7008S15PFGI8 [IDT]

HIGH-SPEED 64K x 8 DUAL-PORT STATIC RAM;
7008S15PFGI8
型号: 7008S15PFGI8
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

HIGH-SPEED 64K x 8 DUAL-PORT STATIC RAM

文件: 总20页 (文件大小:181K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED  
IDT7008S/L  
64K x 8 DUAL-PORT  
STATIC RAM  
LEAD FINISH (SnPb) ARE IN EOL PROCESS - LAST TIME BUY EXPIRES JUNE 15, 2018  
Features  
True Dual-Ported memory cells which allow simultaneous  
reads of the same memory location  
High-speed access  
IDT7008 easily expands data bus width to 16 bits or  
more using the Master/Slave select when cascading more  
than one device  
M/S = VIH for BUSY output flag on Master,  
M/S = VIL for BUSY input on Slave  
Interrupt Flag  
On-chip port arbitration logic  
Full on-chip hardware support of semaphore signaling  
between ports  
Fully asynchronous operation from either port  
TTL-compatible, single 5V (±10%) power supply  
Available in 84-pin PGA, 84-pin PLCC, and a 100-pin TQFP  
Industrial temperature range (–40°C to +85°C) is available  
for selected speeds  
– Commercial:15/20/25/35/55ns(max.)  
– Industrial:20/55ns(max.)  
Low-poweroperation  
– IDT7008S  
Active:750mW(typ.)  
Standby: 5mW (typ.)  
– IDT7008L  
Active:750mW(typ.)  
Standby: 1mW (typ.)  
Dual chip enables allow for depth expansion without  
external logic  
Green parts available, see ordering information  
FunctionalBlockDiagram  
R/W  
L
R
R/W  
CE0L  
CE1L  
CE0R  
CE1R  
OE  
L
OE  
R
I/O  
Control  
I/O  
Control  
I/O0-7L  
I/O0-7R  
BUSYL(1,2)  
(1,2)  
BUSY  
R
64Kx8  
MEMORY  
ARRAY  
7008  
A
15L  
A
A
15R  
0R  
Address  
Decoder  
Address  
Decoder  
A
0L  
16  
16  
ARBITRATION  
INTERRUPT  
SEMAPHORE  
LOGIC  
CE0L  
CE0R  
1L  
CE  
1R  
CE  
OE  
L
L
OE  
R
R/W  
R
R/W  
SEM  
INTL  
L
R
SEM  
(2)  
(2)  
INT  
R
M/S(1)  
3198 drw 01  
NOTES:  
1. BUSY is an input as a Slave (M/S = VIL) and an output when it is a Master (M/S = VIH).  
2. BUSY and INT are non-tri-state totem-pole outputs (push-pull).  
MARCH 2018  
1
©2018 Integrated Device Technology, Inc.  
DSC 3198/12  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Description  
The IDT7008 is a high-speed 64K x 8 Dual-Port Static RAM. The reads or writes to any location in memory. An automatic power down  
IDT7008isdesignedtobeusedasastand-alone512K-bitDual-PortRAM featurecontrolledbythe chipenables(CE0andCE1)permittheon-chip  
orasacombinationMASTER/SLAVEDual-PortRAMfor16-bit-or-more circuitry of each port to enter a very low standby power mode.  
wordsystems.UsingtheIDTMASTER/SLAVEDual-PortRAMapproach  
Fabricated using a CMOS high-performance technology, these  
in16-bitorwidermemorysystemapplicationsresultsinfull-speed,error- devicestypicallyoperateononly750mWofpower.  
freeoperationwithouttheneedforadditionaldiscretelogic.  
TheIDT7008ispackagedina84-pinCeramicPinGridArray(PGA),  
This device provides two independent ports with separate control, a84-pinPlasticLeadlessChipCarrier(PLCC)anda100-pinThinQuad  
address,andI/Opinsthatpermitindependent,asynchronousaccessfor Flatpack(TQFP).  
PinConfigurations(1,2,3)  
32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12  
A
A
A
7L  
8L  
9L  
33  
34  
11  
10  
9
A
A
A
A
A
A
A
A
A
7R  
8R  
35  
36  
37  
38  
9R  
A10L  
10R  
11R  
12R  
13R  
8
A11L  
7
A
A
12L  
13L  
6
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
5
A14L  
4
14R  
15R  
A15L  
3
NC  
Vcc  
2
NC  
GND  
NC  
7008  
J84  
1
(3,4)  
NC  
NC  
CE0L  
CE1L  
84  
83  
82  
81  
80  
79  
78  
NC  
CE0R  
CE1R  
SEM  
RIW  
L
SEM  
R
L
R/W  
OE  
R
50  
51  
OE  
L
R
GND  
GND  
GND  
NC  
77  
76  
52  
53  
GND  
NC  
75  
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74  
NOTES:  
3198 drw 02  
1. AllVccpinsmustbeconnectedtopowersupply.  
2. Packagebodyisapproximately1.15inx1.15inx.17in.  
3. Thispackagecodeisusedtoreferencethepackagediagram.  
4. AllGNDpinsmustbeconnectedtogroundsupply.  
2
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Pin Configurations(1,2,3) (con't.)  
75  
74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51  
NC  
NC  
76  
50  
49  
48  
47  
NC  
NC  
NC  
77  
78  
A6R  
A
5R  
I/O7R  
79  
80  
A4R  
46  
45  
I/O6R  
I/O5R  
I/O4R  
I/O3R  
Vcc  
I/O2R  
I/O1R  
I/O0R  
GND  
Vcc  
A3R  
A2R  
A1R  
A0R  
81  
44  
82  
83  
43  
42  
84  
85  
INTR  
41  
40  
BUSY  
R
86  
87  
88  
89  
7008  
PN100  
M/S  
GND  
39  
38  
(3  
)
BUSY  
INT  
NC  
L
37  
36  
L
I/O0L  
I/O1L  
90  
91  
35  
34  
A0L  
GND  
I/O2L  
I/O3L  
I/O4L  
I/O5L  
I/O6L  
I/O7L  
NC  
92  
93  
A1L  
33  
A2L  
94  
32  
31  
A3L  
95  
96  
A
4L  
5L  
6L  
30  
29  
A
A
97  
98  
99  
28  
27  
26  
NC  
NC  
100  
1
GND  
2
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  
3198 drw 03  
NOTES:  
1. AllVccpinsmustbeconnectedtopowersupply.  
2. Packagebodyisapproximately14mmx14mmx1.4mm.  
3. Thispackagecodeisusedtoreferencethepackagediagram.  
3
6.42  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Pin Configurations(1,2,3) (con't)  
63  
66  
67  
69  
72  
61  
64  
65  
68  
71  
60  
58  
55  
54  
49  
51  
50  
48  
46  
45  
42  
40  
11  
10  
09  
08  
A
7R  
A
9R  
A
10R  
A
12R  
A
15R  
NC  
GND  
NC  
NC SEM  
R
OER  
62  
59  
56  
47  
44  
43  
A
A
A
4R  
3R  
1R  
A
A
A
6R  
5R  
2R  
A8R  
A
11R  
A
14R  
CE0R R/W  
R
GND  
NC  
I/O6R  
CE1R  
57  
53  
52  
41  
39  
A
13R GND  
NC  
I/O7R I/O5R  
38  
37  
I/O4R I/O3R  
73  
33  
35  
34  
I/O0R  
I/O2R I/O1R  
M
INT  
R
/S  
BUSY  
R
07  
IDT7008G  
G84  
(4)  
75  
70  
74  
32  
31  
36  
06 BUSY  
L
GND  
GND  
A
0R  
Vcc  
Vcc  
84-PIN PGA  
TOP VIEW  
(5)  
76  
77  
78  
28  
29  
30  
NC  
A0L  
INT  
L
I/O1  
L
I/O0L  
GND  
05  
04  
79  
80  
83  
1
26  
27  
A1L  
A
A
A
2L  
I/O3L I/O2L  
81  
82  
84  
7
8
9
11  
12  
14  
23  
25  
03  
02  
01  
NC  
A
3L  
5L  
7L  
A
13L  
Vcc  
NC  
I/O6L I/O4L  
2
4
5
6
10  
17  
20  
22  
24  
A
4L  
6L  
A8L  
A
11L  
A14L  
CE0L R/W  
L
GND I/O7L I/O5L  
3
15  
13  
16  
18  
19  
21  
GND  
A
A9L  
A10L  
A12L  
A15L  
NC  
G
OEL  
NC  
L
CE1L  
F
SEML  
A
B
C
D
E
H
J
K
3198 drw 04  
INDEX  
NOTES:  
1. All Vcc pins must be connected to power supply.  
2. All GND pins must be connected to ground supply.  
3. Package body is approximately 1.12 in x 1.12 in x .16 in.  
PinNames  
Left Port  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part marking.  
Right Port  
CE0R, CE1R  
R/W  
OE  
Names  
Chip Enables  
CE0L, CE1L  
R/W  
L
R
Read/Write Enable  
Output Enable  
Address  
OEL  
R
A
0L - A15L  
A
0R - A15R  
I/O0R - I/O7R  
SEM  
INT  
BUSY  
M/S  
I/O0L - I/O7L  
SEM  
INT  
BUSY  
Data Input/Output  
Semaphore Enable  
Interrupt Flag  
Busy Flag  
L
R
L
R
L
R
Master or Slave Select  
Power  
V
CC  
GND  
Ground  
3198 tbl 01  
4
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table I: Chip Enable(1)  
CE  
1
Mode  
CE  
CE0  
V
IL  
V
IH  
Port Selected (TTL Active)  
L
< 0.2V  
>VCC -0.2V  
X
Port Selected (CMOS Active)  
Port Deselected (TTL Inactive)  
Port Deselected (TTL Inactive)  
Port Deselected (CMOS Inactive)  
Port Deselected (CMOS Inactive)  
V
IH  
X
VIL  
H
>VCC -0.2V  
X
X
<0.2V  
3198 tbl 02  
NOTES:  
1. Chip Enable references are shown above with the actual CE0 and CE1 levels, CE is a reference only.  
Truth Table II: Non-Contention Read/Write Control  
Inputs(1)  
Outputs  
(2)  
R/W  
I/O0-7  
Mode  
CE  
OE  
X
SEM  
H
H
L
X
L
High-Z  
DATAIN  
Deselected: Power-Down  
Write to memory  
X
H
L
H
X
L
H
DATAOUT Read memory  
High-Z Outputs Disabled  
X
H
X
3198 tbl 03  
NOTES:  
1. A0L – A15L A0R – A15R.  
2. Refer to Chip Enable Truth Table.  
Truth Table III: Semaphore Read/Write Control(1)  
Inputs  
Outputs  
(2)  
R/W  
I/O0-7  
Mode  
CE  
OE  
SEM  
H
H
X
L
L
DATAOUT Read Semaphore Flag Data Out  
H
L
X
X
L
L
DATAIN  
Write I/O0 into Semaphore Flag  
______  
Not Allowed  
3198 tbl 04  
NOTES:  
1. There are eight semaphore flags written to via I/O0 and read from all the I/Os (I/O0-I/O7). These eight semaphore flags are addressed by A0-A2.  
2. Refer to Chip Enable Truth Table.  
5
6.42  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AbsoluteMaximumRatings(1)  
RecommendedDCOperating  
Conditions  
Symbol  
Rating  
Commercial  
& Industrial  
Unit  
Symbol  
Parameter  
Min.  
Typ.  
Max. Unit  
(2)  
V
TERM  
Terminal Voltage  
with Respect  
to GND  
-0.5 to +7.0  
V
V
CC  
Supply Voltage  
4.5  
5.0  
5.5  
0
V
V
V
GND  
Ground  
0
0
T
BIAS  
STG  
Temperature  
Under Bias  
-55 to +125  
-65 to +150  
50  
oC  
oC  
6.0(2)  
0.8  
____  
V
IH  
IL  
Input High Voltage  
Input Low Voltage  
2.2  
T
Storage  
Temperature  
-0.5(1)  
V
____  
V
3198 tbl 07  
IOUT  
DC Output Current  
mA  
NOTES:  
1. VIL > -1.5V for pulse width less than 10ns.  
2. VTERM must not exceed Vcc + 10%.  
3198 tbl 05  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may  
cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those  
indicated in the operational sections of this specification is not implied. Exposure  
to absolute maximum rating conditions for extended periods may affect  
reliability.  
Capacitance  
2. VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10ns  
maximum, and is limited to < 20mA for the period of VTERM > Vcc + 10%.  
(TA = +25°C, f = 1.0mhz) (TQFP Only)  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions  
Max. Unit  
CIN  
V
IN = 0V  
9
pF  
(2)  
OUT  
C
V
OUT = 0V  
10  
pF  
3198 tbl 08  
MaximumOperatingTemperature  
andSupplyVoltage(1)  
NOTES:  
1. This parameter is determined by device characterization but is not production  
tested.  
Ambient  
2. COUT also references CI/O.  
Grade  
Commercial  
Industrial  
Temperature  
0OC to +70OC  
-40OC to +85OC  
GND  
0V  
Vcc  
5.0V  
5.0V  
+
+
10%  
10%  
0V  
3198 tbl 06  
NOTES:  
1. This is the parameter TA. This is the "instant on" case tempreature.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(2) (VCC = 5.0V ± 10%)  
7008S  
7008L  
Symbol  
|ILI  
|ILO  
Parameter  
Input Leakage Current(1)  
Output Leakage Current  
Output Low Voltage  
Test Conditions  
CC = 5.5V, VIN = 0V to VCC  
CE = VIH, VOUT = 0V to VCC  
OL = 4mA  
OH = -4mA  
Min.  
Max.  
10  
Min.  
Max.  
Unit  
µA  
µA  
V
___  
___  
|
V
5
5
___  
___  
___  
___  
|
10  
V
OL  
OH  
I
0.4  
0.4  
___  
___  
V
Output High Voltage  
I
2.4  
2.4  
V
3198 tbl 09  
NOTES:  
1. At Vcc < 2.0V, input leakages are undefined.  
2. Refer to Chip Enable Truth Table.  
6
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1,6) (VCC = 5.0V ± 10%)  
7008X15  
7008X20  
7008X25  
Com'l Only  
Com'l Only  
Com'l & Ind  
Typ.(2)  
Typ.(2)  
Typ.(2)  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Max.  
Max.  
Max.  
Unit  
ICC  
Dynamic Operating  
S
L
205  
200  
365  
325  
190  
180  
325  
285  
180  
170  
305  
265  
mA  
CE = VIL, Outputs Disabled  
SEM = VIH  
Current  
(3)  
(Both Ports Active)  
f = fMAX  
___  
___  
___  
___  
___  
___  
___  
___  
___  
___  
IND  
S
L
180  
335  
I
SB1  
Standby Current  
(Both Ports - TTL Level  
Inputs)  
COM'L  
IND  
S
L
65  
65  
110  
90  
50  
50  
90  
70  
40  
40  
85  
60  
mA  
mA  
CE  
SEM  
f = fMAX  
L
= CE  
R
= VIH  
= VIH  
R
= SEM  
L
(3)  
___  
___  
___  
___  
___  
___  
___  
___  
___  
___  
S
L
50  
85  
(5)  
ISB2  
Standby Current  
(One Port - TTL Level  
Inputs)  
COM'L  
IND  
S
L
130  
130  
245  
215  
115  
115  
215  
185  
105  
105  
200  
170  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
(3)  
f=fMAX  
___  
___  
___  
___  
___  
___  
___  
___  
___  
___  
S
L
SEM  
R
= SEM  
L
= VIH  
115  
220  
I
SB3  
Full Standby Current  
(Both Ports - All CMOS  
Level Inputs)  
Both Ports CE  
L
and  
mA  
mA  
COM'L  
IND  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
CE  
R
> VCC - 0.2V  
V
V
IN > VCC - 0.2V or  
___  
___  
___  
___  
___  
___  
___  
___  
___  
___  
IN < 0.2V, f = 0(4)  
S
L
0.2  
10  
SEMR = SEML > VCC - 0.2V  
ISB4  
Full Standby Current  
(One Port - All CMOS  
Level Inputs)  
COM'L  
IND  
S
L
120  
120  
220  
190  
110  
110  
190  
160  
100  
100  
170  
145  
CE"A" < 0.2V and  
CE"B" > VCC - 0.2V(5)  
SEMR = SEML > VCC - 0.2V  
___  
___  
___  
___  
___  
___  
___  
___  
___  
___  
S
L
V
IN > VCC - 0.2V or VIN < 0.2V  
110  
195  
Active Port Outputs Disabled  
(3)  
f = fMAX  
3198 tbl 10a  
7008X35  
Com'l Only  
7008X55  
Com'l & Ind  
Typ.(2)  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Max.  
Typ.(2)  
Max.  
Unit  
ICC  
Dynamic Operating Current  
(Both Ports Active)  
S
160  
160  
295  
255  
150  
150  
270  
230  
mA  
CE = VIL, Outputs Disabled  
L
SEM = VIH  
(3)  
f = fMAX  
_____  
_____  
_____  
_____  
IND  
S
L
150  
150  
310  
270  
ISB1  
ISB2  
Standby Current  
(Both Ports - TTL Level  
Inputs)  
COM'L  
IND  
S
L
30  
30  
85  
60  
20  
20  
85  
60  
mA  
mA  
CEL = CER = VIH  
SEMR = SEML = VIH  
_____  
_____  
_____  
_____  
S
L
13  
13  
100  
80  
(5)  
Standby Current  
(One Port - TTL Level  
Inputs)  
COM'L  
IND  
S
L
95  
95  
185  
155  
85  
85  
165  
135  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
(3)  
f=fMAX  
_____  
_____  
_____  
_____  
S
L
85  
85  
195  
165  
SEMR = SEML = VIH  
ISB3  
ISB4  
Full Standby Current  
(Both Ports - All CMOS  
Level Inputs)  
Both Ports CEL and  
CER > VCC - 0.2V  
mA  
mA  
COM'L  
IND  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
VIN > VCC - 0.2V or  
_____  
_____  
_____  
_____  
VIN < 0.2V, f = 0(4)  
SEMR = SEML > VCC - 0.2V  
S
L
1.0  
0.2  
30  
10  
Full Standby Current  
(One Port - All CMOS  
Level Inputs)  
COM'L  
IND  
S
L
90  
90  
160  
135  
80  
80  
135  
110  
CE"A" < 0.2V and  
CE"B" > VCC - 0.2V(5)  
SEMR = SEML > VCC - 0.2V  
___  
___  
___  
___  
80  
80  
175  
150  
VIN > VCC - 0.2V or VIN < 0.2V  
Active Port Outputs Disabled  
S
L
(3)  
f = fMAX  
3198 tbl 10b  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L)  
2. VCC = 5V, TA = +25°C, and are not production tested. ICCDC = 120mA (Typ.)  
3. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/ tRC, and using “AC Test Conditions” of input  
levels of GND to 3V.  
4. f = 0 means no address or control lines change.  
5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
6. Refer to Chip Enable Truth Table.  
7
6.42  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
5V  
5V  
AC Test Conditions  
Input Pulse Levels  
GND to 3.0V  
5ns Max.  
1.5V  
893  
893Ω  
Input Rise/Fall Times  
DATAOUT  
BUSY  
INT  
DATAOUT  
Input Timing Reference Levels  
Output Reference Levels  
1.5V  
30pF  
5pF*  
347Ω  
347Ω  
Output Load  
Figures 1 and 2  
3198 tbl 11  
3198 drw 05  
3198 drw 06  
Figure 2. Output Test Load  
(for tLZ, tHZ, tWZ, tOW)  
Figure 1. AC Output Test Load  
* Including scope and jig.  
Waveform of Read Cycles(5)  
tRC  
ADDR  
(4)  
tAA  
(4)  
CE(6)  
OE  
t
ACE  
(4)  
tAOE  
R/W  
(1)  
tOH  
tLZ  
VALID DATA(4)  
DATAOUT  
(2)  
t
HZ  
BUSYOUT  
(3,4)  
3198 drw 07  
t
BDD  
Timing of Power-Up Power-Down  
CE(6)  
t
PU  
tPD  
ICC  
ISB  
,
3198 drw 08  
NOTES:  
1. Timing depends on which signal is asserted last, OE or CE.  
2. Timing depends on which signal is de-asserted first CE or OE.  
3. tBDD delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY  
has no relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
6. Refer to Chip Enable Truth Table.  
8
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(6)  
7008X15  
7008X20  
7008X25  
7008X35  
Com'l Only  
7008X55  
Com'l & Ind  
Com'l Only  
Com'l & Ind  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
____  
____  
t
t
t
t
t
t
t
t
t
t
t
RC  
Read Cycle Time  
15  
20  
25  
35  
55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
____  
____  
AA  
Address Access Time  
15  
15  
20  
20  
25  
25  
35  
35  
55  
55  
Chip Enable Access Time(4)  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
ACE  
AOE  
OH  
LZ  
Output Enable Access Time  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
10  
12  
13  
20  
30  
____  
____  
____  
____  
____  
3
3
3
3
3
____  
____  
____  
____  
____  
3
3
3
3
3
Output High-Z Time(1,2)  
10  
12  
15  
15  
25  
____  
____  
____  
____  
____  
HZ  
PU  
Chip Enable to Power Up Time(2)  
Chip Disable to Power Down Time(2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access Time  
0
0
0
0
0
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
PD  
15  
20  
25  
35  
50  
____  
____  
____  
____  
____  
SOP  
SAA  
10  
10  
12  
15  
15  
____  
____  
____  
____  
____  
15  
20  
25  
35  
55  
ns  
3198 tbl 12  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage(6)  
7008X15  
7008X20  
7008X25  
Com'l Only  
7008X35  
Com'l Only  
7008X55  
Com'l & Ind  
Com'l Only  
Com'l & Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min. Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
t
t
t
t
t
t
t
t
t
t
t
t
WC  
EW  
AW  
Write Cycle Time  
15  
12  
12  
0
20  
15  
15  
0
25  
20  
20  
0
35  
30  
30  
0
55  
45  
45  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
AS  
WP  
WR  
DW  
HZ  
Write Pulse Width  
12  
0
15  
0
20  
0
25  
0
40  
0
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
10  
15  
15  
15  
30  
____  
____  
____  
____  
____  
10  
12  
15  
15  
25  
DH  
Data Hold Time(5)  
0
0
0
0
0
____  
____  
____  
____  
____  
Write Enable to Output in High-Z(1,2)  
Output Active from End-of-Write(1,2,5)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
10  
12  
15  
15  
25  
____  
____  
____  
____  
____  
WZ  
OW  
SWRD  
SPS  
____  
____  
____  
____  
____  
0
5
5
0
5
5
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
ns  
3198 tbl 13  
NOTES:  
1. Transition is measured 0mV from Low- or High-impedance voltage with Output Test Load (Figure 2).  
2. Thisparameterisguaranteedbydevicecharacterization,butisnotproductiontested.  
3. To access RAM, CE= VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time.  
4. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE= VIH and SEM = VIL.  
5. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH and tOW values will vary over voltage  
and temperature, the actual tDH will always be smaller than the actual tOW.  
6. 'X' in part numbers indicates power rating (s or L).  
9
6.42  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
tWC  
ADDRESS  
(7)  
tHZ  
OE  
tAW  
CE or SEM(9,10)  
(3)  
(2)  
(6)  
AS  
tWP  
tWR  
t
R/W  
DATAOUT  
DATAIN  
(7)  
tWZ  
tOW  
(4)  
(4)  
tDW  
t
DH  
3198 drw 09  
Timing Waveform of Write Cycle No. 2, CE Controlled Timing(1,5)  
tWC  
ADDRESS  
tAW  
CE or SEM(9,10)  
(3)  
WR  
(6)  
(2)  
t
t
EW  
tAS  
R/W  
t
DW  
tDH  
DATAIN  
3198 drw 10  
NOTES:  
1. R/W or CE must be HIGH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a LOW CE and a LOW R/W for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH to the end of write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the High-impedance state.  
6. Timing depends on which enable signal is asserted last, CE or R/W.  
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load (Figure  
2).  
8. If OE is LOW during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be  
placed on the bus for the required tDW. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as  
the specified tWP.  
9. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. tEW must be met for either condition.  
10. Refer to Chip Enable Truth Table.  
10  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
tSAA  
tOH  
A0-A2  
VALID ADDRESS  
VALID ADDRESS  
tAW  
tWR  
tACE  
tEW  
SEM  
tDW  
tSOP  
DATAOUT  
VALID(2)  
DATAIN VALID  
DATA  
0
tAS  
tWP  
tDH  
R/W  
tSWRD  
tAOE  
OE  
tSOP  
Write Cycle  
Read Cycle  
3198 drw 11  
NOTES:  
1. CE = VIH for the duration of the above timing (both write and read cycle) (Refer to Chip Enable Truth Table).  
2. "DATAOUT VALID" represents all I/O's (I/O0 - I/O15) equal to the semaphore value.  
Timing Waveform of Semaphore Write Contention(1,3,4)  
A0"A"-A2"A"  
MATCH  
(2)  
SIDE "A"  
R/W"A"  
SEM"A"  
tSPS  
A0"B"-A2"B"  
MATCH  
(2)  
SIDE  
R/W"B"  
SEM"B"  
"B"  
3198 drw 12  
NOTES:  
1. DOR = DOL = VIL, CEL = CER = VIH (Refer to Chip Enable Truth Table).  
2. All timing is the same for left and right ports. Port "A" may be either left or right port. "B" is the opposite from port "A".  
3. This parameter is measured from R/W"A" or SEM"A" going HIGH to R/W"B" or SEM"B" going HIGH.  
4. If tSPS is not satisfied, the semaphore will fall positively to one side or the other, but there is no guarantee which side will obtain the flag.  
11  
6.42  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(6)  
7008X15  
7008X20  
7008X25  
7008X35  
Com'l Only  
7008X55  
Com'l & Ind  
Com'l Only  
Com'l & Ind  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max. Unit  
BUSY TIMING (M/S=VIH  
)
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
t
t
t
t
t
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
15  
15  
15  
20  
20  
20  
20  
20  
20  
20  
20  
20  
45  
40  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable Low  
15  
17  
17  
20  
35  
BUSY Access Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
____  
____  
____  
____  
____  
5
5
5
5
5
____  
____  
____  
____  
____  
BUSY Disable to Valid Data(3)  
Write Hold After BUSY(5)  
15  
20  
25  
35  
55  
____  
____  
____  
____  
____  
12  
15  
17  
25  
25  
BUSY TIMING (M/S=VIL  
)
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
Write Hold After BUSY(5)  
t
t
WB  
WH  
0
0
0
0
0
ns  
ns  
12  
15  
17  
25  
25  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
t
WDD  
DDD  
Write Pulse to Data Delay(1)  
30  
25  
45  
30  
50  
35  
60  
45  
80  
65  
ns  
Write Data Valid to Read Data Delay(1)  
ns  
3198 tbl 14  
NOTES:  
1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read and BUSY (M/S = VIH)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0, tWDD – tWP (actual) or tDDD – tDW (actual).  
4. To ensure that the write cycle is inhibited on port "B" during contention on port "A".  
5. To ensure that a write cycle is completed on port "B" after contention on port "A".  
6. 'X' in part numbers indicates power rating (S or L).  
12  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
TimingWaveformof WritewithPort-to-PortReadandBUSY(2,5)(M/S =VIH)(4)  
tWC  
ADDR"A"  
MATCH  
tWP  
R/W"A"  
tDH  
tDW  
DATAIN "A"  
VALID  
(1)  
tAPS  
ADDR"B"  
MATCH  
tBDA  
tBDD  
BUSY"B"  
t
WDD  
DATAOUT "B"  
VALID  
(3)  
tDDD  
NOTES:  
3198 drw 13  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S = VIL (SLAVE).  
2. CEL = CER = VIL, refer to Chip Enable Truth Table.  
3. OE = VIL for the reading port.  
4. If M/S = VIL (SLAVE), then BUSY is an input (BUSY"A" = VIH and BUSY"B" = "don't care", for this example).  
5. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".  
Timing Waveform of Write with BUSY (M/S = VIL)  
tWP  
R/W"A"  
(3)  
tWB  
BUSY"B"  
(1)  
tWH  
R/W"B"  
(2)  
3198 drw 14  
NOTES:  
1. tWH must be met for both BUSY input (SLAVE) and output (MASTER).  
2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.  
3. tWB is only for the 'Slave' version.  
13  
6.42  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of BUSY Arbitration Controlled by CE Timing(1,3) (M/S = VIH)  
ADDR"A"  
ADDRESSES MATCH  
and "B"  
CE"A"  
(2)  
tAPS  
CE"B"  
tBAC  
tBDC  
BUSY"B"  
3198 drw 15  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(1) (M/S = VIH)  
ADDR"A"  
ADDR"B"  
BUSY"B"  
ADDRESS "N"  
(2)  
tAPS  
MATCHING ADDRESS "N"  
t
BAA  
tBDA  
3198 drw 16  
NOTES:  
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from port “A”.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
3. Refer to Chip Enable Truth Table.  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(1)  
7008X15  
7008X20  
7008X25  
7008X35  
Com'l Only  
7008X55  
Com'l & Ind  
Com'l Only  
Com'l & Ind  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
t
t
t
AS  
Address Set-up Time  
0
0
0
0
0
ns  
ns  
ns  
WR  
INS  
INR  
Write Recovery Time  
Interrupt Set Time  
0
0
0
0
0
____  
____  
____  
____  
____  
15  
15  
20  
20  
20  
20  
25  
25  
40  
40  
____  
____  
____  
____  
____  
Interrupt Reset Time  
ns  
3198 tbl 15  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L).  
14  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing(1,5)  
tWC  
INTERRUPT SET ADDRESS(2)  
ADDR"A"  
(3)  
(4)  
t
AS  
tWR  
CE"A"  
R/W"A"  
INT"B"  
(3)  
tINS  
3198 drw 17  
t
RC  
INTERRUPT CLEAR ADDRESS (2)  
ADDR"B"  
CE"B"  
(3)  
t
AS  
OE"B"  
(3)  
tINR  
INT"B"  
3198 drw 18  
NOTES:  
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from port “A”.  
2. See Interrupt Truth Table.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
5. Refer to Chip Enable Truth Table.  
Truth Table IV — Interrupt Flag(1,4,5)  
Left Port  
Right Port  
R/W  
L
A
15L-A0L  
R/W  
R
A
15R-A0R  
Function  
CE  
L
OE  
L
INT  
L
CE  
X
OE  
R
INT  
R
L
X
X
X
X
FFFF  
X
X
X
X
X
X
L(2)  
Set Right INT  
Reset Right INT  
Set Left INT Flag  
Reset Left INT Flag  
R
Flag  
H(3  
X
R
Flag  
)
X
X
X
L
L
FFFF  
FFFE  
X
X
X
X
L(3)  
H(2)  
L
L
X
L
L
L
FFFE  
X
X
X
X
L
3198 tbl 16  
NOTES:  
1. Assumes BUSYL = BUSYR =VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
4. INTL and INTR must be initialized at power-up.  
5. Refer to Chip Enable Truth Table.  
15  
6.42  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table V —Address BUSY  
Arbitration(4)  
Inputs  
Outputs  
A
OL-A15L  
(1)  
(1)  
A
OR-A15R  
Function  
Normal  
Normal  
Normal  
CE  
L
CE  
R
BUSY  
L
BUSY  
R
X
H
X
X
X
H
NO MATCH  
MATCH  
H
H
H
H
H
H
MATCH  
Write  
L
L
MATCH  
(2)  
(2)  
Inhibit(3)  
3198 tbl 17  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSY outputs on the IDT7008 are  
push-pull, not open drain outputs. On slaves the BUSY input internally inhibits writes.  
2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address  
and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs can not be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored  
when BUSYR outputs are driving LOW regardless of actual logic level on the pin.  
4. Refer to Chip Enable Truth Table.  
Truth Table VI — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0  
- D7  
Left  
D0  
- D7  
Right  
Status  
No Action  
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
0
0
1
1
0
1
1
1
0
1
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
3198 tbl 18  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT7008.  
2. There are eight semaphore flags written to via I/O0 and read from all I/O's (I/O0-I/O7). These eight semaphores are addressed by A0-A2.  
3. CE = VIH, SEM = VIL to access the semaphores. Refer to the Semaphore Read/Write Control Truth Table.  
FunctionalDescription  
TheIDT7008providestwoportswithseparatecontrol,addressand (INTL) is asserted when the right port writes to memory location FFFE  
I/Opinsthatpermitindependentaccessforreadsorwritestoanylocation (HEX),whereawriteisdefinedasCER=R/WR =VILpertheTruthTable.  
inmemory.TheIDT7008hasanautomaticpowerdownfeaturecontrolled TheleftportclearstheinterruptthroughaccessofaddresslocationFFFE  
by CE. The CE0 and CE1 control the on-chip power down circuitry that when CEL = OEL = VIL, R/W is a "don't care". Likewise, the right port  
permitstherespectiveporttogointoastandbymodewhennotselected interruptflag(INTR)isassertedwhentheleftportwritestomemorylocation  
(CEHIGH). Whenaportisenabled, accesstotheentirememoryarray FFFF(HEX)andtocleartheinterruptflag(INTR),therightportmustread  
ispermitted.  
thememorylocationFFFF. Themessage(8bits)atFFFEorFFFFisuser-  
definedsinceitisanaddressableSRAMlocation.Iftheinterruptfunction  
isnotused,addresslocationsFFFEandFFFFarenotusedasmailboxes,  
butaspartoftherandomaccessmemory.RefertoTableIVfortheinterrupt  
operation.  
Interrupts  
Iftheuserchoosestheinterruptfunction,amemorylocation(mailbox  
ormessagecenter)isassignedtoeachport. Theleftportinterruptflag  
16  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
result in a glitched internal write inhibit signal and corrupted data in the  
slave.  
BusyLogic  
BusyLogicprovidesahardwareindicationthatbothportsoftheRAM  
haveaccessedthesamelocationatthesametime.Italsoallowsoneofthe  
twoaccessestoproceedandsignalstheothersidethattheRAMisbusy”.  
TheBUSYpincanthenbeusedtostalltheaccessuntiltheoperationon  
Semaphores  
TheIDT7008isanextremelyfastDual-Port64Kx8CMOSStaticRAM  
theothersideiscompleted.Ifawriteoperationhasbeenattemptedfrom withanadditional8addresslocationsdedicatedtobinarysemaphoreflags.  
thesidethatreceivesaBUSYindication,thewritesignalisgatedinternally TheseflagsalloweitherprocessorontheleftorrightsideoftheDual-Port  
topreventthewritefromproceeding.  
RAMtoclaimaprivilegeovertheotherprocessorforfunctionsdefinedby  
TheuseofBUSYlogicisnotrequiredordesirableforallapplications. thesystemdesigner’ssoftware.Asanexample,thesemaphorecanbe  
InsomecasesitmaybeusefultologicallyORtheBUSYoutputstogether usedbyoneprocessortoinhibittheotherfromaccessingaportionofthe  
and use any BUSYindication as an interrupt source to flag the event of Dual-Port RAM or any other shared resource.  
anillegalorillogicaloperation.IfthewriteinhibitfunctionofBUSYlogicis  
The Dual-Port RAM features a fast access time, and both ports are  
notdesirable,theBUSYlogiccanbedisabledbyplacingthepartinslave completelyindependentofeachother.Thismeansthattheactivityonthe  
modewiththeM/Spin.OnceinslavemodetheBUSYpinoperatessolely leftportinnowayslowstheaccesstimeoftherightport. Bothportsare  
asawriteinhibitinputpin.Normaloperationcanbeprogrammedbytying identicalinfunctiontostandardCMOSStaticRAMandcanbereadfrom,  
the BUSY pins HIGH. If desired, unintended write operations can be orwrittento,atthesametimewiththeonlypossibleconflictarisingfromthe  
prevented to a port by tying the BUSYpin for that port LOW.  
simultaneous writing of, or a simultaneous READ/WRITE of, a non-  
TheBUSYoutputsontheIDT7008RAMinmastermode,arepush- semaphorelocation.Semaphoresareprotectedagainstsuchambiguous  
pulltypeoutputsanddonotrequirepullupresistorstooperate. Ifthese situationsandmaybeusedbythesystemprogramtoavoidanyconflicts  
RAMs are being expanded in depth, then the BUSY indication for the inthenon-semaphoreportionoftheDual-PortRAM.Thesedeviceshave  
resulting array requires the use of an external AND gate.  
anautomaticpower-downfeaturecontrolledbyCE,theDual-PortRAM  
enable,andSEM,thesemaphoreenable.TheCEandSEMpinscontrol  
on-chip power down circuitry that permits the respective port to go into  
standbymodewhennotselected. Thisistheconditionwhichisshownin  
Truth Table II where CE and SEM are both HIGH.  
A16  
CE0  
CE0  
MASTER  
SLAVE  
Dual Port RAM  
Dual Port RAM  
BUSY (L) BUSY (R)  
BUSY (L) BUSY (R)  
SystemswhichcanbestusetheIDT7008containmultipleprocessors  
or controllers and are typically very high-speed systems which are  
softwarecontrolledorsoftwareintensive.Thesesystemscanbenefitfrom  
aperformanceincreaseofferedbytheIDT7008shardwaresemaphores,  
whichprovidealockoutmechanismwithoutrequiringcomplexprogram-  
ming.  
CE  
1
CE1  
MASTER  
Dual Port RAM  
SLAVE  
Dual Port RAM  
BUSY (L) BUSY (R)  
BUSY (L) BUSY (R)  
3198 drw 19  
Softwarehandshakingbetweenprocessorsoffersthemaximumin  
systemflexibilitybypermittingsharedresourcestobeallocatedinvarying  
configurations.TheIDT7008doesnotuseitssemaphoreflagstocontrol  
anyresourcesthroughhardware,thusallowingthesystemdesignertotal  
flexibilityinsystemarchitecture.  
An advantage of using semaphores rather than the more common  
methodsofhardwarearbitrationisthatwaitstatesareneverincurredin  
either processor. This can prove to be a major advantage in very high-  
speedsystems.  
Figure 3. Busy and chip enable routing for both width and depth  
expansion with IDT7008 RAMs.  
WidthExpansionBusyLogic  
Master/SlaveArrays  
WhenexpandinganIDT7008RAMarrayinwidthwhileusingBUSY  
logic,onemasterpartisusedtodecidewhichsideoftheRAMsarraywill  
receiveaBUSYindication, andtooutputthatindication. Anynumberof  
slaves to be addressed in the same address range as the master, use  
theBUSYsignalasawriteinhibitsignal. ThusontheIDT7008RAMthe  
How the Semaphore Flags Work  
Thesemaphorelogicisasetofeightlatcheswhichareindependent  
BUSYpinisanoutputifthepartisusedasamaster(M/Spin=VIH),and oftheDual-PortRAM.Theselatchescanbeusedtopassaflag,ortoken,  
theBUSYpinisaninputifthepartusedasaslave(M/Spin=VIL)as shown fromoneporttotheothertoindicatethatasharedresourceisinuse.The  
in Figure 3.  
semaphores provide a hardware assist for a use assignment method  
Iftwoormoremasterpartswereusedwhenexpandinginwidth,asplit called“TokenPassingAllocation.”Inthismethod,thestateofasemaphore  
decisioncouldresultwithonemasterindicatingBUSYononesideofthe latchisusedasatokenindicatingthatsharedresourceisinuse.Iftheleft  
arrayandanothermasterindicatingBUSYononeothersideofthearray. processorwantstousethisresource,itrequeststhetokenbysettingthe  
Thiswouldinhibitthewriteoperationsfromoneportforpartofawordand latch.Thisprocessorthenverifiesitssuccessinsettingthelatchbyreading  
inhibitthewriteoperationsfromtheotherportfortheotherpartoftheword. it. If it was successful, it proceeds to assume control over the shared  
TheBUSYarbitration, onamaster, isbasedonthechipenableand resource.Ifitwasnotsuccessfulinsettingthelatch,itdeterminesthatthe  
address signals only. It ignores whether an access is a read or write. In rightsideprocessorhassetthelatchfirst, hasthetokenandisusingthe  
a master/slave array, both address and chip enable must be valid long sharedresource. Theleftprocessorcantheneitherrepeatedlyrequest  
enoughforaBUSYflagtobeoutputfromthemasterbeforetheactualwrite thatsemaphore’sstatusorremoveitsrequestforthatsemaphoretoperform  
pulsecanbeinitiatedwiththeR/Wsignal.Failuretoobservethistimingcan anothertaskandoccasionallyattemptagaintogaincontrolofthetokenvia  
17  
6.42  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
thesetandtestsequence.Oncetherightsidehasrelinquishedthetoken, side during subsequent read. Had a sequence of READ/WRITE been  
theleftsideshouldsucceedingainingcontrol. usedinstead,systemcontentionproblemscouldhaveoccurredduringthe  
ThesemaphoreflagsareactiveLOW.Atokenisrequestedbywriting gap between the read and write cycles.  
azerointoasemaphorelatchandisreleasedwhenthesamesidewrites  
aonetothatlatch.  
Itisimportanttonotethatafailedsemaphorerequestmustbefollowed  
byeitherrepeatedreadsorbywritingaoneintothesamelocation. The  
The eight semaphore flags reside within the IDT7008 in a separate reasonforthisiseasilyunderstoodbylookingatthesimplelogicdiagram  
memoryspacefromtheDual-PortRAM.This addressspaceisaccessed ofthesemaphoreflaginFigure4.Twosemaphorerequestlatchesfeed  
byplacingaLOWinputontheSEMpin(whichactsasachipselectforthe into a semaphore flag. Whichever latch is first to present a zero to the  
semaphore flags) and using the other control pins (Address, CE, and semaphoreflagwillforceitssideofthesemaphoreflagLOWandtheother  
R/W)astheywouldbeusedinaccessingastandardStaticRAM. Each sideHIGH.Thisconditionwillcontinueuntilaoneiswrittentothesame  
oftheflagshasauniqueaddresswhichcanbeaccessedbyeitherside semaphorerequestlatch.Shouldtheotherside’ssemaphorerequestlatch  
throughaddresspinsA0A2.Whenaccessingthesemaphores,noneof havebeenwrittentoazerointhemeantime,thesemaphoreflagwillflip  
theotheraddresspinshasanyeffect.  
Whenwritingtoasemaphore,onlydatapinD0isused.IfaLOWlevel  
L PORT  
R PORT  
iswrittenintoanunusedsemaphorelocation,thatflagwillbesettoazero  
onthatsideandaoneontheotherside(seeTableVI).Thatsemaphore  
can now only be modified by the side showing the zero. When a one is  
writtenintothesamelocationfromthesameside,theflagwillbesettoa  
one for both sides (unless a semaphore request from the other side is  
pending)andthencanbewrittentobybothsides.Thefactthattheside  
whichisabletowriteazerointoasemaphoresubsequentlylocksoutwrites  
fromtheothersideiswhatmakessemaphoreflagsusefulininterprocessor  
communications.(Athoroughdiscussionontheuseofthisfeaturefollows  
shortly.)Azerowrittenintothesamelocationfromtheothersidewillbe  
storedinthesemaphorerequestlatchforthatsideuntilthesemaphoreis  
freedbythefirstside.  
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso  
thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining  
azeroreadsasallzeros.Thereadvalueislatchedintooneside’soutput  
registerwhenthatside'ssemaphoreselect(SEM)andoutputenable(OE)  
signalsgoactive.Thisservestodisallowthesemaphorefromchanging  
stateinthemiddleofareadcycleduetoawritecyclefromtheotherside.  
Becauseofthislatch,arepeatedreadofasemaphoreinatestloopmust  
cause either signal (SEM or OE) to go inactive or the output will never  
change.  
AsequenceWRITE/READmustbeusedbythesemaphoreinorder  
to guarantee that no system level contention will occur. A processor  
requestsaccesstosharedresourcesbyattemptingtowriteazerointoa  
semaphorelocation.Ifthesemaphoreisalreadyinuse,thesemaphore  
requestlatchwillcontainazero,yetthesemaphoreflagwillappearasone,  
afactwhichtheprocessorwillverifybythesubsequentread(seeTable  
VI). As an example, assume a processor writes a zero to the left port at  
afreesemaphorelocation.Onasubsequentread,theprocessorwillverify  
thatithaswrittensuccessfullytothatlocationandwillassumecontrolover  
the resource in question. Meanwhile, if a processor on the right side  
attemptstowriteazerotothesamesemaphoreflagitwillfail, aswillbe  
verifiedbythefactthataonewillbereadfromthatsemaphoreontheright  
SEMAPHORE  
REQUEST FLIP FLOP  
SEMAPHORE  
REQUEST FLIP FLOP  
0
0
D
D
D
D
Q
Q
WRITE  
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
,
READ  
3198 drw 20  
Figure 4. IDT7008 Semaphore Logic  
overtotheothersideassoonasaoneiswrittenintothefirstside’srequest  
latch.Thesecondside’sflagwillnowstayLOWuntilitssemaphorerequest  
latchiswrittentoaone.Fromthisitiseasytounderstandthat,ifasemaphore  
is requested and the processor which requested it no longer needs the  
resource, the entire system can hang up until a one is written into that  
semaphorerequestlatch.  
The critical case of semaphore timing is when both sides request a  
single token by attempting to write a zero into it at the same time. The  
semaphorelogicisspeciallydesignedtoresolvethisproblem.Ifsimulta-  
neousrequestsaremade,thelogicguaranteesthatonlyonesidereceives  
thetoken.Ifonesideisearlierthantheotherinmakingtherequest,thefirst  
sidetomaketherequestwillreceivethetoken.Ifbothrequestsarriveat  
thesametime,theassignmentwillbearbitrarilymadetooneportorthe  
other.  
One caution that should be noted when using semaphores is that  
semaphoresalonedonotguaranteethataccesstoaresourceissecure.  
Aswithanypowerfulprogrammingtechnique,ifsemaphoresaremisused  
or misinterpreted, a software error can easily happen.  
Initializationofthesemaphoresisnotautomaticandmustbehandled  
viatheinitializationprogramatpower-up.Sinceanysemaphorerequest  
flagwhichcontainsazeromustberesettoaone,allsemaphoresonboth  
sidesshouldhaveaonewrittenintothematinitializationfrombothsides  
to assure that they will be free when needed.  
18  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
OrderingInformation  
XXXXX  
A
999  
A
A
A
A
Device Power Speed Package  
Type  
Process/  
Temperature  
Range  
Blank Tube or Tray  
8
Tape and Reel  
Blank  
I(1)  
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
G(2)  
Green  
PF  
G
J
100-pin TQFP (PN100)  
84-pin PGA (G84)  
84-pin PLCC (J84)  
Commercial Only  
Commercial & Industrial  
Commercial Only  
Commercial Only  
Commercial & Industrial  
15  
20  
25  
35  
55  
Speed in nanoseconds  
S
L
Standard Power  
Low Power  
7008 512K (64K x 8) Dual-Port RAM  
3198 drw 21  
NOTES:  
1. IndustrialtemperaturerangeisavailableonselectedTQFPpackagesinstandardpower.Forotherspeeds,packagesandpowerscontactyoursalesoffice.  
2. Green parts available. For specific speeds, packages and powers contact your local sales office.  
LEADFINISH(SnPb)partsareinEOLprocess.ProductDiscontinuationNotice-PDN#SP-17-02  
DatasheetDocumentHistory  
01/06/99:  
Initiated datasheet document history  
Convertedtonewformat  
Cosmeticandtypographicalcorrections  
Addedadditionalnotestopinconfigurations  
Changeddrawingformat  
Replaced IDT logo  
Increasedstoragetemperatureparameter  
ClarifiedTA parameter  
Pages 2 and 3  
06/03/99:  
11/10/99:  
05/08/99:  
Page 6  
Page 7  
DCElectricalparameters–changedwordingfrom"open"to"disabled"  
Changed±200mVto0mVinnotes  
07/26/04:  
Page 2 - 4  
Page 6  
Addeddaterevisionforpinconfigurations  
UpdatedCapacitancetable  
Page 7  
Added15nscommercialspeedgradetotheDCElectricalCharacteristics  
Added 20nsIndustrialtempforlowpower toDCElectricalCharacteristics  
Page 9, 12 & 14 Added15nscommercialspeedgrade toACElectricalCharacteristics  
Added20nsIndustrialtempforlowpowertoACElectricalCharacteristicsforRead,Write,BusyandInterrupt  
Page 19  
Page 1 & 19  
AddedCommercialfor15nsandIndustrialtempto20nsinorderinginformation  
Replaced old TM logo with new TM logo  
19  
6.42  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
DatasheetDocumentHistory(con't)  
04/03/06:  
Page 1  
Addedgreenavailabilitytofeatures  
Page 19  
Page 19  
Page 19  
Addedgreenindicatortoorderinginformation  
Removed "IDT" from orderable part number  
Added Tape & Reel to Ordering Information  
10/21/08:  
10/02/14:  
Page 2, 3, 4 & 19 The package codes for PN100-1, G108-1 & J84-1 changed to PN100, G108 & J84 respectively to  
matchstandardpackagecodes  
04/06/16:  
Page 2  
Changed diagram for the J84 pin configuration by rotating package pin labels and pin  
numbers 90 degrees clockwise to reflect pin1 orientation and added pin 1 dot at pin 1  
Removed J84 chamfer and aligned the top and bottom pin labels in the standard direction  
Changed diagram for the PN100 pin configuration by rotating package pin labels and pin  
numbers 90 degrees counter clockwise to reflect pin 1 orientation and added pin 1 dot at pin 1  
AddedtheIDTlogo,changedthetext tobeinalignment withnewdiagrammarkingspecs,removeddate  
fromallpinconfigurationsandupdatedfootnotereferencesfortheJ84&thePN100pinconfigurations  
Military grade removed from Absolute Max and Max Operating tables  
Page 3  
Page 6  
Page 7, 9, 12 & 14 Military grade removed from all DC Elec & all AC Elec tables for all speeds  
Page 19  
MilitarygraderemovedfromOrderingInformation  
ProductDiscontinuationNotice-PDN#SP-17-02  
Last time buy expires June 15, 2018  
03/06/18:  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
408-284-2794  
DualPortHelp@idt.com  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
20  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY