7008S15GG [IDT]

Multi-Port SRAM, 64KX8, 15ns, CMOS, CPGA84;
7008S15GG
型号: 7008S15GG
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Multi-Port SRAM, 64KX8, 15ns, CMOS, CPGA84

静态存储器 内存集成电路
文件: 总19页 (文件大小:155K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED  
IDT7008S/L  
64K x 8 DUAL-PORT  
STATIC RAM  
Features  
IDT7008 easily expands data bus width to 16 bits or  
more using the Master/Slave select when cascading more  
than one device  
M/S = VIH for BUSY output flag on Master,  
M/S = VIL for BUSY input on Slave  
Interrupt Flag  
On-chip port arbitration logic  
Full on-chip hardware support of semaphore signaling  
between ports  
Fully asynchronous operation from either port  
TTL-compatible, single 5V (±10%) power supply  
Available in 84-pin PGA, 84-pin PLCC, and a 100-pin TQFP  
Industrial temperature range (–40°C to +85°C) is available  
for selected speeds  
True Dual-Ported memory cells which allow simultaneous  
reads of the same memory location  
High-speed access  
– Commercial:15/20/25/35/55ns(max.)  
Industrial:20/55ns (max.)  
Military:25/35/55ns(max.)  
Low-power operation  
IDT7008S  
Active:750mW(typ.)  
Standby: 5mW (typ.)  
IDT7008L  
Active:750mW(typ.)  
Standby: 1mW (typ.)  
Dual chip enables allow for depth expansion without  
external logic  
Green parts available, see ordering information  
FunctionalBlockDiagram  
L
R/W  
R
R/W  
CE0L  
CE1L  
CE0R  
CE  
1
R
OEL  
OER  
I/O  
Control  
I/O  
Control  
I/O0-7L  
I/O0-7R  
(1,2)  
BUSYL  
(1,2)  
BUSYR  
64Kx8  
MEMORY  
ARRAY  
7008  
15R  
A
15L  
A
Address  
Decoder  
Address  
Decoder  
0R  
A
A
0L  
16  
16  
ARBITRATION  
INTERRUPT  
SEMAPHORE  
LOGIC  
CE0L  
CE0R  
1L  
CE  
1R  
CE  
L
L
OE  
R/W  
OER  
R
R/W  
SEM  
INTL  
L
R
SEM  
(2)  
(2)  
R
INT  
M/S(1)  
3198 drw 01  
NOTES:  
1. BUSY is an input as a Slave (M/S = VIL) and an output when it is a Master (M/S = VIH).  
2. BUSY and INT are non-tri-state totem-pole outputs (push-pull).  
APRIL 2006  
1
DSC 3198/8  
©2006IntegratedDeviceTechnology,Inc.  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Description  
The IDT7008 is a high-speed 64K x 8 Dual-Port Static RAM. The reads or writes to any location in memory. An automatic power down  
IDT7008isdesignedtobeusedasastand-alone512K-bitDual-PortRAM featurecontrolledbythe chipenables(CE0andCE1)permittheon-chip  
orasacombinationMASTER/SLAVEDual-PortRAMfor16-bit-or-more circuitry of each port to enter a very low standby power mode.  
wordsystems.UsingtheIDTMASTER/SLAVEDual-PortRAMapproach  
FabricatedusingIDT’sCMOShigh-performancetechnology,these  
in16-bitorwidermemorysystemapplicationsresultsinfull-speed,error- devices typicallyoperate ononly750mWofpower.  
freeoperationwithouttheneedforadditionaldiscretelogic.  
TheIDT7008ispackagedina84-pinCeramicPinGridArray(PGA),  
This device provides two independent ports with separate control, a84-pinPlasticLeadlessChipCarrier(PLCC)anda100-pinThinQuad  
address,andI/Opinsthatpermitindependent,asynchronousaccessfor Flatpack(TQFP).  
PinConfigurations(1,2,3)  
07/16/04  
INDEX  
11 10 9  
12  
8
7
6
5
4
3
2
1 84 83 82 81 80 79 78 77 76 75  
74  
A
A
A
A
A
A
A
6R  
5R  
4R  
3R  
2R  
1R  
0R  
NC  
I/O7R  
I/O6R  
I/O5R  
I/O4R  
I/O3R  
Vcc  
73  
72  
71  
70  
69  
68  
67  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
INT  
R
R
I/O2R  
I/O1R  
I/O0R  
GND  
Vcc  
IDT7008J  
BUSY  
(4)  
66  
65  
64  
63  
62  
61  
J84-1  
M/S  
84-Pin PLCC  
Top View  
GND  
(5)  
BUSY  
L
L
INT  
I/O0L  
NC  
I/O1  
L
A
A
A
A
A
A
A
0L  
1L  
2L  
3L  
4L  
5L  
6L  
GND  
I/O2L  
I/O3L  
I/O4L  
I/O5L  
I/O6L  
I/O7L  
60  
59  
58  
57  
56  
55  
54  
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53  
,
3198 drw 02  
NOTES:  
1. This text does not indicate orientation of the actual part marking.  
2. All Vcc pins must be connected to power supply.  
3. Package body is approximately 1.15 in x 1.15 in x .17 in.  
4. This package code is used to reference the package diagram.  
5. All GND pins must be connected to ground supply.  
2
APRIL 03, 2006  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Pin Configurations(1,2,3) (con't.)  
07/16/04  
Index  
10099 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
1
NC  
NC  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
2
3
A
A
A
7L  
8L  
9L  
A
A
A
A
A
A
A
A
A
7R  
4
8R  
5
9R  
6
A
A
A
A
A
A
10L  
11L  
12L  
13L  
14L  
15L  
10R  
11R  
12R  
13R  
14R  
15R  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
IDT7008PF  
PN100-1  
(
4)  
NC  
Vcc  
NC  
NC  
NC  
NC  
CE0L  
CE1L  
NC  
GND  
NC  
NC  
NC  
NC  
CE0R  
CE1R  
SEM  
R/W  
OE  
GND  
GND  
NC  
100-Pin TQFP  
(
5)  
Top View  
SEM  
R/W  
OE  
L
L
L
R
R
R
GND  
NC  
NC  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
,
3198 drw 03  
NOTES:  
1. This text does not indicate orientation of the actual part marking.  
2. All Vcc pins must be connected to power supply.  
3. Package body is approximately 14mm x 14mm x 1.4mm.  
4. This package code is used to reference the package diagram.  
5. All GND pins must be connected to ground supply.  
3
6.42  
APRIL 03, 2006  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Pin Configurations(1,2,3) (con't)  
07/16/04  
63  
66  
67  
69  
72  
61  
64  
65  
68  
71  
60  
58  
55  
54  
49  
51  
50  
48  
46  
45  
42  
40  
11  
10  
09  
08  
A
7R  
A
9R  
A
10R  
A
12R  
11R  
A
15R  
NC  
GND  
NC  
NC SEM  
R
OER  
62  
59  
56  
47  
44  
43  
A
A
A
4R  
3R  
1R  
A
A
A
6R  
5R  
2R  
A
8R  
A
A
14R  
CE0R R/W  
R
GND  
NC  
I/O6R  
CE1R  
57  
53  
52  
41  
39  
A
13R GND  
NC  
I/O7R I/O5R  
38  
37  
I/O4R I/O3R  
73  
33  
35  
34  
I/O0R  
I/O2R I/O1R  
M
INT  
R
/S  
BUSY  
R
07  
06  
IDT7008G  
G84-3  
(4)  
75  
70  
74  
32  
31  
36  
30  
BUSY  
L
GND  
GND  
A0R  
Vcc  
Vcc  
84-PIN PGA  
(5)  
TOP VIEW  
76  
77  
78  
28  
29  
NC  
A
0L  
INT  
L
1L  
3L  
GND I/O1  
L
I/O0L  
05  
04  
79  
80  
83  
1
26  
27  
A
A
A
A
A
2L  
I/O3L I/O2L  
81  
82  
84  
7
8
9
11  
12  
14  
23  
25  
03  
02  
01  
NC  
5L  
7L  
A
A
A
13L  
Vcc  
NC  
I/O6L I/O4L  
2
4
5
6
10  
17  
20  
22  
24  
A
4L  
6L  
A
8L  
A
11L  
14L  
15L  
CE0L R/W  
L
GND I/O7L I/O5L  
3
15  
13  
16  
18  
19  
21  
GND  
A
A9L  
A10L  
A12L  
NC  
G
OE  
L
NC  
L
SEM  
L
CE1L  
F
.
A
B
C
D
E
H
J
K
3198 drw 04  
INDEX  
NOTES:  
1. All Vcc pins must be connected to power supply.  
2. All GND pins must be connected to ground supply.  
3. Package body is approximately 1.12 in x 1.12 in x .16 in.  
PinNames  
Left Port  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part marking.  
Right Port  
Names  
Chip Enables  
Read/Write Enable  
Output Enable  
Address  
CE0L, CE1L  
CE0R, CE1R  
R/W  
OE  
R/WL  
R
OEL  
R
A0L - A15L  
A0R - A15R  
I/O0L - I/O7L  
SEM  
INT  
BUSY  
I/O0R - I/O7R  
Data Input/Output  
Semaphore Enable  
Interrupt Flag  
Busy Flag  
L
SEM  
INT  
BUSY  
M/S  
R
L
R
L
R
Master or Slave Select  
Power  
V
CC  
GND  
Ground  
3198 tbl 01  
4
APRIL 03, 2006  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Truth Table I: Chip Enable(1)  
CE1  
Mode  
CE  
CE0  
VIL  
VIH  
Port Selected (TTL Active)  
L
< 0.2V  
>VCC -0.2V  
X
Port Selected (CMOS Active)  
Port Deselected (TTL Inactive)  
Port Deselected (TTL Inactive)  
Port Deselected (CMOS Inactive)  
Port Deselected (CMOS Inactive)  
VIH  
X
VIL  
H
>VCC -0.2V  
X
X
<0.2V  
3198 tbl 02  
NOTES:  
1. Chip Enable references are shown above with the actual CE0 and CE1 levels, CE is a reference only.  
Truth Table II: Non-Contention Read/Write Control  
Inputs(1)  
Outputs  
CE(2 )  
H
OE  
SEM  
H
R/W  
X
I/O0-7  
Mode  
X
X
L
High-Z  
DATAIN  
Deselected: Power-Down  
Write to memory  
L
L
H
L
H
H
DATAOUT Read memory  
High-Z Outputs Disabled  
X
X
H
X
3198 tbl 03  
NOTES:  
1. A0L A15L A0R A15R.  
2. Refer to Chip Enable Truth Table.  
Truth Table III: Semaphore Read/Write Control(1)  
Inputs  
Outputs  
(2)  
R/W  
I/O0-7  
Mode  
CE  
OE  
SEM  
H
H
X
L
L
DATAOUT Read Semaphore Flag Data Out  
H
L
X
X
L
L
DATAIN  
Write I/O0 into Semaphore Flag  
______  
Not Allowed  
3198 tbl 04  
NOTES:  
1. There are eight semaphore flags written to via I/O0 and read from all the I/Os (I/O0-I/O7). These eight semaphore flags are addressed by A0-A2.  
2. Refer to Chip Enable Truth Table.  
5
6.42  
APRIL 03, 2006  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AbsoluteMaximumRatings(1)  
RecommendedDCOperating  
Conditions  
Symbol  
Rating  
Commercial  
& Industrial  
Military  
Unit  
Symbol  
Parameter  
Supply Voltage  
GND Ground  
Min.  
Typ.  
Max. Unit  
(2)  
V
TERM  
Terminal Voltage  
with Respect  
to GND  
-0.5 to +7.0  
-0.5 to +7.0  
V
VCC  
4.5  
5.0  
5.5  
0
V
V
V
0
0
T
BIAS  
Temperature  
Under Bias  
-55 to +125  
-65 to +150  
50  
-65 to +135  
-65 to +150  
50  
oC  
oC  
V
IH  
Input High Voltage  
Input Low Voltage  
2.2  
6.0(2)  
0.8  
____  
Storage  
Temperature  
VIL  
-0.5(1)  
V
TSTG  
____  
3198 tbl 07  
IOUT  
DC Output Current  
mA  
NOTES:  
1. VIL > -1.5V for pulse width less than 10ns.  
2. VTERM must not exceed Vcc + 10%.  
3198 tbl 05  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may  
cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those  
indicated in the operational sections of this specification is not implied. Exposure  
to absolute maximum rating conditions for extended periods may affect  
reliability.  
Capacitance  
2. VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10ns  
maximum, and is limited to < 20mA for the period of VTERM > Vcc + 10%.  
(TA = +25°C, f = 1.0mhz) (TQFP Only)  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions  
Max. Unit  
CIN  
VIN = 0V  
9
pF  
(2)  
OUT  
C
VOUT = 0V  
10  
pF  
3198 tbl 08  
MaximumOperatingTemperature  
andSupplyVoltage(1)  
Ambient  
NOTES:  
1. This parameter is determined by device characterization but is not production  
tested.  
2. COUT also references CI/O.  
Grade  
Temperature  
-55OC to+125OC  
0OC to +70OC  
-40OC to +85OC  
GND  
Vcc  
Military  
0V  
5.0V  
+
+
+
10%  
Commercial  
Industrial  
0V  
5.0V  
5.0V  
10%  
10%  
0V  
3198 tbl 06  
NOTES:  
1. This is the parameter TA. This is the "instant on" case tempreature.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(2) (VCC = 5.0V ± 10%)  
7008S  
7008L  
Symbol  
|ILI  
|ILO  
Parameter  
Test Conditions  
VCC = 5.5V, VIN = 0V to VCC  
Min.  
Max.  
10  
Min.  
Max.  
5
Unit  
µA  
µA  
V
(1)  
___  
___  
|
Input Leakage Current  
___  
___  
___  
___  
|
Output Leakage Current  
Output Low Voltage  
Output High Voltage  
10  
5
CE = VIH, VOUT = 0V to VCC  
OL = 4mA  
OH = -4mA  
VOL  
I
0.4  
0.4  
___  
___  
VOH  
I
2.4  
2.4  
V
3198 tbl 09  
NOTES:  
1. At Vcc < 2.0V, input leakages are undefined.  
2. Refer to Chip Enable Truth Table.  
6
APRIL 03, 2006  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1,6) (VCC = 5.0V ± 10%)  
7008X15  
7008X20  
Com'l  
7008X25  
Com'l &  
Military  
Com'l Only  
& Ind  
Symbol  
Parameter  
Dynamic Operating  
Current  
(Both Ports Active)  
Test Condition  
Version  
COM'L  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
ICC  
S
L
205  
200  
365  
325  
190  
180  
325  
285  
180  
170  
305  
265  
mA  
CE = VIL, Outputs Disabled  
SEM = VIH  
(3)  
f = fMAX  
___  
___  
___  
___  
___  
___  
MIL &  
IND  
S
L
170  
170  
345  
305  
180  
335  
I
SB1  
Standby Current  
(Both Ports - TTL Level  
Inputs)  
COM'L  
S
L
65  
65  
110  
90  
50  
50  
90  
70  
40  
40  
85  
60  
mA  
mA  
CE  
SEM  
f = fMAX  
L
= CE  
R
= VIH  
= VIH  
R
= SEM  
L
(3)  
___  
___  
___  
___  
___  
___  
MIL &  
IND  
S
L
40  
40  
100  
80  
50  
85  
(5)  
ISB2  
Standby Current  
(One Port - TTL Level  
Inputs)  
COM'L  
S
L
130  
130  
245  
215  
115  
115  
215  
185  
105  
105  
200  
170  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
(3)  
f=fMAX  
___  
___  
___  
___  
___  
___  
MIL &  
IND  
S
L
105  
105  
230  
200  
SEMR = SEML = VIH  
115  
220  
I
SB3  
Full Standby Current  
(Both Ports - All CMOS  
Level Inputs)  
Both Ports CE  
CE > VCC - 0.2V  
IN > VCC - 0.2V or  
IN < 0.2V, f = 0(4)  
SEM = SEM > VCC - 0.2V  
L
and  
COM'L  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
mA  
mA  
R
V
V
___  
___  
___  
___  
___  
___  
MIL &  
IND  
S
L
1.0  
0.2  
30  
10  
0.2  
10  
R
L
ISB4  
Full Standby Current  
(One Port - All CMOS  
Level Inputs)  
COM'L  
S
L
120  
120  
220  
190  
110  
110  
190  
160  
100  
100  
170  
145  
CE"A" < 0.2V and  
(5)  
CE"B" > VCC - 0.2V  
SEM = SEM > VCC - 0.2V  
R
L
___  
___  
___  
___  
___  
___  
MIL &  
IND  
S
L
100  
100  
200  
175  
V
IN > VCC - 0.2V or VIN < 0.2V  
110  
195  
Active Port Outputs Disabled  
(3)  
f = fMAX  
3198 tbl 10a  
7008X35  
Com'l &  
Military  
7008X55  
Com'l, Ind  
& Military  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
ICC  
Dynamic Operating Current  
(Both Ports Active)  
S
L
160  
160  
295  
255  
150  
150  
270  
230  
mA  
CE = VIL, Outputs Disabled  
SEM = VIH  
(3)  
f = fMAX  
MIL &  
IND  
S
L
160  
160  
335  
295  
150  
150  
310  
270  
I
SB1  
Standby Current  
(Both Ports - TTL Level  
Inputs)  
COM'L  
S
L
30  
30  
85  
60  
20  
20  
85  
60  
mA  
mA  
CE  
L
SEM  
= CE  
R
= VIH  
= VIH  
R
= SEM  
L
MIL &  
IND  
S
L
20  
20  
100  
80  
13  
13  
100  
80  
(5)  
ISB2  
Standby Current  
(One Port - TTL Level  
Inputs)  
COM'L  
S
L
95  
95  
185  
155  
85  
85  
165  
135  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
f=fMAX  
SEM  
(3)  
MIL &  
IND  
S
L
95  
95  
215  
185  
85  
85  
195  
165  
R
= SEM  
L
= VIH  
and  
ISB3  
Full Standby Current  
(Both Ports - All CMOS  
Level Inputs)  
Both Ports CE  
CE > VCC - 0.2V  
IN > VCC - 0.2V or  
IN < 0.2V, f = 0(4)  
SEM = SEM > VCC - 0.2V  
L
COM'L  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
mA  
mA  
R
V
V
MIL &  
IND  
S
L
1.0  
0.2  
30  
10  
1.0  
0.2  
30  
10  
R
L
ISB4  
Full Standby Current  
(One Port - All CMOS  
Level Inputs)  
COM'L  
S
L
90  
90  
160  
135  
80  
80  
135  
110  
CE"A" < 0.2V and  
(5)  
CE"B" > VCC - 0.2V  
SEM = SEM > VCC - 0.2V  
R
L
MIL &  
IND  
S
L
90  
90  
190  
165  
80  
80  
175  
150  
V
IN > VCC - 0.2V or VIN < 0.2V  
Active Port Outputs Disabled  
(3)  
f = fMAX  
3198 tbl 10b  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L)  
2. VCC = 5V, TA = +25°C, and are not production tested. ICCDC = 120mA (Typ.)  
3. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/ tRC, and using AC Test Conditions” of input  
levels of GND to 3V.  
4. f = 0 means no address or control lines change.  
5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
6. Refer to Chip Enable Truth Table.  
7
6.42  
APRIL 03, 2006  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
5V  
5V  
AC Test Conditions  
Input Pulse Levels  
GND to 3.0V  
5ns Max.  
1.5V  
893  
893Ω  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
DATAOUT  
BUSY  
INT  
DATAOUT  
1.5V  
30pF  
5pF*  
347Ω  
347Ω  
Figures 1 and 2  
3198 tbl 11  
3198 drw 05  
3198 drw 06  
Figure 2. Output Test Load  
(for tLZ, tHZ, tWZ, tOW)  
Figure 1. AC Output Test Load  
* Including scope and jig.  
Waveform of Read Cycles(5)  
tRC  
ADDR  
(4)  
tAA  
(4)  
CE(6)  
tACE  
(4)  
tAOE  
OE  
R/W  
(1)  
tOH  
tLZ  
VALID DATA(4)  
DATAOUT  
(2)  
t
HZ  
BUSYOUT  
(3,4)  
3198 drw 07  
t
BDD  
Timing of Power-Up Power-Down  
CE(6)  
t
PU  
tPD  
ICC  
ISB  
,
3198 drw 08  
NOTES:  
1. Timing depends on which signal is asserted last, OE or CE.  
2. Timing depends on which signal is de-asserted first CE or OE.  
3. tBDD delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY  
has no relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
6. Refer to Chip Enable Truth Table.  
8
APRIL 03, 2006  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(6)  
7008X15  
7008X20  
Com'l  
7008X25  
Com'l &  
Military  
7008X35  
Com'l &  
Military  
7008X55  
Com'l, Ind  
& Military  
Com'l Only  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
____  
____  
t
RC  
AA  
ACE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
SAA  
Read Cycle Time  
15  
20  
25  
35  
55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
____  
____  
t
Address Access Time  
15  
15  
20  
20  
25  
25  
35  
35  
55  
55  
Chip Enable Access Time(4)  
Output Enable Access Time  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
t
10  
12  
13  
20  
30  
____  
____  
____  
____  
____  
t
3
3
3
3
3
____  
____  
____  
____  
____  
t
3
3
3
3
3
Output High-Z Time(1,2)  
10  
12  
15  
15  
25  
____  
____  
____  
____  
____  
t
t
Chip Enable to Power Up Time(2)  
Chip Disable to Power Down Time(2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access Time  
0
0
0
0
0
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
15  
20  
25  
35  
50  
____  
____  
____  
____  
____  
t
10  
10  
12  
15  
15  
____  
____  
____  
____  
____  
t
15  
20  
25  
35  
55  
ns  
3198 tbl 12  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage(6)  
7008X15  
7008X20  
Com'l  
7008X25  
Com'l &  
Military  
7008X35  
Com'l &  
Military  
7008X55  
Com'l, Ind  
& Military  
Com'l Only  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
15  
12  
12  
0
20  
15  
15  
0
25  
20  
20  
0
35  
30  
30  
0
55  
45  
45  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
t
t
t
12  
0
15  
0
20  
0
25  
0
40  
0
t
Write Recovery Time  
t
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(5)  
10  
15  
15  
15  
30  
____  
____  
____  
____  
____  
t
10  
12  
15  
15  
25  
____  
____  
____  
____  
____  
t
0
0
0
0
0
(1,2)  
____  
____  
____  
____  
____  
t
Write Enable to Output in High-Z  
Output Active from End-of-Write(1,2,5)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
10  
12  
15  
15  
25  
____  
____  
____  
____  
____  
t
0
5
5
0
5
5
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
t
ns  
3198 tbl 13  
NOTES:  
1. Transition is measured 0mV from Low- or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranted by device characterization, but is not production tested.  
3. To access RAM, CE= VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time.  
4. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE= VIH and SEM = VIL.  
5. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH and tOW values will vary over voltage  
and temperature, the actual tDH will always be smaller than the actual tOW.  
6. 'X' in part numbers indicates power rating (s or L).  
9
6.42  
APRIL 03, 2006  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
t
WC  
ADDRESS  
(7)  
t
HZ  
OE  
tAW  
CE or SEM(9,10)  
(3)  
(2)  
(6)  
AS  
tWP  
tWR  
t
R/W  
DATAOUT  
DATAIN  
(7)  
t
WZ  
tOW  
(4)  
(4)  
tDW  
t
DH  
3198 drw 09  
Timing Waveform of Write Cycle No. 2, CE Controlled Timing(1,5)  
t
WC  
ADDRESS  
t
AW  
CE or SEM(9,10)  
(3)  
WR  
(6)  
(2)  
t
t
EW  
tAS  
R/W  
t
DW  
tDH  
DATAIN  
3198 drw 10  
NOTES:  
1. R/W or CE must be HIGH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a LOW CE and a LOW R/W for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH to the end of write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the High-impedance state.  
6. Timing depends on which enable signal is asserted last, CE or R/W.  
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load (Figure  
2).  
8. If OE is LOW during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be  
placed on the bus for the required tDW. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as  
the specified tWP.  
9. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. tEW must be met for either condition.  
10. Refer to Chip Enable Truth Table.  
10  
APRIL 03, 2006  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
tSAA  
tOH  
A0-A2  
VALID ADDRESS  
VALID ADDRESS  
tAW  
tWR  
tACE  
t
t
EW  
SEM  
tDW  
tSOP  
DATAOUT  
VALID(2)  
DATAIN VALID  
DATA  
0
t
AS  
WP  
tDH  
R/W  
tSWRD  
tAOE  
OE  
tSOP  
Write Cycle  
Read Cycle  
3198 drw 11  
NOTES:  
1. CE = VIH for the duration of the above timing (both write and read cycle) (Refer to Chip Enable Truth Table).  
2. "DATAOUT VALID" represents all I/O's (I/O0 - I/O15) equal to the semaphore value.  
Timing Waveform of Semaphore Write Contention(1,3,4)  
A
0"A"-A2"A"  
MATCH  
(2)  
SIDE "A"  
R/W"A"  
SEM"A"  
tSPS  
A
0"B"-A2"B"  
MATCH  
(2)  
SIDE  
R/W"B"  
SEM"B"  
"B"  
3198 drw 12  
NOTES:  
1. DOR = DOL = VIL, CEL = CER = VIH (Refer to Chip Enable Truth Table).  
2. All timing is the same for left and right ports. Port "A" may be either left or right port. "B" is the opposite from port "A".  
3. This parameter is measured from R/W"A" or SEM"A" going HIGH to R/W"B" or SEM"B" going HIGH.  
4. If tSPS is not satisfied, the semaphore will fall positively to one side or the other, but there is no guarantee which side will obtain the flag.  
11  
6.42  
APRIL 03, 2006  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(6)  
7008X15  
7008X20  
Com'l  
7008X25  
Com'l &  
Military  
7008X35  
Com'l &  
Military  
7008X55  
Com'l, Ind &  
Military  
Com'l Only  
& Ind  
Symbol  
BUSY TIMING (M/S=VIH  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max. Unit  
)
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
15  
15  
15  
20  
20  
20  
20  
20  
20  
20  
20  
20  
45  
40  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable Low  
BUSY Access Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
t
t
t
15  
17  
17  
20  
35  
____  
____  
____  
____  
____  
t
5
5
5
5
5
____  
____  
____  
____  
____  
BUSY Disable to Valid Data(3)  
t
15  
20  
25  
35  
55  
t
Write Hold After BUSY(5)  
12  
15  
17  
25  
25  
____  
____  
____  
____  
____  
BUSY TIMING (M/S=VIL  
)
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
Write Hold After BUSY(5)  
t
WB  
0
0
0
0
0
ns  
ns  
tWH  
12  
15  
17  
25  
25  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WDD  
Write Pulse to Data Delay(1)  
30  
25  
45  
30  
50  
35  
60  
45  
80  
65  
ns  
tDDD  
Write Data Valid to Read Data Delay(1)  
ns  
3198 tbl 14  
NOTES:  
1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read and BUSY (M/S = VIH)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0, tWDD – tWP (actual) or tDDD – tDW (actual).  
4. To ensure that the write cycle is inhibited on port "B" during contention on port "A".  
5. To ensure that a write cycle is completed on port "B" after contention on port "A".  
6. 'X' in part numbers indicates power rating (S or L).  
12  
APRIL 03, 2006  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
TimingWaveformof WritewithPort-to-PortReadandBUSY(2,5)(M/S =VIH)(4)  
tWC  
ADDR"A"  
MATCH  
tWP  
R/W"A"  
tDH  
tDW  
DATAIN "A"  
VALID  
(1)  
tAPS  
ADDR"B"  
MATCH  
tBDA  
t
BDD  
BUSY"B"  
tWDD  
DATAOUT "B"  
VALID  
(3)  
tDDD  
NOTES:  
3198 drw 13  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S = VIL (SLAVE).  
2. CEL = CER = VIL, refer to Chip Enable Truth Table.  
3. OE = VIL for the reading port.  
4. If M/S = VIL (SLAVE), then BUSY is an input (BUSY"A" = VIH and BUSY"B" = "don't care", for this example).  
5. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".  
Timing Waveform of Write with BUSY (M/S = VIL)  
tWP  
R/W"A"  
(3)  
tWB  
BUSY"B"  
(1)  
tWH  
R/W"B"  
(2)  
3198 drw 14  
NOTES:  
1. tWH must be met for both BUSY input (SLAVE) and output (MASTER).  
2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.  
3. tWB is only for the 'Slave' version.  
13  
6.42  
APRIL 03, 2006  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of BUSY Arbitration Controlled by CE Timing(1,3) (M/S = VIH)  
ADDR"A"  
ADDRESSES MATCH  
and "B"  
CE"A"  
(2)  
tAPS  
CE"B"  
tBAC  
tBDC  
BUSY"B"  
3198 drw 15  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(1) (M/S = VIH)  
ADDR"A"  
ADDR"B"  
BUSY"B"  
ADDRESS "N"  
(2)  
t
APS  
MATCHING ADDRESS "N"  
t
BAA  
tBDA  
3198 drw 16  
NOTES:  
1. All timing is the same for left and right ports. Port A” may be either the left or right port. Port B” is the port opposite from port A”.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
3. Refer to Chip Enable Truth Table.  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(1)  
7008X15  
7008X20  
Com'l  
7008X25  
Com'l &  
Military  
7008X35  
Com'l &  
Military  
7008X55  
Com'l, Ind  
& Military  
Com'l Only  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
0
0
0
0
0
ns  
ns  
ns  
t
Write Recovery Time  
Interrupt Set Time  
0
0
0
0
0
____  
____  
____  
____  
____  
t
15  
15  
20  
20  
20  
20  
25  
25  
40  
40  
____  
____  
____  
____  
____  
t
Interrupt Reset Time  
ns  
3198 tbl 15  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L).  
14  
APRIL 03, 2006  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing(1,5)  
t
WC  
INTERRUPT SET ADDRESS(2)  
ADDR"A"  
(3)  
(4)  
tAS  
tWR  
CE"A"  
R/W"A"  
INT"B"  
(3)  
tINS  
3198 drw 17  
tRC  
INTERRUPT CLEAR ADDRESS(2)  
ADDR"B"  
CE"B"  
(3)  
t
AS  
OE"B"  
(3)  
tINR  
INT"B"  
3198 drw 18  
NOTES:  
1. All timing is the same for left and right ports. Port A” may be either the left or right port. Port B” is the port opposite from port A”.  
2. See Interrupt Truth Table.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
5. Refer to Chip Enable Truth Table.  
Truth Table IV — Interrupt Flag(1,4,5)  
Left Port  
Right Port  
OE  
R/W  
L
A
15L-A0L  
R/W  
R
A15R-A0R  
Function  
CE  
L
OE  
L
INT  
L
CE  
X
L
R
INTR  
(2)  
L
X
X
X
L
FFFF  
X
X
X
X
L
X
L
Set Right INT  
Reset Right INT  
Set Left INT Flag  
Reset Left INT Flag  
R
Flag  
(3  
)
X
X
X
L
X
X
FFFF  
FFFE  
X
H
R
Flag  
(3)  
X
X
L
L
L
X
X
X
L
(2)  
X
FFFE  
H
X
X
X
L
3198 tbl 16  
NOTES:  
1. Assumes BUSYL = BUSYR =VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
4. INTL and INTR must be initialized at power-up.  
5. Refer to Chip Enable Truth Table.  
15  
6.42  
APRIL 03, 2006  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Truth Table V —Address BUSY  
Arbitration(4)  
Inputs  
Outputs  
A
OL-A15L  
(1)  
A
OR-A15R  
Function  
Normal  
Normal  
Normal  
Write  
CE  
L
CE  
R
BUSY (1)  
L
BUSY  
R
X
H
X
X
X
H
NO MATCH  
MATCH  
H
H
H
H
H
MATCH  
H
L
L
MATCH  
(2)  
(2)  
(3)  
Inhibit  
3198 tbl 17  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSY outputs on the IDT7008 are  
push-pull, not open drain outputs. On slaves the BUSY input internally inhibits writes.  
2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address  
and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs can not be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored  
when BUSYR outputs are driving LOW regardless of actual logic level on the pin.  
4. Refer to Chip Enable Truth Table.  
Truth Table VI — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0  
- D7  
Left  
D0  
- D7  
Right  
Status  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
3198 tbl 18  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT7008.  
2. There are eight semaphore flags written to via I/O0 and read from all I/O's (I/O0-I/O7). These eight semaphores are addressed by A0-A2.  
3. CE = VIH, SEM = VIL to access the semaphores. Refer to the Semaphore Read/Write Control Truth Table.  
FunctionalDescription  
TheIDT7008providestwoportswithseparatecontrol,addressand (INTL) is asserted when the right port writes to memory location FFFE  
I/Opinsthatpermitindependentaccessforreadsorwritestoanylocation (HEX),whereawriteisdefinedasCER=R/WR=VILpertheTruthTable.  
inmemory.TheIDT7008hasanautomaticpowerdownfeaturecontrolled TheleftportclearstheinterruptthroughaccessofaddresslocationFFFE  
byCE. TheCE0and CE1 control the on-chip power down circuitry that when CEL = OEL = VIL, R/W is a "don't care". Likewise, the right port  
permitstherespectiveporttogointoastandbymodewhennotselected interruptflag(INTR)isassertedwhentheleftportwritestomemorylocation  
(CEHIGH).Whenaportis enabled,access totheentirememoryarray FFFF(HEX)andtocleartheinterruptflag(INTR),therightportmustread  
ispermitted.  
thememorylocationFFFF. Themessage(8bits)atFFFEorFFFFisuser-  
definedsinceitisanaddressableSRAMlocation.Iftheinterruptfunction  
isnotused,addresslocationsFFFEandFFFFarenotusedasmailboxes,  
butaspartoftherandomaccessmemory.RefertoTableIVfortheinterrupt  
operation.  
Interrupts  
Iftheuserchoosestheinterruptfunction,amemorylocation(mailbox  
ormessagecenter)is assignedtoeachport. Theleftportinterruptflag  
16  
APRIL 03, 2006  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
resultina glitchedinternalwrite inhibitsignalandcorrupteddata inthe  
slave.  
BusyLogic  
BusyLogicprovidesahardwareindicationthatbothportsoftheRAM  
haveaccessedthesamelocationatthesametime.Italsoallowsoneofthe  
twoaccessestoproceedandsignalstheothersidethattheRAMisbusy.  
TheBUSYpincanthenbeusedtostalltheaccessuntiltheoperationon  
theothersideiscompleted.Ifawriteoperationhasbeenattemptedfrom  
thesidethatreceivesaBUSYindication,thewritesignalisgatedinternally  
topreventthewritefromproceeding.  
Semaphores  
TheIDT7008isanextremelyfastDual-Port64Kx8CMOSStaticRAM  
withanadditional8addresslocationsdedicatedtobinarysemaphoreflags.  
TheseflagsalloweitherprocessorontheleftorrightsideoftheDual-Port  
RAMtoclaimaprivilegeovertheotherprocessorforfunctionsdefinedby  
thesystemdesignerssoftware.Asanexample,thesemaphorecanbe  
usedbyoneprocessortoinhibittheotherfromaccessingaportionofthe  
Dual-Port RAM or any other shared resource.  
TheuseofBUSYlogicisnotrequiredordesirableforallapplications.  
InsomecasesitmaybeusefultologicallyORtheBUSYoutputstogether  
anduse anyBUSYindicationas aninterruptsource toflagthe eventof  
anillegalorillogicaloperation.IfthewriteinhibitfunctionofBUSYlogicis  
notdesirable,theBUSYlogiccanbedisabledbyplacingthepartinslave  
modewiththeM/Spin.OnceinslavemodetheBUSYpinoperatessolely  
asawriteinhibitinputpin.Normaloperationcanbeprogrammedbytying  
the BUSY pins HIGH. If desired, unintended write operations can be  
prevented to a port by tying the BUSY pin for that port LOW.  
TheBUSYoutputsontheIDT7008RAMinmastermode,arepush-  
pulltypeoutputsanddonotrequirepullupresistorstooperate.Ifthese  
RAMs are being expanded in depth, then the BUSY indication for the  
resulting array requires the use of an external AND gate.  
The Dual-PortRAMfeatures a fastaccess time, andbothports are  
completelyindependentofeachother.Thismeansthattheactivityonthe  
leftportinnowayslows theaccess timeoftherightport.Bothports are  
identicalinfunctiontostandardCMOSStaticRAMandcanbereadfrom,  
orwrittento,atthesametimewiththeonlypossibleconflictarisingfromthe  
simultaneous writing of, or a simultaneous READ/WRITE of, a non-  
semaphorelocation.Semaphoresareprotectedagainstsuchambiguous  
situationsandmaybeusedbythesystemprogramtoavoidanyconflicts  
inthenon-semaphoreportionoftheDual-PortRAM.Thesedeviceshave  
anautomaticpower-downfeaturecontrolledbyCE,theDual-PortRAM  
enable,andSEM,thesemaphoreenable.TheCEandSEMpinscontrol  
on-chippowerdowncircuitrythatpermits the respective porttogointo  
standbymodewhennotselected. Thisistheconditionwhichisshownin  
Truth Table II where CE and SEM are both HIGH.  
A
16  
CE0  
CE0  
MASTER  
Dual Port RAM  
SLAVE  
Dual Port RAM  
BUSY (L) BUSY (R)  
BUSY (L) BUSY (R)  
SystemswhichcanbestusetheIDT7008containmultipleprocessors  
or controllers and are typically very high-speed systems which are  
softwarecontrolledorsoftwareintensive.Thesesystemscanbenefitfrom  
aperformanceincreaseofferedbytheIDT7008shardwaresemaphores,  
whichprovidealockoutmechanismwithoutrequiringcomplexprogram-  
ming.  
CE  
1
CE1  
MASTER  
Dual Port RAM  
SLAVE  
Dual Port RAM  
BUSY (L) BUSY (R)  
BUSY (L) BUSY (R)  
,
3198 drw 19  
Softwarehandshakingbetweenprocessors offers themaximumin  
systemflexibilitybypermittingsharedresourcestobeallocatedinvarying  
configurations.TheIDT7008doesnotuseitssemaphoreflagstocontrol  
anyresourcesthroughhardware,thusallowingthesystemdesignertotal  
flexibilityinsystemarchitecture.  
An advantage of using semaphores rather than the more common  
methodsofhardwarearbitrationisthatwaitstatesareneverincurredin  
either processor. This can prove to be a major advantage in very high-  
speedsystems.  
Figure 3. Busy and chip enable routing for both width and depth  
expansion with IDT7008 RAMs.  
WidthExpansionBusyLogic  
Master/SlaveArrays  
WhenexpandinganIDT7008RAMarrayinwidthwhileusingBUSY  
logic,onemasterpartisusedtodecidewhichsideoftheRAMsarraywill  
receivea BUSYindication,andtooutputthatindication.Anynumberof  
slaves to be addressed in the same address range as the master, use  
the BUSYsignalasawriteinhibitsignal.ThusontheIDT7008RAMthe  
How the Semaphore Flags Work  
Thesemaphorelogicisasetofeightlatcheswhichareindependent  
BUSYpinisanoutputifthepartisusedasamaster(M/Spin=VIH),and oftheDual-PortRAM.Theselatchescanbeusedtopassaflag,ortoken,  
theBUSYpinisaninputifthepartusedasaslave(M/Spin=VIL)as shown fromoneporttotheothertoindicatethatasharedresourceisinuse.The  
in Figure 3.  
semaphores provide a hardware assist for a use assignment method  
Iftwoormoremasterpartswereusedwhenexpandinginwidth,asplit calledTokenPassingAllocation.”Inthismethod,thestateofasemaphore  
decisioncouldresultwithonemasterindicatingBUSYononesideofthe latchisusedasatokenindicatingthatsharedresourceisinuse.Iftheleft  
arrayandanothermasterindicatingBUSYononeothersideofthearray. processorwantstousethisresource,itrequeststhetokenbysettingthe  
Thiswouldinhibitthewriteoperationsfromoneportforpartofawordand latch.Thisprocessorthenverifiesitssuccessinsettingthelatchbyreading  
inhibitthewriteoperationsfromtheotherportfortheotherpartoftheword. it. If it was successful, it proceeds to assume control over the shared  
TheBUSYarbitration,onamaster,is basedonthechipenableand resource.Ifitwasnotsuccessfulinsettingthelatch,itdeterminesthatthe  
address signals only. Itignores whetheranaccess is a readorwrite. In rightsideprocessorhassetthelatchfirst, hasthetokenandisusingthe  
a master/slave array, both address and chip enable must be valid long sharedresource. Theleftprocessorcantheneitherrepeatedlyrequest  
enoughforaBUSYflagtobeoutputfromthemasterbeforetheactualwrite thatsemaphoresstatusorremoveitsrequestforthatsemaphoretoperform  
pulsecanbeinitiatedwiththeR/Wsignal.Failuretoobservethistimingcan anothertaskandoccasionallyattemptagaintogaincontrolofthetokenvia  
17  
6.42  
APRIL 03, 2006  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
thesetandtestsequence.Oncetherightsidehasrelinquishedthetoken, side during subsequent read. Had a sequence of READ/WRITE been  
theleftsideshouldsucceedingainingcontrol. usedinstead,systemcontentionproblemscouldhaveoccurredduringthe  
ThesemaphoreflagsareactiveLOW.Atokenisrequestedbywriting gap between the read and write cycles.  
azerointoasemaphorelatchandisreleasedwhenthesamesidewrites  
aonetothatlatch.  
Itisimportanttonotethatafailedsemaphorerequestmustbefollowed  
byeitherrepeatedreadsorbywritingaoneintothesamelocation.The  
The eightsemaphore flags reside withinthe IDT7008ina separate reasonforthisiseasilyunderstoodbylookingatthesimplelogicdiagram  
memoryspacefromtheDual-PortRAM.This addressspaceisaccessed ofthesemaphoreflaginFigure4.Twosemaphorerequestlatchesfeed  
byplacingaLOWinputontheSEMpin(whichactsasachipselectforthe into a semaphore flag. Whichever latch is first to present a zero to the  
semaphore flags) and using the other control pins (Address, CE, and semaphoreflagwillforceitssideofthesemaphoreflagLOWandtheother  
R/W)as theywouldbeusedinaccessingastandardStaticRAM.Each sideHIGH.Thisconditionwillcontinueuntilaoneiswrittentothesame  
oftheflagshasauniqueaddresswhichcanbeaccessedbyeitherside semaphorerequestlatch.Shouldtheothersidessemaphorerequestlatch  
throughaddresspinsA0A2.Whenaccessingthesemaphores,noneof havebeenwrittentoazerointhemeantime,thesemaphoreflagwillflip  
theotheraddresspinshasanyeffect.  
Whenwritingtoasemaphore,onlydatapinD0isused.IfaLOWlevel  
L PORT  
R PORT  
iswrittenintoanunusedsemaphorelocation,thatflagwillbesettoazero  
onthatsideandaoneontheotherside(seeTableVI).Thatsemaphore  
can now only be modified by the side showing the zero. When a one is  
writtenintothesamelocationfromthesameside,theflagwillbesettoa  
one for both sides (unless a semaphore request from the other side is  
pending)andthencanbewrittentobybothsides.Thefactthattheside  
whichisabletowriteazerointoasemaphoresubsequentlylocksoutwrites  
fromtheothersideiswhatmakessemaphoreflagsusefulininterprocessor  
communications.(Athoroughdiscussionontheuseofthisfeaturefollows  
shortly.)Azerowrittenintothesamelocationfromtheothersidewillbe  
storedinthesemaphorerequestlatchforthatsideuntilthesemaphoreis  
freedbythefirstside.  
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso  
thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining  
azeroreadsasallzeros.Thereadvalueislatchedintoonesidesoutput  
registerwhenthatside'ssemaphoreselect(SEM)andoutputenable(OE)  
signalsgoactive.Thisservestodisallowthesemaphorefromchanging  
stateinthemiddleofareadcycleduetoawritecyclefromtheotherside.  
Becauseofthislatch,arepeatedreadofasemaphoreinatestloopmust  
cause either signal (SEM or OE) to go inactive or the output will never  
change.  
AsequenceWRITE/READmustbeusedbythesemaphoreinorder  
to guarantee that no system level contention will occur. A processor  
requestsaccesstosharedresourcesbyattemptingtowriteazerointoa  
semaphorelocation.Ifthesemaphoreisalreadyinuse,thesemaphore  
requestlatchwillcontainazero,yetthesemaphoreflagwillappearasone,  
afactwhichtheprocessorwillverifybythesubsequentread(seeTable  
VI). As anexample, assume a processorwrites a zerotothe leftportat  
afreesemaphorelocation.Onasubsequentread,theprocessorwillverify  
thatithaswrittensuccessfullytothatlocationandwillassumecontrolover  
the resource in question. Meanwhile, if a processor on the right side  
attempts towriteazerotothesamesemaphoreflagitwillfail,as willbe  
verifiedbythefactthataonewillbereadfromthatsemaphoreontheright  
SEMAPHORE  
REQUEST FLIP FLOP  
SEMAPHORE  
REQUEST FLIP FLOP  
0
0
D
D
D
D
Q
Q
WRITE  
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
,
READ  
3198 drw 20  
Figure 4. IDT7008 Semaphore Logic  
overtotheothersideassoonasaoneiswrittenintothefirstsidesrequest  
latch.ThesecondsidesflagwillnowstayLOWuntilitssemaphorerequest  
latchiswrittentoaone.Fromthisitiseasytounderstandthat,ifasemaphore  
is requestedandthe processorwhichrequesteditnolongerneeds the  
resource, the entire system can hang up until a one is written into that  
semaphorerequestlatch.  
The criticalcase ofsemaphore timingis whenbothsides requesta  
single token by attempting to write a zero into it at the same time. The  
semaphorelogicisspeciallydesignedtoresolvethisproblem.Ifsimulta-  
neousrequestsaremade,thelogicguaranteesthatonlyonesidereceives  
thetoken.Ifonesideisearlierthantheotherinmakingtherequest,thefirst  
sidetomaketherequestwillreceivethetoken.Ifbothrequestsarriveat  
thesametime,theassignmentwillbearbitrarilymadetooneportorthe  
other.  
One caution that should be noted when using semaphores is that  
semaphoresalonedonotguaranteethataccesstoaresourceissecure.  
Aswithanypowerfulprogrammingtechnique,ifsemaphoresaremisused  
ormisinterpreted, a software errorcaneasilyhappen.  
Initializationofthesemaphoresisnotautomaticandmustbehandled  
viatheinitializationprogramatpower-up.Sinceanysemaphorerequest  
flagwhichcontainsazeromustberesettoaone,allsemaphoresonboth  
sidesshouldhaveaonewrittenintothematinitializationfrombothsides  
to assure that they will be free when needed.  
18  
APRIL 03, 2006  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
OrderingInformation  
IDT XXXXX  
A
999  
A
A
A
Device Power Speed Package  
Type  
Process/  
Temperature  
Range  
Blank  
I(1)  
B
Commercial (0°C to +70°C)  
Industrial (-40°C to + 85°C)  
Military (-55°C to +125°C)  
Compliant to MIL-PRF-38535 QML  
G(2)  
Green  
PF  
G
J
100-pin TQFP (PN100-1)  
108-pin PGA (G108-1)  
84-pin PLCC (J84-1)  
15  
20  
25  
35  
55  
Commercial Only  
Commercial & Industrial  
Commercial & Military  
Commercial & Military  
Speed in nanoseconds  
Commercial, Industrial & Military  
S
L
Standard Power  
Low Power  
512K (64K x 8) Dual-Port RAM  
7008  
NOTES:  
3198 drw 21  
1. IndustrialtemperaturerangeisavailableonselectedTQFPpackagesinstandardpower.  
Forotherspeeds,packagesandpowerscontactyoursalesoffice.  
2. Greenpartsavailable.Forspecificspeeds,packagesandpowerscontactyourlocalsalesoffice.  
DatasheetDocumentHistory  
01/06/99:  
Initiateddatasheetdocumenthistory  
Convertedtonewformat  
Cosmeticandtypographicalcorrections  
Addedadditionalnotestopinconfigurations  
Changeddrawingformat  
Replaced IDT logo  
Increasedstoragetemperatureparameter  
ClarifiedTAparameter  
Pages 2 and 3  
06/03/99:  
11/10/99:  
05/08/99:  
Page 6  
Page 7  
DCElectricalparamters–changedwordingfrom"open"to"disabled"  
Changed±200mVto0mVinnotes  
07/26/04:  
Page 2 - 4  
Page 6  
Addeddaterevisionforpinconfigurations  
UpdatedCapacitancetable  
Page 7  
Added15nscommercialspeedgradetotheDCElectricalCharacteristics  
Added 20nsIndustrialtempforlowpower toDCElectricalCharacteristics  
Page 9, 12 & 14 Added15nscommercialspeedgrade toACElectricalCharacteristics  
Added20nsIndustrialtempforlowpowertoACElectricalCharacteristicsforRead,Write,BusyandInterrupt  
AddedCommercialfor15nsandIndustrialtempto20nsinorderinginformation  
Replaced old TM logo with new TM logo  
Page 19  
Page 1 & 19  
04/03/06:  
Page 1  
Page 19  
Addedgreenavailabilitytofeatures  
Addedgreenindicatortoorderinginformation  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
408-284-2794  
DualPortHelp@idt.com  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
19  
6.42  
APRIL 03, 2006  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY