
I
0.4  
0.4  
___  
___  
V
Output High Voltage  
I
2.4  
2.4  
V
2940 tbl 08  
NOTE:  
1. At Vcc < 2.0V, input leakages are undefined.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1) (VCC = 5.0V ± 10%)  
7007X15  
7007X20  
Com'l & Ind  
7007X25  
Com'l, Ind  
& Military  
Com'l Only  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
ICC  
Dynamic Operating  
Current  
(Both Ports Active)  
S
L
190  
190  
325  
285  
180  
180  
315  
275  
170  
170  
305  
265  
mA  
CE = VIL, Outputs Disabled  
SEM = VIH  
(3)  
f = fMAX  
___  
___  
___  
___  
___  
___  
MIL &  
IND  
S
L
170  
170  
345  
305  
180  
315  
I
SB1  
Standby Current  
(Both Ports - TTL Level  
Inputs)  
COM'L  
S
L
35  
35  
85  
60  
30  
30  
85  
60  
25  
25  
85  
60  
mA  
mA  
CE  
SEM  
f = fMAX  
L
= CE  
R
= VIH  
= VIH  
R
= SEM  
L
(3)  
___  
___  
___  
___  
___  
___  
MIL &  
IND  
S
L
25  
25  
100  
80  
30  
80  
(5)  
ISB2  
Standby Current  
(One Port - TTL Level  
Inputs)  
COM'L  
S
L
125  
125  
220  
190  
115  
115  
210  
180  
105  
105  
200  
170  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
(3)  
f=fMAX  
___  
___  
___  
___  
___  
___  
MIL &  
IND  
S
L
105  
105  
230  
200  
SEMR = SEML = VIH  
115  
210  
I
SB3  
Full Standby Current  
(Both Ports - All CMOS  
Level Inputs)  
Both Ports CE  
CE > VCC - 0.2V  
IN > VCC - 0.2V or  
VIN < 0.2V, f = 0(4)  
SEM = SEM > VCC - 0.2V  
L
and  
COM'L  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
mA  
mA  
R
V
___  
___  
___  
___  
___  
___  
MIL &  
IND  
S
L
1.0  
0.2  
30  
10  
0.2  
10  
R
L
ISB4  
Full Standby Current  
(One Port - All CMOS  
Level Inputs)  
COM'L  
S
L
120  
120  
190  
160  
110  
110  
185  
160  
100  
100  
175  
160  
CE"A" < 0.2V and  
CE"B" > VCC - 0.2V(5)  
SEMR = SEML > VCC - 0.2V  
___  
___  
___  
___  
___  
___  
MIL &  
IND  
S
L
100  
100  
200  
175  
V
IN > VCC - 0.2V or VIN < 0.2V  
110  
185  
Active Port Outputs Disabled  
(3)  
f = fMAX  
2940 tbl 09  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L)  
2. VCC = 5V, TA = +25°C, and are not production tested. ICCDC = 120mA (Typ.)  
3. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tRC, and using “AC Test Conditions” of input  
levels of GND to 3V.  
4. f = 0 means no address or control lines change.  
5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
6
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1) (con't.) (VCC = 5.0V ± 10%)  
7007X35  
Com'l, Ind  
& Military  
7007X55  
Com'l, Ind  
& Military  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
ICC  
Dynamic Operating Current  
(Both Ports Active)  
S
L
160  
160  
295  
255  
150  
150  
270  
230  
mA  
CE = VIL, Outputs Disabled  
SEM = VIH  
(3)  
f = fMAX  
MIL &  
IND  
S
L
160  
160  
335  
295  
150  
150  
310  
270  
I
SB1  
Standby Current  
(Both Ports - TTL Level  
Inputs)  
COM'L  
S
L
20  
20  
85  
60  
20  
20  
85  
60  
mA  
mA  
CE  
SEM  
f = fMAX  
L
= CE  
R
= VIH  
= VIH  
R
= SEM  
L
(3)  
MIL &  
IND  
S
L
20  
20  
100  
80  
13  
13  
100  
80  
(5)  
ISB2  
Standby Current  
(One Port - TTL Level Inputs)  
COM'L  
S
L
95  
95  
185  
155  
85  
85  
165  
135  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
(3)  
f=fMAX  
MIL &  
IND  
S
L
95  
95  
215  
185  
85  
85  
195  
165  
SEM  
R
= SEM  
L
= VIH  
I
SB3  
Full Standby Current (Both  
Ports - All CMOS Level  
Inputs)  
Both Ports CE  
CE  
IN > VCC - 0.2V or  
VIN < 0.2V, f = 0(4)  
SEM = SEM > VCC - 0.2V  
L
and  
COM'L  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
mA  
mA  
R
> VCC - 0.2V  
V
MIL &  
IND  
S
L
1.0  
0.2  
30  
10  
1.0  
0.2  
30  
10  
R
L
ISB4  
Full Standby Current  
(One Port - All CMOS Level  
Inputs)  
COM'L  
S
L
90  
90  
160  
135  
80  
80  
135  
110  
CE"A" < 0.2V and  
CE"B" > VCC - 0.2V(5)  
SEMR = SEML > VCC - 0.2V  
MIL &  
IND  
S
L
90  
90  
190  
165  
80  
80  
165  
140  
V
IN > VCC - 0.2V or VIN < 0.2V  
Active Port Outputs Disabled  
(3)  
f = fMAX  
2940 tbl 10  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L)  
2. VCC = 5V, TA = +25°C, and are not production tested. ICCDC = 120mA (Typ.)  
3. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tRC, and using  
“AC Test Conditions” of input levels of GND to 3V.  
4. f = 0 means no address or control lines change.  
5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
7
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
5V  
5V  
AC Test Conditions  
Input Pulse Levels  
GND to 3.0V  
5ns Max.  
1.5V  
893Ω  
893Ω  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
DATAOUT  
BUSY  
INT  
DATAOUT  
30pF  
5pF*  
347Ω  
347Ω  
1.5V  
Figures 1 and 2  
2940 tbl 11  
2940 drw 05  
2940 drw 06  
Figure 1. AC Output Test Load  
Figure 2. Output Test Load  
(for tLZ, tHZ, tWZ, tOW)  
* Including scope and jig.  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(4)  
7007X15  
7007X20  
Com'l & Ind  
7007X25  
Com'l, Ind  
& Military  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
t
RC  
AA  
ACE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
SAA  
Read Cycle Time  
15  
20  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
t
Address Access Time  
15  
15  
20  
20  
25  
25  
Chip Enable Access Time(3)  
Output Enable Access Time  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
____  
____  
____  
____  
____  
____  
t
t
10  
12  
13  
____  
____  
____  
t
3
3
3
____  
____  
____  
t
3
3
3
Output High-Z Time(1,2)  
10  
12  
15  
____  
____  
____  
t
t
Chip Enable to Power Up Time(2)  
Chip Disable to Power Down Time (2)  
0
0
0
____  
____  
____  
____  
____  
____  
t
15  
20  
25  
____  
____  
____  
t
Semaphore Flag Update Pulse (OE or SEM)  
10  
10  
12  
____  
____  
____  
t
Semaphore Address Access Time  
15  
20  
25  
ns  
2940 tbl 12a  
7007X35  
Com'l, Ind  
& Military  
7007X55  
Com'l, Ind  
& Military  
Symbol  
READ CYCLE  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
t
RC  
AA  
ACE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
SAA  
Read Cycle Time  
35  
55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
t
Address Access Time  
35  
35  
55  
55  
Chip Enable Access Time(3)  
Output Enable Access Time  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
____  
____  
____  
____  
t
t
20  
30  
____  
____  
t
3
3
____  
____  
t
3
3
Output High-Z Time(1,2)  
15  
25  
____  
____  
t
t
Chip Enab le to Power Up Time (2)  
Chip Disable to Power Down Time (2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access Time  
0
0
____  
____  
____  
____  
t
35  
50  
____  
____  
t
15  
15  
____  
____  
t
35  
55  
ns  
2940 tbl 12b  
NOTES:  
1. Transition is measured 0mV from Low- or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL.  
4. 'X' in part numbers indicates power rating (S or L).  
8
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of Read Cycles(5)  
tRC  
ADDR  
(4)  
t
t
AA  
(4)  
ACE  
CE  
OE  
(4)  
tAOE  
R/W  
(1)  
tOH  
tLZ  
VALID DATA(4)  
DATAOUT  
(2)  
tHZ  
BUSYOUT  
(3,4)  
2940 drw 07  
tBDD  
NOTES:  
1. Timing depends on which signal is asserted last, OE or CE.  
2. Timing depends on which signal is de-asserted first CE or OE.  
3. tBDD delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY  
has no relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
Timing of Power-Up Power-Down  
CE  
tPU  
tPD  
I
CC  
50%  
50%  
I
SB  
,
2940 drw 08  
9
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage(5)  
7007X15  
7007X20  
Com'l & Ind  
7007X25  
Com'l, Ind  
& Military  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
15  
12  
12  
0
20  
15  
15  
0
25  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
t
t
t
12  
0
15  
0
20  
0
t
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
t
10  
15  
15  
____  
____  
____  
t
10  
12  
15  
____  
____  
____  
t
0
0
0
Write Enable to Output in High-Z(1,2)  
Output Active from End-of-Write(1, 2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
10  
12  
15  
____  
____  
____  
t
____  
____  
____  
t
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
t
t
ns  
2940 tbl 13a  
7007X35  
Com'l, Ind  
& Military  
7007X55  
Com'l, Ind  
& Military  
Symbol  
WRITE CYCLE  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
35  
30  
30  
0
55  
45  
45  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
t
t
t
Write Pulse Width  
25  
0
40  
0
t
Write Recovery Time  
t
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
15  
30  
____  
____  
t
12  
25  
t
Data Hold Time(4)  
0
0
____  
____  
Write Enable to Output in High-Z(1,2)  
Output Active from End-of-Write(1, 2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
12  
25  
____  
____  
t
____  
____  
t
0
5
5
0
5
5
____  
____  
____  
____  
t
t
ns  
2940 tbl 13b  
NOTES:  
1. Transition is measured 0mV from Low- or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time.  
4. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH and tOW values will vary over voltage  
and temperature, the actual tDH will always be smaller than the actual tOW.  
5. 'X' in part numbers indicates power rating (S or L).  
10  
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
tWC  
ADDRESS  
(7)  
t
HZ  
OE  
tAW  
CE or SEM(9)  
(3)  
(2)  
(6)  
t
WP  
t
WR  
tAS  
R/W  
DATAOUT  
DATAIN  
(7)  
t
WZ  
tOW  
(4)  
(4)  
t
DW  
tDH  
2940 drw 09  
Timing Waveform of Write Cycle No. 2, CE Controlled Timing(1,5)  
t
WC  
ADDRESS  
t
AW  
CE or SEM(9)  
(6)  
AS  
(3)  
(2)  
t
WR  
t
tEW  
R/W  
t
DW  
tDH  
DATAIN  
2940 drw 10  
NOTES:  
1. R/W or CE must be HIGH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a LOW CE and a LOW R/W for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH to the end of write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the High-impedance state.  
6. Timing depends on which enable signal is asserted last, CE or R/W.  
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load (Figure  
2).  
8. If OE is LOW during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be  
placed on the bus for the required tDW. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as  
the specified tWP.  
9. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. tEW must be met for either condition.  
11  
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
tSAA  
tOH  
A0-A2  
VALID ADDRESS  
VALID ADDRESS  
tAW  
tWR  
tACE  
t
t
EW  
SEM  
tSOP  
tDW  
DATAOUT  
DATAIN VALID  
DATA  
0
VALID(2)  
t
AS  
WP  
tDH  
R/W  
tSWRD  
tAOE  
OE  
tSOP  
Write Cycle  
Read Cycle  
2940 drw 11  
NOTE:  
1. CE = VIH for the duration of the above timing (both write and read cycle).  
Timing Waveform of Semaphore Write Contention(1,3,4)  
A0"A"-A2"A"  
MATCH  
SIDE(2) "A"  
R/W"A"  
SEM"A"  
tSPS  
A0"B"-A2"B"  
MATCH  
SIDE(2)  
"B"  
R/W"B"  
SEM"B"  
2940 drw 12  
NOTES:  
1. DOR = DOL = VIL, CER = CEL = VIH.  
2. All timing is the same for left and right ports. Port "A" may be either left or right port. "B" is the opposite from port "A".  
3. This parameter is measured from R/WA or SEMA going HIGH to R/WB or SEMB going HIGH.  
4. If tSPS is not satisfied, the semaphore will fall positively to one side or the other, but there is no guarantee which side will obtain the flag.  
12  
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(6)  
7007X15  
7007X20  
Com'l & Ind  
7007X25  
Com'l, Ind  
& Military  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
BUSY TIMING (M/S=VIH  
)
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
15  
15  
15  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable Low  
BUSY Access Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
t
t
t
15  
17  
17  
____  
____  
____  
t
5
5
5
____  
____  
____  
BUSY Disable to Valid Data(3)  
t
18  
30  
30  
(5)  
____  
____  
____  
t
Write Hold After BUSY  
12  
15  
17  
BUSY TIMING (M/S=VIL  
)
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
t
WB  
0
0
0
ns  
ns  
(5)  
tWH  
Write Hold After BUSY  
12  
15  
17  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
____  
____  
t
WDD  
Write Pulse to Data Delay(1)  
30  
25  
45  
30  
50  
35  
ns  
tDDD  
Write Data Valid to Read Data Delay(1)  
ns  
2940 tbl 14a  
7007X35  
Com'l, Ind  
& Military  
7007X55  
Com'l, Ind  
& Military  
Symbol  
BUSY TIMING (M/S=VIH  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
)
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
20  
20  
20  
45  
40  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
t
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable Low  
BUSY Access Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
t
t
20  
35  
____  
____  
t
5
5
____  
____  
BUSY Disable to Valid Data(3)  
t
35  
40  
(5)  
____  
____  
t
Write Hold After BUSY  
25  
25  
BUSY TIMING (M/S=VIL  
)
____  
____  
____  
____  
BUSY Input to Write(4)  
t
WB  
0
0
ns  
ns  
(5)  
tWH  
Write Hold After BUSY  
25  
25  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
t
WDD  
Write Pulse to Data Delay(1)  
60  
45  
80  
65  
ns  
tDDD  
Write Data Valid to Read Data Delay(1)  
ns  
2940 tbl 14b  
NOTES:  
1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read and BUSY (M/S = VIH)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0, tWDD – tWP (actual) or tDDD – tDW (actual).  
4. To ensure that the write cycle is inhibited on port "B" during contention on port "A".  
5. To ensure that a write cycle is completed on port "B" after contention on port "A".  
6. 'X' in part numbers indicates power rating (S or L).  
13  
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Timing Waveform of Write with Port-to-Port Read and BUSY(2,5)  
(M/S = VIH)(4)  
tWC  
MATCH  
ADDR"A"  
t
WP  
R/W"A"  
t
DW  
t
DH  
VALID  
DATAIN "A"  
(1)  
tAPS  
MATCH  
ADDR"B"  
tBDA  
tBDD  
BUSY"B"  
t
WDD  
VALID  
DATAOUT "B"  
(3)  
tDDD  
2940 drw 13  
NOTES:  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S = VIL (SLAVE).  
2. CEL = CER = VIL  
3. OE = VIL for the reading port.  
4. If M/S = VIL (SLAVE), then BUSY is an input (BUSY"A" = VIH and BUSY"B" = "don't care", for this example).  
5. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".  
Timing Waveform of Write with BUSY (M/S = VIL)  
tWP  
R/W"A"  
t
WB  
BUSY"B"  
(1)  
t
WH  
R/W"B"  
(2)  
,
2940 drw 14  
NOTES:  
1. tWH must be met for both BUSY input (SLAVE) and output (MASTER).  
2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.  
14  
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of BUSY Arbitration Controlled by CE Timing(1) (M/S = VIH)  
ADDR"A"  
ADDRESSES MATCH  
and "B"  
CE"A"  
(2)  
tAPS  
CE"B"  
tBAC  
tBDC  
BUSY"B"  
2940 drw 15  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(1) (M/S = VIH)  
ADDR"A"  
ADDR"B"  
BUSY"B"  
ADDRESS "N"  
(2)  
tAPS  
MATCHING ADDRESS "N"  
t
BAA  
tBDA  
2940 drw 16  
NOTES:  
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from port “A”.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(1,2)  
7007X15  
7007X20  
7007X25  
Com'l, Ind  
& Military  
Com'l Only  
Com'l & Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
0
ns  
ns  
ns  
t
0
0
0
____  
____  
____  
t
15  
15  
20  
20  
20  
20  
____  
____  
____  
t
Interrupt Reset Time  
ns  
2940 tbl 15a  
7007X35  
Com'l, Ind  
& Military  
7007X55  
Com'l, Ind  
& Military  
Symbol  
INTERRUPT TIMING  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
ns  
ns  
ns  
t
0
0
____  
____  
t
25  
25  
40  
40  
____  
____  
t
Interrupt Reset Time  
ns  
2940 tbl 15b  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L).  
15  
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing(1)  
tWC  
INTERRUPT SET ADDRESS (2)  
ADDR"A"  
CE"A"  
(4)  
(3)  
tAS  
tWR  
R/W"A"  
INT"B"  
(3)  
tINS  
2940 drw 17  
tRC  
ADDR"B"  
CE"B"  
INTERRUPT CLEAR ADDRESS (2)  
(3)  
tAS  
OE"B"  
(3)  
tINR  
INT"B"  
2940 drw 18  
NOTES:  
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from port “A”.  
2. See Interrupt Truth Table III.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
Truth Table III — Interrupt Flag(1)  
Left Port  
Right Port  
R/W  
L
A
14L-A0L  
7FFF  
X
R/W  
R
A
14R-A0R  
X
Function  
Set Right INT Flag  
Reset Right INT Flag  
Set Left INT Flag  
Reset Left INT Flag  
CE  
L
OE  
L
INT  
L
CE  
R
OE  
R
INTR  
L
X
X
X
L
X
X
L
X
X
X
X
X
L
X
L
X
L
L(2)  
H(3)  
X
R
X
7FFF  
7FFE  
X
R
X
X
L(3)  
H(2)  
L
X
X
L
L
7FFE  
X
X
X
L
2940 tbl 16  
NOTES:  
1. Assumes BUSYL = BUSYR =VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
16  
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Truth Table IV — Address BUSY  
Arbitration  
Inputs  
Outputs  
A
OL-A14L  
(1)  
(1)  
A
OR-A14R  
Function  
Normal  
CE  
L
CE  
R
BUSY  
L
BUSY  
R
X
H
X
L
X
X
H
L
NO MATCH  
MATCH  
H
H
H
H
Normal  
MATCH  
H
H
Normal  
MATCH  
(2)  
(2)  
Write Inhibit(3)  
2940 tbl 17  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSY outputs on the IDT7007 are  
push-pull, not open drain outputs. On slaves the BUSY input internally inhibits writes.  
2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address  
and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs can not be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored  
when BUSYR outputs are driving LOW regardless of actual logic level on the pin.  
Truth Table V — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0  
- D7  
Left  
D0  
- D7  
Right  
Status  
No Action  
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
0
0
1
1
0
1
1
1
0
1
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
2940 tbl 18  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT7007.  
2. There are eight semaphore flags written to via I/O5(I/O0 - I/O7) and read from all I/O0. These eight semaphores are addressed by A0 - A2.  
3. CE = VIH, SEM = VIL to access the semaphores. Refer to the Semaphore Read/Write Control Truth Table.  
FunctionalDescription  
when CER = OER = VIL, R/W is a "don't care". Likewise, the right port  
interruptflag(INTR)isassertedwhentheleftportwritestomemorylocation  
7FFF(HEX)andtocleartheinterruptflag(INTR),therightportmustread  
thememorylocation7FFF. Themessage(8bits)at7FFEor7FFFisuser-  
definedsinceitisanaddressableSRAMlocation.Iftheinterruptfunction  
isnotused,addresslocations7FFEand7FFFarenotusedasmailboxes,  
butaspartoftherandomaccessmemory.RefertoTableIIIfortheinterrupt  
operation.  
TheIDT7007providestwoportswithseparatecontrol,addressand  
I/Opinsthatpermitindependentaccessforreadsorwritestoanylocation  
inmemory.TheIDT7007hasanautomaticpowerdownfeaturecontrolled  
by CE. The CE controls on-chip power down circuitry that permits the  
respectiveporttogointoastandbymodewhennotselected(CEHIGH).  
Whenaportisenabled,accesstotheentirememoryarrayispermitted.  
INTERRUPTS  
Iftheuserchoosestheinterruptfunction,amemorylocation(mailbox  
ormessagecenter)isassignedtoeachport. Theleftportinterruptflag  
(INTL) is asserted when the right port writes to memory location 7FFE  
(HEX), where a write is defined as CE = R/W= VIL per the Truth Table.  
Theleftportclearstheinterruptthroughaccessofaddresslocation7FFE  
BusyLogic  
BusyLogicprovidesahardwareindicationthatbothportsoftheRAM  
haveaccessedthesamelocationatthesametime. Italsoallowsoneof  
thetwoaccessestoproceedandsignalstheothersidethattheRAMis  
17  
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
“busy”. The BUSY pin can then be used to stall the access until the  
operation on the other side is completed. If a write operation has been  
attemptedfromthesidethatreceivesaBUSYindication,thewritesignal  
isgatedinternallytopreventthewritefromproceeding.  
Semaphores  
TheIDT7007isanextremelyfastDual-Port 16Kx8CMOSStaticRAM  
withanadditional8addresslocationsdedicatedtobinarysemaphoreflags.  
TheseflagsalloweitherprocessorontheleftorrightsideoftheDual-Port  
RAMtoclaimaprivilegeovertheotherprocessorforfunctionsdefinedby  
thesystemdesigner’ssoftware.Asanexample,thesemaphorecanbe  
usedbyoneprocessortoinhibittheotherfromaccessingaportionofthe  
Dual-Port RAM or any other shared resource.  
TheuseofBUSYlogicisnotrequiredordesirableforallapplications.  
InsomecasesitmaybeusefultologicallyORtheBUSYoutputstogether  
and use anyBUSYindication as an interrupt source to flag the event of  
anillegalorillogicaloperation.IfthewriteinhibitfunctionofBUSYlogicis  
notdesirable,theBUSYlogiccanbedisabledbyplacingthepartinslave  
modewiththeM/Spin.OnceinslavemodetheBUSYpinoperatessolely  
asawriteinhibitinputpin.Normaloperationcanbeprogrammedbytying  
the BUSY pins HIGH. If desired, unintended write operations  
can be prevented to a port by tying the BUSY pin for that port LOW.  
TheBUSYoutputsontheIDT7007RAMinmastermode,arepush-  
pulltypeoutputsanddonotrequirepullupresistorstooperate. Ifthese  
RAMs are being expanded in depth, then the BUSY indication for the  
resulting array requires the use of an external AND gate.  
The Dual-Port RAM features a fast access time, and both ports are  
completelyindependentofeachother.Thismeansthattheactivityonthe  
leftportinnowayslowstheaccesstimeoftherightport. Bothportsare  
identicalinfunctiontostandardCMOSStaticRAMandcanbereadfrom,  
orwrittento,atthesametimewiththeonlypossibleconflictarisingfromthe  
simultaneous writing of, or a simultaneous READ/WRITE of, a non-  
semaphorelocation.Semaphoresareprotectedagainstsuchambiguous  
situationsandmaybeusedbythesystemprogramtoavoidanyconflicts  
inthenon-semaphoreportionoftheDual-PortRAM.Thesedeviceshave  
anautomaticpower-downfeaturecontrolledbyCE,theDual-PortRAM  
enable,andSEM,thesemaphoreenable.TheCEandSEMpinscontrol  
on-chip power down circuitry that permits the respective port to go into  
standbymodewhennotselected. Thisistheconditionwhichisshownin  
Truth Table I where CE and SEM are both HIGH.  
Width Expansion with Busy Logic  
Master/SlaveArrays  
Systems which can best use the IDT7007 contain multiple proces-  
sors or controllers and are typically very high-speed systems which  
are software controlled or software intensive. These systems can  
benefitfromaperformanceincreaseofferedbytheIDT7007hardware  
semaphores, which provide a lockout mechanism without requiring  
complexprogramming.  
Softwarehandshakingbetweenprocessorsoffersthemaximumin  
systemflexibilitybypermittingsharedresourcestobeallocatedinvarying  
configurations.TheIDT7007doesnotuseitssemaphoreflagstocontrol  
anyresourcesthroughhardware,thusallowingthesystemdesignertotal  
flexibilityinsystemarchitecture.  
CE  
CE  
MASTER  
Dual Port  
RAM  
SLAVE  
Dual Port  
RAM  
BUSY (L) BUSY (R)  
BUSY (R)  
BUSY (L)  
MASTER  
Dual Port  
RAM  
SLAVE  
Dual Port  
RAM  
CE  
CE  
BUSY (R)  
BUSY (L) BUSY (R)  
BUSY (L) BUSY (R)  
BUSY (L)  
2940 drw 19  
An advantage of using semaphores rather than the more common  
methodsofhardwarearbitrationisthatwaitstatesareneverincurredin  
either processor. This can prove to be a major advantage in very high-  
speedsystems.  
Figure 3. Busy and chip enable routing for both width and depth  
expansion with IDT7007 RAMs.  
WhenexpandinganIDT7007RAMarrayinwidthwhileusingBUSY  
logic,onemasterpartisusedtodecidewhichsideoftheRAMsarraywill  
receiveaBUSYindication,andtooutputthatindication.Anynumberof  
slavestobeaddressedinthesameaddressrangeasthemaster,usethe  
How the Semaphore Flags Work  
Thesemaphorelogicisasetofeightlatcheswhichareindependent  
BUSYsignalasawriteinhibitsignal.ThusontheIDT7007RAMtheBUSY oftheDual-PortRAM.Theselatchescanbeusedtopassaflag,ortoken,  
pinisanoutputifthepartisusedasamaster(M/Spin=H),andtheBUSY fromoneporttotheothertoindicatethatasharedresourceisinuse.The  
pin is an input if the part used as a slave (M/S pin = L) as shown in semaphores provide a hardware assist for a use assignment method  
Figure 3.  
Iftwoormoremasterpartswereusedwhenexpandinginwidth,asplit  
calledTokenPassingAllocation.Inthismethod,thestateofasemaphore  
latchisusedasatokenindicatingthatsharedresourceisinuse.Iftheleft  
processorwantstousethisresource,itrequeststhetokenbysettingthe  
latch.Thisprocessorthenverifiesitssuccessinsettingthelatchbyreading  
it. If it was successful, it proceeds to assume control over the shared  
resource.Ifitwasnotsuccessfulinsettingthelatch,itdeterminesthatthe  
rightsideprocessorhassetthelatchfirst,hasthetokenandisusingthe  
sharedresource.Theleftprocessorcantheneitherrepeatedlyrequest  
thatsemaphore’sstatusorremoveitsrequestforthatsemaphoretoperform  
anothertaskandoccasionallyattemptagaintogaincontrolofthetokenvia  
thesetandtestsequence.Oncetherightsidehasrelinquishedthetoken,  
theleftsideshouldsucceedingainingcontrol.  
decisioncouldresultwithonemasterindicatingBUSYononesideofthe  
arrayandanothermasterindicatingBUSYononeothersideofthearray.  
Thiswouldinhibitthewriteoperationsfromoneportforpartofawordand  
inhibitthewriteoperationsfromtheotherportfortheotherpartoftheword.  
TheBUSYarbitration,onamaster,isbasedonthechipenableand  
address signals only. It ignores whether an access is a read or write. In  
a master/slave array, both address and chip enable must be valid long  
enoughforaBUSYflagtobeoutputfromthemasterbeforetheactualwrite  
pulsecanbeinitiatedwiththeR/Wsignal.Failuretoobservethistimingcan  
result in a glitched internal write inhibit signal and corrupted data in the  
slave.  
ThesemaphoreflagsareactiveLOW.Atokenisrequestedbywriting  
18  
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
azerointoasemaphorelatchandisreleasedwhenthesamesidewrites overtotheothersideassoonasaoneiswrittenintothefirstside’srequest  
aonetothatlatch. latch.Thesecondside’sflagwillnowstaylowuntilitssemaphorerequest  
The eight semaphore flags reside within the IDT7007 in a separate latchiswrittentoaone.Fromthisitiseasytounderstandthat,ifasemaphore  
memoryspacefromtheDual-PortRAM.This addressspaceisaccessed is requested and the processor which requested it no longer needs the  
byplacinga LOWinputontheSEMpin(whichactsasachipselectforthe resource, the entire system can hang up until a one is written into that  
semaphore flags) and using the other control pins (Address, OE, and semaphorerequestlatch.  
R/W)astheywouldbeusedinaccessingastandardStaticRAM. Each  
The critical case of semaphore timing is when both sides request a  
oftheflagshasauniqueaddresswhichcanbeaccessedbyeitherside single token by attempting to write a zero into it at the same time. The  
throughaddresspinsA0A2.Whenaccessingthesemaphores,noneof semaphorelogicisspeciallydesignedtoresolvethisproblem.Ifsimulta-  
theotheraddresspinshasanyeffect.  
neousrequestsaremade,thelogicguaranteesthatonlyonesidereceives  
Whenwritingtoasemaphore,onlydatapinD0isused.IfaLOWlevel thetoken. Ifonesideisearlierthantheotherinmakingtherequest, the  
iswrittenintoanunusedsemaphorelocation,thatflagwillbesettoazero firstsidetomaketherequestwillreceivethetoken.Ifbothrequestsarrive  
on that side and a one on the other side (see Truth Table V). That at the same time, the assignment will be arbitrarily made to one port or  
semaphorecannowonlybemodifiedbythesideshowingthezero.When  
aoneiswrittenintothesamelocationfromthesameside,theflagwillbe  
L PORT  
R PORT  
settoaoneforbothsides(unlessasemaphorerequestfromtheotherside  
ispending)andthencanbewrittentobybothsides.Thefactthattheside  
whichisabletowriteazerointoasemaphoresubsequentlylocksoutwrites  
fromtheothersideiswhatmakessemaphoreflagsusefulininterprocessor  
communications.(Athoroughdiscussionontheuseofthisfeaturefollows  
shortly.)Azerowrittenintothesamelocationfromtheothersidewillbe  
storedinthesemaphorerequestlatchforthatsideuntilthesemaphoreis  
freedbythefirstside.  
SEMAPHORE  
REQUEST FLIP FLOP  
SEMAPHORE  
REQUEST FLIP FLOP  
0
0
D
D
D
D
Q
Q
WRITE  
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
READ  
,
2940 drw 20  
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso  
thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining  
azeroreadsasallzeros.Thereadvalueislatchedintooneside’soutput  
registerwhenthatside'ssemaphoreselect(SEM)andoutputenable(OE)  
signalsgoactive.Thisservestodisallowthesemaphorefromchanging  
stateinthemiddleofareadcycleduetoawritecyclefromtheotherside.  
Becauseofthislatch,arepeatedreadofasemaphoreinatestloopmust  
cause either signal (SEM or OE) to go inactive or the output will never  
change.  
AsequenceWRITE/READmustbeusedbythesemaphoreinorder  
to guarantee that no system level contention will occur. A processor  
requestsaccesstosharedresourcesbyattemptingtowriteazerointoa  
semaphorelocation.Ifthesemaphoreisalreadyinuse,thesemaphore  
requestlatchwillcontainazero,yetthesemaphoreflagwillappearasone,  
afactwhichtheprocessorwillverifybythesubsequentread(seeTruth  
TableV).Asanexample,assumeaprocessorwritesazerototheleftport  
atafreesemaphorelocation.Onasubsequentread,theprocessorwill  
verifythatithaswrittensuccessfullytothatlocationandwillassumecontrol  
overtheresourceinquestion.Meanwhile,ifaprocessorontherightside  
attemptstowriteazerotothesamesemaphoreflagitwillfail, aswillbe  
verifiedbythefactthataonewillbereadfromthatsemaphoreontheright  
side during subsequent read. Had a sequence of READ/WRITE been  
usedinstead,systemcontentionproblemscouldhaveoccurredduringthe  
gap between the read and write cycles.  
Figure 4. IDT7007 Semaphore Logic  
theother.  
One caution that should be noted when using semaphores is that  
semaphoresalonedonotguaranteethataccesstoaresourceissecure.  
Aswithanypowerfulprogrammingtechnique,ifsemaphoresaremisused  
or misinterpreted, a software error can easily happen.  
Initializationofthesemaphoresisnotautomaticandmustbehandled  
viatheinitializationprogramatpower-up.Sinceanysemaphorerequest  
flagwhichcontainsazeromustberesettoaone,allsemaphoresonboth  
sidesshouldhaveaonewrittenintothematinitializationfrombothsides  
to assure that they will be free when needed.  
Using Semaphores—Some Examples  
Perhapsthesimplestapplicationofsemaphoresistheirapplicationas  
resourcemarkersfortheIDT7007’sDual-PortRAM. Saythe32Kx8RAM  
wastobedividedintotwo16Kx8blockswhichweretobededicatedat  
anyonetimetoservicingeithertheleftorrightport.Semaphore0could  
be used to indicate the side which would control the lower section of  
memory,andSemaphore1couldbedefinedastheindicatorfortheupper  
sectionofmemory.  
Totakearesource,inthisexamplethelower16KofDual-PortRAM,  
the processor on the left port could write and then read a zero in to  
Semaphore0.Ifthistaskweresuccessfullycompleted(azerowasread  
back rather than a one), the left processor would assume control of the  
lower16K.Meanwhiletherightprocessorwasattemptingtogaincontrol  
ofthe resourceaftertheleftprocessor,itwouldreadbackaoneinresponse  
tothezeroithadattemptedtowriteintoSemaphore0. Atthispoint, the  
softwarecouldchoosetotryandgaincontrolofthesecond16Ksection  
bywriting,thenreadingazerointoSemaphore1.Ifitsucceededingaining  
control,itwouldlockouttheleftside.  
Itisimportanttonotethatafailedsemaphorerequestmustbefollowed  
byeitherrepeatedreadsorbywritingaoneintothesamelocation. The  
reasonforthisiseasilyunderstoodbylookingatthesimplelogicdiagram  
ofthesemaphoreflaginFigure4.Twosemaphorerequestlatchesfeed  
into a semaphore flag. Whichever latch is first to present a zero to the  
semaphoreflagwillforceitssideofthesemaphoreflagLOWandtheother  
sideHIGH.Thisconditionwillcontinueuntilaoneiswrittentothesame  
semaphorerequestlatch.Shouldtheotherside’ssemaphorerequestlatch  
havebeenwrittentoazerointhemeantime,thesemaphoreflagwillflip  
19  
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Once the left side was finished with its task, it would write a one to was“off-limits”totheCPU,boththeCPUandtheI/Odevicescouldaccess  
Semaphore 0 and may then try to gain access to Semaphore 1. If theirassignedportionsofmemorycontinuouslywithoutanywaitstates.  
Semaphore1wasstilloccupiedbytherightside,theleftsidecouldundo  
SemaphoresarealsousefulinapplicationswherenomemoryWAIT”  
itssemaphorerequestandperformothertasksuntilitwasabletowrite,then stateisavailableononeorbothsides.Onceasemaphorehandshakehas  
readazerointoSemaphore1.Iftherightprocessorperformsasimilartask been performed, both processors can access their assigned RAM  
withSemaphore0,thisprotocolwouldallowthetwoprocessorstoswap segmentsatfullspeed.  
16K blocks of Dual-Port RAM with each other.  
Anotherapplicationisintheareaofcomplexdatastructures.Inthis  
The blocks do not have to be any particular size and can even be case,blockarbitrationisveryimportant.Forthisapplicationoneprocessor  
variable, depending upon the complexity of the software using the mayberesponsibleforbuildingandupdatingadatastructure.Theother  
semaphoreflags.AlleightsemaphorescouldbeusedtodividetheDual- processorthenreadsandinterpretsthatdatastructure.Iftheinterpreting  
Port RAM or other shared resources into eight parts. Semaphores can processorreadsanincompletedatastructure,amajorerrorconditionmay  
evenbeassigneddifferentmeaningsondifferentsidesratherthanbeing exist.Therefore,somesortofarbitrationmustbeusedbetweenthetwo  
given a common meaning as was shown in the example above.  
differentprocessors.Thebuildingprocessorarbitratesfortheblock,locks  
Semaphores are a useful form of arbitration in systems like disk itandthenisabletogoinandupdatethedatastructure.Whentheupdate  
interfaceswheretheCPUmustbelockedoutofasectionofmemoryduring is completed, the data structure block is released. This allows the  
atransferandtheI/Odevicecannottolerateanywaitstates.Withtheuse interpretingprocessortocomebackandreadthecompletedatastructure,  
ofsemaphores,oncethetwodeviceshasdeterminedwhichmemoryarea therebyguaranteeingaconsistentdatastructure.  
20  
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
OrderingInformation  
NOTES:  
1. Contact your local sales office for industrial temp. range for other speeds, packages and powers.  
2. Green parts available. For specific speeds, packages and powers contact your local sales office.  
Datasheet Document History  
01/05/99:  
06/03/99:  
05/08/00:  
Initiateddatasheetdocumenthistory  
Convertedtonewformat  
Cosmeticandtypographicalcorrections  
Addedadditionalnotestopinconfigurations  
Changeddrawingforma3/24/00:  
AddedIndustrialTemperatureRangesandremovedrelatednotes  
Replaced IDT logo  
Changed±200mVto0mVinnotes  
Addedcopyrightinfo  
FixedAbsoluteMaximumRatingschart,correctedtypos  
Updateddrawings  
Correctedwaveformdrawing  
Pages 2, 3, 4  
Page 1  
Page 5  
Page 9  
Page 12  
Page 5  
Increasedstoragetemperatureparameter  
ClarifiedTA parameter  
Pages 6, 7  
Page 2 - 4  
Page 6  
DCElectricalparameters–changedworkingfromopentodisabled  
Addeddaterevisionforpinconfigurations  
RemovedstandardpowerofferingforIndustrialtempfor20nsfromDCElectricalCharacteristics  
Addedgreenavailabilitytofeatures  
09/11/01:  
01/31/06:  
Page 1  
Page 21  
Addedgreenindicatortoorderinginformation  
21  
IDT7007S/L  
High-Speed 32K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Datasheet Document History (con't)  
10/21/08:  
08/12/14:  
Page 21  
Page 21  
Removed "IDT" from orderable part number  
Added Tape and Reel to Ordering Information  
Page 2, 3, 4 & 21 The package codes PN80-1, G68-1 & J68-1 changed to PN80, G68 & J68 respectively to  
match standard package codes  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
408-284-2794  
DualPortHelp@idt.com  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
22  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY