7016S15PF [IDT]

TQFP-80, Tray;
7016S15PF
型号: 7016S15PF
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

TQFP-80, Tray

文件: 总20页 (文件大小:164K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED  
16K X 9 DUAL-PORT  
STATIC RAM  
IDT7016S/L  
IDT7016 easily expands data bus width to 18 bits or more  
using the Master/Slave select when cascading more than  
one device  
M/S = VIH for BUSY output flag on Master  
M/S = VIL for BUSY input on Slave  
Features  
True Dual-Ported memory cells which allow simultaneous  
reads of the same memory location  
High-speed access  
– Commercial:12/15/20/25/35ns(max.)  
Industrial:20ns (max.)  
Busy and Interrupt Flag  
On-chip port arbitration logic  
Military:20/25/35ns(max.)  
Low-power operation  
Full on-chip hardware support of semaphore signaling  
between ports  
Fully asynchronous operation from either port  
TTL-compatible, single 5V (±10%) power supply  
Available in ceramic 68-pin PGA, 68-pin PLCC, and an 80-  
pin TQFP  
Industrial temperature range (–40°C to +85°C) is available  
for selected speeds  
Green parts available, see ordering information  
IDT7016S  
Active:750mW(typ.)  
Standby: 5mW (typ.)  
IDT7016L  
Active:750mW(typ.)  
Standby: 1mW (typ.)  
FunctionalBlockDiagram  
OEL  
OER  
CER  
CEL  
R/WR  
R/W  
L
I/O0L- I/O8L  
I/O0R-I/O8R  
I/O  
I/O  
Control  
Control  
BUSY (1,2)  
L
(1,2)  
R
BUSY  
A
13L  
A
13R  
0R  
Address  
Decoder  
MEMORY  
ARRAY  
Address  
Decoder  
A
A
0L  
14  
14  
ARBITRATION  
INTERRUPT  
SEMAPHORE  
LOGIC  
CE  
OE  
L
L
CE  
OE  
R/W  
R
R
R
R/W  
L
SEM  
L
SEM  
R
M/S  
(2)  
(2)  
INTL  
INT  
R
3190 drw 01  
NOTES:  
1. In MASTER mode: BUSY is an output and is a push-pull driver  
In SLAVE mode: BUSY is input.  
2. BUSY outputs and INT outputs are non-tri-stated push-pull drivers.  
JANUARY 2009  
1
©2009 IntegratedDeviceTechnology,Inc.  
DSC 3190/10  
IDT7016S/L  
High-Speed 16K x 9 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Description  
The IDT7016 is a high-speed 16K x 9 Dual-Port Static RAM. The  
IDT7016 is designed to be used as stand-alone Dual-Port RAMs or as  
acombinationMASTER/SLAVEDual-PortRAMfor18-bit-or-morewider  
systems.UsingtheIDTMASTER/SLAVEDual-PortRAMapproachin18-  
bitorwidermemorysystemapplicationsresultsinfull-speed,error-free  
operationwithouttheneedforadditionaldiscretelogic.  
featurecontrolledbyCEpermitstheon-chipcircuitryofeachporttoenter  
a very low standby power mode.  
FabricatedusingIDT’sCMOShigh-performancetechnology,these  
devices typicallyoperate ononly750mWofpower.  
TheIDT7016is packagedinaceramic68-pinPGA,a64-pinPLCC  
and an 80-pinTQFP (Thin Quad Flatpack). Military grade product is  
manufacturedincompliancewiththelatestrevisionofMIL-PRF-38535  
QML,makingitideallysuitedtomilitarytemperatureapplicationsdemand-  
ingthehighestlevelofperformanceandreliability.  
This device provides two independent ports with separate control,  
address,andI/Opinsthatpermitindependent,asynchronousaccessfor  
reads or writes to any location in memory. An automatic power down  
PinConfigurations(1,2,3)  
11/19/01  
INDEX  
9
8
7
6
5
4
3
2
1
68 67 66 65 64 63 62 61  
60  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
I/O2L  
I/O3L  
I/O4L  
I/O5L  
GND  
I/O6L  
I/O7L  
A
A
A
A
A
A
5L  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
4L  
3L  
2L  
1L  
0L  
IDT7016J  
,
(4)  
J68-1  
INTL  
BUSY  
GND  
M/S  
BUSY  
INT  
L
VCC  
68-Pin PLCC  
GND  
I/O0R  
I/O1R  
I/O2R  
(5)  
Top View  
R
R
VCC  
A
A
A
A
A
0R  
I/O3R  
I/O4R  
I/O5R  
I/O6R  
1R  
2R  
3R  
4R  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
3190 drw 02  
Pin Names (7016)  
Left Port  
Right Port  
Names  
NOTES:  
1. All VCC pins must be connected to power supply.  
2. All GND pins must be connected to ground supply.  
3. Package body is approximately .95 in x .95 in x .17 in.  
4. This package code is used to reference the package diagram.  
5. This text does not imply orientation of Part-marking.  
Chip Enable  
CE  
R/W  
OE  
L
CE  
R/W  
OE  
R
L
R
Read/Write Enable  
Output Enable  
Address  
L
R
A0L - A13L  
A0R - A13R  
I/O0L - I/O8L  
SEM  
INT  
BUSY  
I/O0R - I/O8R  
Data Input/Output  
Semaphore Enable  
Interrupt Flag  
Busy Flag  
L
SEM  
INT  
BUSY  
M/S  
R
L
R
L
R
Master or Slave Select  
Power  
V
CC  
GND  
Ground  
3190 tbl 01  
2
6.42  
IDT7016S/L  
High-Speed 16K x 9 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
PinConfigurations(1,2,3)(con't.)  
11/19/01  
INDEX  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
NC  
1
2
NC  
I/O2L  
I/O3L  
I/O4L  
I/O5L  
GND  
I/O6L  
I/O7L  
A5L  
A4L  
A3L  
A2L  
A1L  
A0L  
3
4
5
6
7
IDT7016PF  
(4)  
INT  
L
8
PN80-1  
BUSY  
L
9
VCC  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
NC  
GND  
I/O0R  
I/O1R  
I/O2R  
80-Pin TQFP  
(5)  
M/S  
Top View  
BUSY  
R
INT  
R
A
A
A
A
A
0R  
1R  
2R  
3R  
4R  
VCC  
I/O3R  
I/O4R  
I/O5R  
I/O6R  
NC  
NC  
NC  
3190 drw 03  
11/19/01  
51  
50  
48  
A
46  
A
44  
42  
40  
38  
36  
11  
A4L  
2L  
0L BUSY  
L
M/S INT  
R
A1R  
A3R  
A
5L  
53  
A
52  
49  
47  
A
45  
INT  
43  
41  
39  
A
37  
35  
34  
A
10  
09  
08  
07  
L
GND BUSY  
R
A4R  
7L  
A3L  
1L  
0R  
A2R  
5R  
A
6L  
55  
A
54  
32  
33  
A
A7R  
9L  
6R  
A
8L  
57  
A
56  
A
30  
31  
A
A9R  
8R  
11L  
10L  
12L  
59  
58  
A
28  
29  
A
IDT7016G  
A11R  
10R  
12R  
V
CC  
(4)  
G68-1  
61  
60  
26  
GND  
27  
A
68-Pin PGA  
Top View  
06  
05  
(5)  
N/C  
A
13L  
63  
62  
24  
N/C  
25  
A
13R  
SEM  
L
CE  
L
65  
64  
22  
SEM  
23  
CE  
04  
03  
02  
R
R
OE  
L
R/W  
L
67  
I/O0L  
66  
20  
OE  
21  
R/W  
R
R
I/O8L  
1
3
5
GND  
7
9
GND  
68  
11  
13  
V
15  
18  
I/O7R  
19  
I/O8R  
CC  
I/O1L  
I/O4L  
I/O7L  
I/O2L  
I/O1R  
I/O4R  
,
NOTES:  
2
4
6
8
10  
12  
14  
16  
17  
1. All VCC pins must be connected to power supply.  
2. All GND pins must be connected to ground supply.  
3. PN80-1 package body is approximately  
14mm x 14mm x 1.4mm.  
01  
I/O6L  
I/O3L I/O5L  
I/O0R I/O2R I/O3R I/O5R I/O6R  
V
CC  
A
B
C
D
E
F
G
H
J
K
L
INDEX  
G68-1 package body is approximately  
1.18 in x 1.18 in x .16 in.  
3190 drw 04  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part-marking.  
6.432  
IDT7016S/L  
High-Speed 16K x 9 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Truth Table I: Non-Contention Read/Write Control  
Inputs(1)  
R/W  
Outputs  
I/O0-8  
Mode  
CE  
H
L
OE  
X
X
L
SEM  
H
X
L
High-Z  
DATAIN  
DATAOUT  
High-Z  
Deselcted: Power-Down  
Write to Memory  
Read Memory  
H
L
H
X
H
X
H
X
Outputs Disabled  
3190 tbl 02  
NOTE:  
1.  
Condition: A0L A13L A0R A13R  
Truth Table II: Semaphore Read/Write Control(1)  
Inputs  
Outputs  
R/W  
H
I/O0-8  
Mode  
- I/O  
CE  
H
OE  
L
SEM  
L
DATAOUT  
Read Semaphore Flag Data Out (I/O  
Write I/O into Semaphore Flag  
Not Allowed  
0
8)  
H
X
L
DATAIN  
0
____  
L
X
X
L
3190 tbl 03  
NOTE:  
1. There are eight semaphore flags written to via I/O0 and read from all I/Os (I/O0-I/O8). These eight semaphores are addressed by A0 - A2.  
AbsoluteMaximumRatings(1)  
MaximumOperating  
TemperatureandSupplyVoltage(1)  
Symbol  
Rating  
Commercial  
& Industrial  
Military  
Unit  
Grade  
Ambient  
GND  
Vcc  
(2)  
Temperature  
V
TERM  
Terminal Voltage  
with Respect  
to GND  
-0.5 to +7.0  
-0.5 to +7.0  
V
Military  
-55OC to +125OC  
0OC to +70OC  
0V  
0V  
0V  
5.0V  
5.0V  
5.0V  
+
+
+
10%  
10%  
Temperature  
Under Bias  
-55 to +125  
-65 to +150  
50  
-65 to +135  
-65 to +150  
50  
oC  
oC  
Commercial  
Industrial  
TBIAS  
-40OC to +85OC  
10%  
Storage  
Temperature  
TSTG  
3190 tbl 05  
NOTES:  
1. This is the parameter TA. This is the "instant on" case temperature.  
DC Output  
Current  
mA  
I
OUT  
3190 tbl 04  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may  
cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above  
those indicated in the operational sections of this specification is not implied.  
Exposure to absolute maximum rating conditions for extended periods may  
affect reliability.  
RecommendedDCOperating  
Conditions  
Symbol  
Parameter  
Supply Voltage  
GND Ground  
Min.  
Typ. Max. Unit  
2. VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10ns  
maximum, and is limited to < 20mA for the period of VTERM > Vcc + 10%.  
VCC  
4.5  
5.0  
5.5  
0
V
V
V
0
0
V
IH  
Input High Voltage  
Input Low Voltage  
2.2  
6.0(2)  
0.8  
____  
-0.5(1)  
V
____  
VIL  
3190 tbl 06  
NOTES:  
1. VIL > -1.5V for pulse width less than 10ns.  
2. VTERM must not exceed Vcc + 10%.  
4
6.42  
IDT7016S/L  
High-Speed 16K x 9 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Capacitance(1)  
(TA = +25°C, f = 1.0mhz, for TQFP ONLY)  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions(2)  
IN = 3dV  
OUT = 3dV  
Max. Unit  
CIN  
V
9
pF  
COUT  
V
10  
pF  
3190 tbl 07  
NOTES:  
1. This parameter is determined by device characteristics but is not production  
tested.  
2. 3dV references the interpolated capacitance when the input and output signals  
switch from 0V to 3V or from 3V to 0V .  
DC Electrical Characteristics Over the  
Operating Temperature and Supply Voltage Range (VCC = 5.0V ± 10%)  
7016S  
7016L  
Symbol  
|ILI  
|ILO  
Parameter  
Test Conditions  
Min.  
Max.  
10  
Min.  
Max.  
5
Unit  
µA  
µA  
V
(1)  
___  
___  
|
Input Leakage Current  
V
CC = 5.5V, VIN = 0V to VCC  
___  
___  
___  
___  
|
Output Leakage Current  
Output Low Voltage  
Output High Voltage  
10  
5
CE = VIH, VOUT = 0V to VCC  
VOL  
I
OL = +4mA  
0.4  
0.4  
___  
___  
VOH  
I
OH = -4mA  
2.4  
2.4  
V
3190 tbl 08  
NOTE:  
1. At Vcc < 2.0V, Input leakages are undefined.  
Output Loads and AC Test  
Conditions  
Input Pulse Levels  
GND to 3.0V  
3ns Max.  
1.5V  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference Levels  
1.5V  
Output Load  
Figures 1 and 2  
3190 tbl 09  
5V  
5V  
893  
893Ω  
DATAOUT  
BUSY  
INT  
DATAOUT  
5pF*  
30pF  
347Ω  
347Ω  
,
3190 drw 06  
Figure 1. AC Output Test Load  
Figure 2. Output Test Load  
(for tLZ, tHZ, tWZ, tOW)  
*Including scope and jig.  
6.452  
IDT7016S/L  
High-Speed 16K x 9 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1) (con't.) (VCC = 5.0V ± 10%)  
7016X12  
Com'l Only  
7016X15  
Com'l Only  
Symbol  
Parameter  
Test Condition  
Version  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
ICC  
Dynamic Operating  
Current  
(Both Ports Active)  
COM'L  
S
L
170  
170  
325  
275  
170  
170  
310  
260  
mA  
CE = VIL, Outputs Disabled  
SEM = VIH  
(3)  
f = fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
I
SB1  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
S
L
25  
25  
70  
60  
25  
25  
60  
50  
mA  
mA  
mA  
mA  
CE  
SEM  
f = fMAX  
R
= CE  
L
= VIH  
= VIH  
R
= SEM  
L
(3)  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
(5)  
ISB2  
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
S
L
105  
105  
200  
170  
105  
105  
190  
160  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
(3)  
f=fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
SEM  
R
= SEM  
L
= VIH  
and  
ISB3  
Full Standby Current  
(Both Ports - All CMOS  
Level Inputs)  
Both Ports CE  
CE > VCC - 0.2V  
IN > VCC - 0.2V or  
IN < 0.2V, f = 0(4)  
SEM = SEM > VCC - 0.2V  
L
COM'L  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
R
V
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
V
R
L
ISB4  
Full Standby Current  
(One Port - All CMOS  
Level Inputs)  
COM'L  
S
L
100  
100  
180  
150  
100  
100  
170  
140  
CE < 0.2V and  
CE"BA" > VCC - 0.2V  
(5)  
SEM  
R
= SEML > VCC - 0.2V  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
V
IN > VCC - 0.2V or VIN < 0.2V  
Active Port Outputs Disabled  
(3)  
f = fMAX  
3190 tbl 10  
7016X20  
Com'l, Ind  
& Military  
7016X25  
Com'l &  
Military  
7016X35  
Com'l &  
Military  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
ICC  
Dynamic Operating Current  
(Both Ports Active)  
S
L
160  
160  
290  
240  
155  
155  
265  
220  
150  
150  
250  
210  
mA  
CE = VIL, Outputs Disabled  
SEM = VIH  
(3)  
f = fMAX  
MIL &  
IND  
S
L
160  
160  
380  
310  
155  
155  
340  
280  
150  
150  
300  
250  
I
SB1  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
S
L
20  
20  
60  
50  
16  
16  
60  
50  
13  
13  
60  
50  
mA  
mA  
mA  
mA  
CE  
R
SEM  
= CE = VIH  
R
= SLEM  
L
= VIH  
(3)  
f = fMAX  
MIL &  
IND  
S
L
20  
20  
80  
65  
16  
16  
80  
65  
13  
13  
80  
65  
(5)  
ISB2  
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
S
L
95  
95  
180  
150  
90  
90  
170  
140  
85  
85  
155  
130  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
(3)  
f=fMAX  
SEM  
MIL &  
IND  
S
L
95  
95  
240  
210  
90  
90  
215  
180  
85  
85  
190  
160  
R
= SEM  
L
= VIH  
and  
ISB3  
Full Standby Current  
(Both Ports - All CMOS  
Level Inputs)  
Both Ports CE  
CE > VCC - 0.2V  
IN > VCC - 0.2V or  
IN < 0.2V, f = 0(4)  
SEM = SEM > VCC - 0.2V  
L
COM'L  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
R
V
V
MIL &  
IND  
S
L
1.0  
0.2  
30  
10  
1.0  
0.2  
30  
10  
1.0  
0.2  
30  
10  
R
L
ISB4  
Full Standby Current  
(One Port - All CMOS Level  
Inputs)  
COM'L  
S
L
90  
90  
155  
130  
85  
85  
145  
120  
80  
80  
135  
110  
CE < 0.2V and  
CE"BA" > VCC - 0.2V  
(5)  
SEM  
R
= SEML > VCC - 0.2V  
MIL &  
IND  
S
L
90  
90  
230  
200  
85  
85  
200  
170  
80  
80  
175  
150  
V
IN > VCC - 0.2V or VIN < 0.2V  
Active Port Outputs Disabled  
(3)  
f = fMAX  
3190 tbl 11  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L)  
2. VCC = 5V, TA = +25°C, and are not production tested. ICCDC = 120mA(typ.)  
3. At f = fMAX, address and I/Os are cycling at the maximum frequency read cycle of 1/tRC.  
4. f = 0 means no address or control lines change.  
5. Port "A" may be either left or right port. Port "B" is the opposite of Port "A".  
6
6.42  
IDT7016S/L  
High-Speed 16K x 9 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(4)  
7016X12  
Com'l Only  
7016X15  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
t
RC  
AA  
ACE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
SAA  
Read Cycle Time  
12  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
t
Address Access Time  
12  
12  
15  
15  
Chip Enable Access Time(3)  
Output Enable Access Time  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
____  
____  
____  
____  
t
t
8
10  
____  
____  
t
3
3
____  
____  
t
3
3
Output High-Z Time(1,2)  
10  
10  
____  
____  
t
t
Chip Enable to Power Up Time(2)  
Chip Disable to Power Down Time(2)  
0
0
____  
____  
____  
____  
t
12  
15  
____  
____  
t
Semaphore Flag Update Pulse (OE or SEM)  
10  
10  
____  
____  
t
Semaphore Address Access Time  
12  
15  
ns  
3190 tbl 12a  
7016X20  
Com'l, Ind  
& Military  
7016X25  
Com'l &  
Military  
7016X35  
Com'l &  
Military  
Symbol  
READ CYCLE  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
t
RC  
AA  
ACE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
SAA  
Read Cycle Time  
20  
25  
35  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
t
Address Access Time  
20  
20  
25  
25  
35  
35  
Chip Enable Access Time(3)  
Output Enable Access Time  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
____  
____  
____  
____  
____  
____  
t
t
12  
13  
20  
____  
____  
____  
t
3
3
3
____  
____  
____  
t
3
3
3
Output High-Z Time(1,2)  
12  
15  
20  
____  
____  
____  
t
t
Chip Enable to Power Up Time(2)  
Chip Disable to Power Down Time(2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access Time  
0
0
0
____  
____  
____  
____  
____  
____  
t
20  
25  
35  
____  
____  
____  
t
10  
10  
10  
____  
____  
____  
t
20  
25  
35  
ns  
3190 tbl 12b  
NOTES:  
1. Transition is measured 0mV from Low- or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization but not production tested.  
3. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL.  
4. 'X' in part numbers indicates power rating (S or L).  
6.472  
IDT7016S/L  
High-Speed 16K x 9 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of Read Cycles(5)  
tRC  
ADDR  
(4)  
t
AA  
(4)  
t
ACE  
CE  
OE  
(4)  
t
AOE  
R/W  
DATAOUT  
BUSYOUT  
NOTES:  
(1)  
t
OH  
tLZ  
(4)  
VALID DATA  
(2)  
t
HZ  
(3,4)  
3190 drw 07  
t
BDD  
1. Timing depends on which signal is asserted last, OE or CE.  
2. Timing depends on which signal is de-asserted first, CE or OE.  
3. tBDD delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY  
has no relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last: tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
Timing of Power-Up / Power-Down  
CE  
t
PU  
tPD  
I
CC  
50%  
50%  
I
SB  
,
3190 drw 08  
8
6.42  
IDT7016S/L  
High-Speed 16K x 9 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage(5)  
7016X12  
Com'l Only  
7016X15  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
12  
10  
10  
0
15  
12  
12  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
t
t
t
10  
2
12  
2
t
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
t
10  
10  
____  
____  
t
10  
10  
____  
____  
t
0
0
(1,2)  
____  
____  
t
Write Enable to Output in High-Z  
Output Active from End-of-Write(1, 2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
10  
10  
____  
____  
t
3
5
5
3
5
5
____  
____  
____  
____  
t
t
ns  
3190 tbl 13a  
7016X20  
Com'l, Ind  
& Military  
7016X25  
Com'l &  
Military  
7016X35  
Com'l &  
Military  
Symbol  
WRITE CYCLE  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
20  
15  
15  
0
25  
20  
20  
0
35  
30  
30  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
t
t
t
15  
2
20  
2
25  
2
t
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
t
15  
15  
15  
____  
____  
____  
t
12  
15  
20  
____  
____  
____  
t
0
0
0
(1,2)  
____  
____  
____  
t
Write Enable to Output in High-Z  
12  
15  
20  
t
Output Active from End-of-Write(1, 2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
3
5
5
3
5
5
3
5
5
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
t
ns  
3190 tbl 13b  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization but not production tested.  
3. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time.  
4. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH and tOW values will vary over voltage  
and temperature, the actual tDH will always be smaller than the actual tOW.  
5. 'X' in part numbers indicates power rating (S or L).  
6.492  
IDT7016S/L  
High-Speed 16K x 9 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
t
WC  
ADDRESS  
(7)  
t
HZ  
OE  
t
AW  
CE or SEM(9)  
(3)  
(2)  
(6)  
t
WR  
t
AS  
tWP  
R/W  
(7)  
t
LZ  
t
OW  
t
WZ  
(4)  
(4)  
OUT  
DATA  
t
DW  
t
DH  
IN  
DATA  
3190 drw 09  
Timing Waveform of Write Cycle No. 2, CE Controlled Timing(1,5)  
t
WC  
ADDRESS  
t
AW  
CE or SEM(9)  
R/W  
(6)  
AS  
(3)  
(2)  
t
WR  
t
tEW  
t
DW  
tDH  
DATAIN  
3190 drw 10  
NOTES:  
1. R/W or CE must be HIGH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a LOW CE and a LOW R/W for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH to the end of write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the High-impedance state.  
6. Timing depends on which enable signal is asserted last, CE or R/W.  
7. This parameter is guaranteed by device characterization but is not production tested. Transition is measured 0mV from steady state with the Output Test Load (Figure  
2).  
8. If OE is LOW during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be  
placed on the bus for the required tDW. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as  
the specified tWP.  
9. To access RAM, CE = VIL and SEM = VIH. To access Semaphore, CE = VIH and SEM = VIL. tEW must be met for either condition.  
10  
6.42  
IDT7016S/L  
High-Speed 16K x 9 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
tSAA  
VALID ADDRESS  
VALID ADDRESS  
t
A0-A2  
tWR  
tAW  
ACE  
tEW  
SEM  
t
OH  
t
DW  
tSOP  
DATAIN  
VALID  
DATAOUT  
VALID(2)  
I/O  
tAS  
tWP  
tDH  
R/W  
tAOE  
tSWRD  
OE  
Read Cycle  
Write Cycle  
3190 drw 11  
NOTES:  
1. CE = VIH for the duration of the above timing (both write and read cycle).  
2. DATAOUT VALID” represents all I/O's (I/O0-I/O8) equal to the semaphore value.  
Timing Waveform of Semaphore Write Condition(1,3,4)  
A0"A"-A2 "A"  
MATCH  
SIDE(2) "A"  
R/W"A"  
SEM"A"  
tSPS  
A0"B"-A2 "B"  
MATCH  
SIDE(2)  
"B"  
R/W"B"  
SEM"B"  
3190 drw 12  
NOTES:  
1. DOR = DOL =VIH, CER = CEL =VIH.  
2. All timing is the same for left and right ports. PortA” may be either left or right port. B” is the opposite port from A”.  
3. This parameter is measured from R/WA” or SEMA” going HIGH to R/WB” or SEMB” going HIGH.  
4. If tSPS is not satisfied, there is no guarantee which side will obtain the semaphore flag.  
6.1412  
IDT7016S/L  
High-Speed 16K x 9 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(6)  
7016X12  
Com'l Only  
7016X15  
Com'l Only  
Symbol  
BUSY TIMING (M/S = VIH  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
)
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
12  
12  
12  
15  
15  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
t
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable Low  
BUSY Disable Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
t
t
12  
15  
____  
____  
t
5
5
____  
____  
BUSY Disable to Valid Data(3)  
t
15  
18  
t
Write Hold After BUSY(5)  
11  
13  
____  
____  
BUSY INPUT TIMING (M/S = VIL  
)
____  
____  
____  
____  
BUSY Input to Write(4)  
Write Hold After BUSY(5)  
t
WB  
0
0
ns  
ns  
tWH  
11  
13  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
t
WDD  
Write Pulse to Data Delay(1)  
25  
20  
30  
25  
ns  
tDDD  
Write Data Valid to Read Data Delay(1)  
ns  
3190 tbl 14a  
7016X20  
Com'l, Ind  
& Military  
7016X25  
Com'l &  
Military  
7016X35  
Com'l &  
Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
BUSY TIMING (M/S = VIH  
)
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
20  
20  
20  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable Low  
BUSY Disable Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
BUSY Disable to Valid Data(3)  
t
t
t
17  
17  
20  
____  
____  
____  
t
5
5
5
____  
____  
____  
t
30  
30  
35  
t
Write Hold After BUSY(5)  
15  
17  
25  
____  
____  
____  
BUSY INPUT TIMING (M/S = VIL  
)
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
Write Hold After BUSY(5)  
t
WB  
0
0
0
ns  
ns  
tWH  
15  
17  
25  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
____  
____  
t
WDD  
Write Pulse to Data Delay(1)  
45  
30  
50  
35  
60  
45  
ns  
tDDD  
Write Data Valid to Read Data Delay(1)  
ns  
3190 tbl 14b  
NOTES:  
1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveformof Write with Port-to-Port Read and BUSY (M/S = VIH)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0, tWDD – tWP (actual) or tDDD – tDW (actual).  
4. To ensure that the write cycle is inhibited on Port "B" during contention on Port "A".  
5. To ensure that a write cycle is completed on Port "B" after contention on Port "A".  
6. 'X' in part numbers indicates power rating (S or L).  
12  
6.42  
IDT7016S/L  
High-Speed 16K x 9 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Timing Waveform of Read with BUSY(2,4,5) (M/S = VIH)  
tWC  
MATCH  
ADDR"A"  
tWP  
R/W"A"  
t
DH  
t
DW  
VALID  
DATAIN "A"  
(1)  
t
APS  
MATCH  
ADDR"B"  
t
BDD  
tBDA  
BUSY"B"  
t
WDD  
DATAOUT "B"  
VALID  
(3)  
t
DDD  
3190 drw 13  
NOTES:  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S=VIL.  
2. CEL = CER = VIL.  
3. OE = VIL for the reading port.  
4. If M/S=VIL (SLAVE), BUSY is an input. Then for this example BUSYA” = VIH and BUSYB” input is shown above.  
5. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from Port "A".  
Timing Waveform of Write with BUSY(3)  
tWP  
R/W"A"  
t
WB  
BUSY"B"  
(1)  
t
WH  
R/W"B"  
(2)  
,
3190 drw 14  
NOTES:  
1. tWH must be met for both BUSY input (SLAVE) and output (MASTER).  
2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.  
3. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from Port "A".  
6.1432  
IDT7016S/L  
High-Speed 16K x 9 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of BUSY Arbitration Controlled by CE Timing(1) (M/S = VIH)  
ADDR"A"  
and "B"  
ADDRESSES MATCH  
CE"A"  
(2)  
tAPS  
CE"B"  
tBAC  
t
BDC  
BUSY"B"  
3190 drw 15  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(1) (M/S = VIH)  
ADDR"A"  
ADDR"B"  
BUSY"B"  
ADDRESS "N"  
(2)  
tAPS  
MATCHING ADDRESS "N"  
t
BAA  
tBDA  
3190 drw 16  
NOTES:  
1. All timing is the same for left and right ports. Port A” may be either the left or right port. Port B” is the port opposite from A”.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(1)  
7016X12  
7016X15  
Com'l Only  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min. Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
ns  
ns  
ns  
t
0
0
____  
____  
t
12  
12  
15  
15  
____  
____  
t
Interrupt Reset Time  
ns  
3190 tbl 15a  
7016X20  
Com'l, Ind  
& Military  
7016X25  
Com'l &  
Military  
7016X35  
Com'l &  
Military  
Symbol  
INTERRUPT TIMING  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
0
ns  
ns  
ns  
t
0
0
0
____  
____  
____  
t
20  
20  
20  
20  
25  
25  
____  
____  
____  
t
Interrupt Reset Time  
ns  
3190 tbl 15b  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L).  
14  
6.42  
IDT7016S/L  
High-Speed 16K x 9 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing(1)  
tWC  
INTERRUPT SET ADDRESS (2)  
ADDR"A"  
(4)  
(3)  
tWR  
t
AS  
CE"A"  
R/W"A"  
INT"B"  
(3)  
tINS  
3190 drw 17  
t
RC  
INTERRUPT CLEAR ADDRESS (2)  
ADDR"B"  
CE"B"  
(3)  
tAS  
OE"B"  
(3)  
tINR  
INT"B"  
3190 drw 18  
NOTES:  
1. All timing is the same for left and right ports. Port A” may be either the left or right port. Port B” is the port opposite from A”.  
2. See Interrupt truth table.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
Truth Table III — Interrupt Flag(1)  
Left Port  
Right Port  
OE  
R/WL  
A13L-A0L  
R/WR  
A
13R-A0R  
Function  
Set Right INT Flag  
Reset Right INT Flag  
Set Left INT Flag  
Reset Left INT Flag  
CEL  
OEL  
INTL  
CER  
R
INTR  
(2)  
L
L
X
X
L
X
X
X
L
3FFF  
X
X
X
X
X
L
L
X
X
L
X
3FFF  
3FFE  
X
L
R
(3)  
X
X
H
R
(3)  
X
X
L
L
X
X
X
X
L
(2)  
X
3FFE  
H
X
L
3190 tbl 16  
NOTES:  
1. Assumes BUSYL = BUSYR = VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
6.1452  
IDT7016S/L  
High-Speed 16K x 9 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Truth Table IV — Address BUSY  
Arbitration  
Inputs  
Outputs  
A
OL-A13L  
(1)  
(1)  
A
OR-A13R  
Function  
Normal  
Normal  
Normal  
CE  
L
CE  
R
BUSY  
L
BUSYR  
X
H
X
L
X
X
H
L
NO MATCH  
MATCH  
H
H
H
H
MATCH  
H
H
(3)  
MATCH  
(2)  
(2)  
Write Inhibit  
3190 tbl 17  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSYX outputs on the IDT7016 are  
push-pull, not open drain outputs. On slaves the BUSYX input internally inhibits writes.  
2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address  
and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs can not be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored  
when BUSYR outputs are driving LOW regardless of actual logic level on the pin.  
Truth Table V — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0  
- D8  
Left  
D0  
- D8  
Right  
Status  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
3190 tbl 18  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT7016.  
2. There are eight semaphore flags written to via I/O0 and read from all I/Os (I/O0 - I/O8). These eight semaphores are addressed by A0 - A2.  
e. CE = VIH, SEM = VIL to access the semaphores. Refer to the semaphore Read/Write Truth Table.  
FunctionalDescription  
where a write is defined as the CE = R/W =VIL per Truth Table III. The  
leftportclearstheinterruptbyanaddresslocation3FFEaccesswhenCER  
=OER =VIL, R/W is a "don't care". Likewise, the right port interrupt flag  
(INTR)isassertedwhentheleftportwritestomemorylocation3FFFand  
to clear the interrupt flag (INTR), the right port must access memory  
location 3FFF. The message (9 bits) at 3FFE or 3FFF is user-defined  
sinceitisinanaddressableSRAMlocation.Iftheinterruptfunctionisnot  
used,addresslocations3FFEand3FFF arenotusedasmailboxesbut  
arestill partoftherandomaccessmemory.RefertoTruthTableIIIforthe  
interruptoperation.  
TheIDT7016providestwoportswithseparatecontrol,addressand  
I/Opinsthatpermitindependentaccessforreadsorwritestoanylocation  
inmemory.TheIDT7016hasanautomaticpowerdownfeaturecontrolled  
by CE. The CE controls on-chip power down circuitry that permits the  
respectiveporttogointoastandbymodewhennotselected(CEHIGH).  
Whenaportisenabled,accesstotheentirememoryarrayispermitted.  
Interrupts  
Iftheuserchoosestheinterruptfunction,amemorylocation(mailbox  
ormessagecenter)is assignedtoeachport. Theleftportinterruptflag  
(INTL) is asserted when the right port writes to memory location 3FFE  
16  
6.42  
IDT7016S/L  
High-Speed 16K x 9 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
BusyLogic  
CE  
MASTER  
Dual Port  
RAM  
CE  
BusyLogicprovidesahardwareindicationthatbothportsoftheRAM  
haveaccessedthesamelocationatthesametime.Italsoallowsoneofthe  
twoaccessestoproceedandsignalstheothersidethattheRAMisbusy.  
TheBUSYpincanthenbeusedtostalltheaccessuntiltheoperationon  
theothersideiscompleted.Ifawriteoperationhasbeenattemptedfrom  
thesidethatreceivesaBUSYindication,thewritesignalisgatedinternally  
topreventthewritefromproceeding.  
SLAVE  
Dual Port  
RAM  
BUSY (R)  
BUSY (L)  
BUSY (L) BUSY (R)  
MASTER  
Dual Port  
RAM  
CE  
SLAVE  
Dual Port  
RAM  
CE  
BUSY (R)  
BUSY (L) BUSY (R)  
BUSY (L) BUSY (R)  
BUSY (L)  
TheuseofBUSYlogicisnotrequiredordesirableforallapplications.  
InsomecasesitmaybeusefultologicallyORtheBUSYoutputstogether  
anduse anyBUSYindicationas aninterruptsource toflagthe eventof  
anillegalorillogicaloperation.IfthewriteinhibitfunctionofBUSYlogicis  
notdesirable,theBUSYlogiccanbedisabledbyplacingthepartinslave  
modewiththeM/Spin.OnceinslavemodetheBUSYpinoperatessolely  
asawriteinhibitinputpin.Normaloperationcanbeprogrammedbytying  
the BUSY pins HIGH. If desired, unintended write operations can be  
prevented to a port by tying the BUSY pin for that port LOW.  
TheBUSYoutputsontheIDT7016RAMinmastermode,arepush-  
pulltypeoutputsanddonotrequirepullupresistorstooperate.Ifthese  
RAMs are being expanded in depth, then the BUSY indication for the  
resulting array requires the use of an external AND gate.  
,
3190 drw 19  
Figure 3. Busy and chip enable routing for both width and depth  
expansion with IDT7016 RAMs.  
leftportinnowayslows theaccess timeoftherightport.Bothports are  
identicalinfunctiontostandardCMOSStaticRAMandcanbereadfrom,  
orwrittento,atthesametimewiththeonlypossibleconflictarisingfromthe  
simultaneous writing of, or a simultaneous READ/WRITE of, a non-  
semaphorelocation.Semaphoresareprotectedagainstsuchambiguous  
situationsandmaybeusedbythesystemprogramtoavoidanyconflicts  
inthenon-semaphoreportionoftheDual-PortRAM.Thesedeviceshave  
anautomaticpower-downfeaturecontrolledbyCE,theDual-PortRAM  
enable,andSEM,thesemaphoreenable.TheCEandSEMpinscontrol  
on-chippowerdowncircuitrythatpermits the respective porttogointo  
standbymodewhennotselected. Thisistheconditionwhichisshownin  
Truth Table I where CE and SEM are both HIGH.  
SystemswhichcanbestusetheIDT7016containmultipleprocessors  
or controllers and are typically very high-speed systems which are  
softwarecontrolledorsoftwareintensive.Thesesystemscanbenefitfrom  
aperformanceincreaseofferedbytheIDT7016'shardwaresemaphores,  
whichprovidealockoutmechanismwithoutrequiringcomplexprogram-  
ming.  
Softwarehandshakingbetweenprocessors offers themaximumin  
systemflexibilitybypermittingsharedresourcestobeallocatedinvarying  
configurations.TheIDT7016doesnotuseitssemaphoreflagstocontrol  
anyresourcesthroughhardware,thusallowingthesystemdesignertotal  
flexibilityinsystemarchitecture.  
An advantage of using semaphores rather than the more common  
methodsofhardwarearbitrationisthatwaitstatesareneverincurredin  
either processor. This can prove to be a major advantage in very high-  
speedsystems.  
WidthExpansionBusyLogic  
Master/SlaveArrays  
WhenexpandinganIDT7016RAMarrayinwidthwhileusingBUSY  
logic,onemasterpartisusedtodecidewhichsideoftheRAMarraywill  
receiveaBUSYindication,andtooutputthatindication.Anynumberof  
slavestobeaddressedinthesameaddressrangeasthemasterusethe  
BUSYsignalasawriteinhibitsignal.ThusontheIDT7016RAMtheBUSY  
pinisanoutputifthepartisusedasamaster(M/Spin=H),andtheBUSY  
pin is an input if the part used as a slave (M/S pin = L) as shown in  
Figure 3.  
Iftwoormoremasterpartswereusedwhenexpandinginwidth,asplit  
decisioncouldresultwithonemasterindicatingBUSYononesideofthe  
arrayandanothermasterindicatingBUSYononeothersideofthearray.  
Thiswouldinhibitthewriteoperationsfromoneportforpartofawordand  
inhibitthewriteoperationsfromtheotherportfortheotherpartoftheword.  
TheBUSYarbitration,onamaster,isbasedonthechipenableand  
address signals only. Itignores whetheranaccess is a readorwrite. In  
a master/slave array, bothaddress andchipenable mustbe validlong  
enoughforaBUSYflagtobeoutputfromthemasterbeforetheactualwrite  
pulsecanbeinitiatedwiththeR/Wsignal.Failuretoobservethistimingcan  
resultina glitchedinternalwrite inhibitsignalandcorrupteddata inthe  
slave.  
How the Semaphore Flags Work  
Thesemaphorelogicisasetofeightlatcheswhichareindependent  
oftheDual-PortRAM.Theselatchescanbeusedtopassaflag,ortoken,  
fromoneporttotheothertoindicatethatasharedresourceisinuse.The  
semaphores provide a hardware assist for a use assignment method  
calledTokenPassingAllocation.”Inthismethod,thestateofasemaphore  
latchisusedasatokenindicatingthatsharedresourceisinuse.Iftheleft  
processorwantstousethisresource,itrequeststhetokenbysettingthe  
latch.Thisprocessorthenverifiesitssuccessinsettingthelatchbyreading  
it. If it was successful, it proceeds to assume control over the shared  
resource.Ifitwasnotsuccessfulinsettingthelatch,itdeterminesthatthe  
rightsideprocessorhassetthelatchfirst, hasthetokenandisusingthe  
sharedresource.Theleftprocessorcantheneitherrepeatedlyrequest  
that semaphores status or remove its request for that semaphore to  
Semaphores  
The IDT7016 are extremely fast Dual-Port 16Kx9 Static RAMs with  
anadditional8addresslocationsdedicatedtobinarysemaphoreflags.  
TheseflagsalloweitherprocessorontheleftorrightsideoftheDual-Port  
RAMtoclaimaprivilegeovertheotherprocessorforfunctionsdefinedby  
thesystemdesignerssoftware.Asanexample,thesemaphorecanbe  
usedbyoneprocessortoinhibittheotherfromaccessingaportionofthe  
Dual-Port RAM or any other shared resource.  
The Dual-PortRAMfeatures a fastaccess time, andbothports are  
completelyindependentofeachother.Thismeansthattheactivityonthe  
6.1472  
IDT7016S/L  
High-Speed 16K x 9 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
performanothertaskandoccasionallyattemptagaintogaincontrolofthe semaphoreflagwillforceitssideofthesemaphoreflagLOWandtheother  
tokenviathesetandtestsequence.Oncetherightsidehasrelinquished sideHIGH.Thisconditionwillcontinueuntilaoneiswrittentothesame  
thetoken,theleftsideshouldsucceedingainingcontrol.  
semaphorerequestlatch.Shouldtheothersidessemaphorerequestlatch  
ThesemaphoreflagsareactiveLOW.Atokenisrequestedbywriting havebeenwrittentoazerointhemeantime,thesemaphoreflagwillflip  
azerointoasemaphorelatchandisreleasedwhenthesamesidewrites overtotheothersideassoonasaoneiswrittenintothefirstsidesrequest  
aonetothatlatch.  
latch.ThesecondsidesflagwillnowstayLOWuntilitssemaphorerequest  
The eightsemaphore flags reside withinthe IDT7016ina separate latchiswrittentoaone.Fromthisitiseasytounderstandthat,ifasemaphore  
memoryspacefromtheDual-PortRAM.This addressspaceisaccessed is requestedandthe processorwhichrequesteditnolongerneeds the  
byplacingaLOWinputontheSEMpin(whichactsasachipselectforthe resource, the entire system can hang up until a one is written into that  
semaphore flags) and using the other control pins (Address, OE, and semaphorerequestlatch.  
R/W)as theywouldbe usedinaccessinga standardstaticRAM. Each  
The criticalcase ofsemaphore timingis whenbothsides requesta  
oftheflagshasauniqueaddresswhichcanbeaccessedbyeitherside single token by attempting to write a zero into it at the same time. The  
throughaddresspinsA0A2.Whenaccessingthesemaphores,noneof semaphorelogicisspeciallydesignedtoresolvethisproblem.Ifsimulta-  
theotheraddresspinshasanyeffect.  
neousrequestsaremade,thelogicguaranteesthatonlyonesidereceives  
Whenwritingtoasemaphore,onlydatapinD0 isused.Ifalowlevel thetoken.Ifonesideisearlierthantheotherinmakingtherequest,thefirst  
iswrittenintoanunusedsemaphorelocation,thatflagwillbesettoazero sidetomaketherequestwillreceivethetoken.Ifbothrequestsarriveat  
on that side and a one on the other side (see Truth Table V). That thesametime,theassignmentwillbearbitrarilymadetooneportorthe  
semaphorecannowonlybemodifiedbythesideshowingthezero.When other.  
aoneiswrittenintothesamelocationfromthesameside,theflagwillbe  
One caution that should be noted when using semaphores is that  
settoaoneforbothsides(unlessasemaphorerequestfromtheotherside semaphoresalonedonotguaranteethataccesstoaresourceissecure.  
ispending)andthencanbewrittentobybothsides.Thefactthattheside Aswithanypowerfulprogrammingtechnique,ifsemaphoresaremisused  
which is able to write a zero into a semaphore subsequently locks out ormisinterpreted, a software errorcaneasilyhappen.  
writes from the other side is what makes semaphore flags useful in  
Initializationofthesemaphoresisnotautomaticandmustbehandled  
interprocessorcommunications.(Athoroughdiscussionontheuseofthis viatheinitializationprogramatpower-up.Sinceanysemaphorerequest  
featurefollowsshortly.)Azerowrittenintothesamelocationfromtheother flagwhichcontainsazeromustberesettoaone,allsemaphoresonboth  
side willbe storedinthe semaphore requestlatchforthatside untilthe sidesshouldhaveaonewrittenintothematinitializationfrombothsides  
semaphoreisfreedbythefirstside.  
to assure that they will be free when needed.  
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso  
thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining  
azeroreadsasallzeros.Thereadvalueislatchedintoonesidesoutput  
registerwhenthatside'ssemaphoreselect(SEM)andoutputenable(OE)  
signalsgoactive.Thisservestodisallowthesemaphorefromchanging  
stateinthemiddleofareadcycleduetoawritecyclefromtheotherside.  
Becauseofthislatch,arepeatedreadofasemaphoreinatestloopmust  
cause either signal (SEM or OE) to go inactive or the output will never  
change.  
UsingSemaphores—SomeExamples  
Perhapsthesimplestapplicationofsemaphoresistheirapplicationas  
resourcemarkersfortheIDT7016’sDual-PortRAM.Saythe16Kx9RAM  
wastobedividedintotwo8Kx9blockswhichweretobededicatedatany  
onetimetoservicingeithertheleftorrightport.Semaphore0couldbeused  
toindicatethesidewhichwouldcontrolthelowersectionofmemory,and  
Semaphore 1couldbe definedas the indicatorforthe uppersectionof  
memory.  
AsequenceWRITE/READmustbeusedbythesemaphoreinorder  
to guarantee that no system level contention will occur. A processor  
requestsaccesstosharedresourcesbyattemptingtowriteazerointoa  
semaphorelocation.Ifthesemaphoreisalreadyinuse,thesemaphore  
requestlatchwillcontainazero,yetthesemaphoreflagwillappearasone,  
afactwhichtheprocessorwillverifybythesubsequentread(seeTruth  
TableV).Asanexample,assumeaprocessorwritesazerototheleftport  
atafreesemaphorelocation.Onasubsequentread,theprocessorwill  
verifythatithaswrittensuccessfullytothatlocationandwillassumecontrol  
overtheresourceinquestion.Meanwhile,ifaprocessorontherightside  
attempts towriteazerotothesamesemaphoreflagitwillfail,as willbe  
verifiedbythefactthataonewillbereadfromthatsemaphoreontheright  
side during subsequent read. Had a sequence of READ/WRITE been  
used instead,systemcontentionproblemscouldhaveoccurredduring  
the gap between the read and write cycles.  
Totakearesource,inthis examplethelower8KofDual-PortRAM,  
the processor on the left port could write and then read a zero in to  
Semaphore0.Ifthistaskweresuccessfullycompleted(azerowasread  
backratherthana one), the leftprocessorwouldassume controlofthe  
lower8K.Meanwhiletherightprocessorwasattemptingtogaincontrolof  
theresourceaftertheleftprocessor,itwouldreadbackaoneinresponse  
tothezeroithadattemptedtowriteintoSemaphore0.Atthis point,the  
softwarecouldchoosetotryandgaincontrolofthesecond8Ksectionby  
writing,thenreadingazerointoSemaphore1.Ifitsucceededingaining  
control,itwouldlockouttheleftside.  
Once the left side was finished with its task, it would write a one to  
Semaphore 0 and may then try to gain access to Semaphore 1. If  
Semaphore1wasstilloccupiedbytherightside,theleftsidecouldundo  
itssemaphorerequestandperformothertasksuntilitwasabletowrite,then  
readazerointoSemaphore1.Iftherightprocessorperformsasimilartask  
withSemaphore0,thisprotocolwouldallowthetwoprocessorstoswap  
8Kblocks ofDual-PortRAMwitheachother.  
Itisimportanttonotethatafailedsemaphorerequestmustbefollowed  
byeitherrepeatedreadsorbywritingaoneintothesamelocation.The  
reasonforthisiseasilyunderstoodbylookingatthesimplelogicdiagram  
ofthesemaphoreflaginFigure4.Twosemaphorerequestlatchesfeed  
into a semaphore flag. Whichever latch is first to present a zero to the  
The blocks do not have to be any particular size and can even be  
variable, depending upon the complexity of the software using the  
18  
6.42  
IDT7016S/L  
High-Speed 16K x 9 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
semaphoreflags.AlleightsemaphorescouldbeusedtodividetheDual- segmentsatfullspeed.  
PortRAMorothersharedresources intoeightparts. Semaphores can  
Anotherapplicationisintheareaofcomplexdatastructures.Inthis  
evenbeassigneddifferentmeaningsondifferentsidesratherthanbeing case,blockarbitrationisveryimportant.Forthisapplicationoneprocessor  
given a common meaning as was shown in the example above.  
mayberesponsibleforbuildingandupdatingadatastructure.Theother  
Semaphores are a useful form of arbitration in systems like disk processorthenreadsandinterpretsthatdatastructure.Iftheinterpreting  
interfaceswheretheCPUmustbelockedoutofasectionofmemoryduring processorreadsanincompletedatastructure,amajorerrorconditionmay  
atransferandtheI/Odevicecannottolerateanywaitstates.Withtheuse exist.Therefore,somesortofarbitrationmustbeusedbetweenthetwo  
ofsemaphores,oncethetwodeviceshasdeterminedwhichmemoryarea differentprocessors.Thebuildingprocessorarbitratesfortheblock,locks  
wasoff-limitstotheCPU,boththeCPUandtheI/Odevicescouldaccess itandthenisabletogoinandupdatethedatastructure.Whentheupdate  
theirassignedportionsofmemorycontinuouslywithoutanywaitstates. is completed, the data structure block is released. This allows the  
SemaphoresarealsousefulinapplicationswherenomemoryWAIT” interpretingprocessortocomebackandreadthecompletedatastructure,  
stateisavailableononeorbothsides.Onceasemaphorehandshakehas therebyguaranteeingaconsistentdatastructure.  
been performed, both processors can access their assigned RAM  
L PORT  
SEMAPHORE  
R PORT  
SEMAPHORE  
REQUEST FLIP FLOP  
REQUEST FLIP FLOP  
0
D
0
D
D
D
Q
Q
WRITE  
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
,
READ  
3190 drw 20  
Figure 4. IDT7016 Semaphore Logic  
6.1492  
IDT7016S/L  
High-Speed 16K x 9 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
OrderingInformation  
A
XXXXX  
A
999  
A
A
Device  
Type  
Power Speed  
Package  
Process/  
Temperature  
Range  
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
Military (-55°C to +125°C)  
Blank  
I(1)  
B
Compliant to MIL-PRF-38535 QML  
G(2)  
Green  
80-pin TQFP (PN80-1)  
68-pin PGA (G68-1)  
68-pin PLCC (J68-1)  
PF  
G
J
12  
15  
20  
25  
35  
Commercial Only  
Commercial Only  
Com'l, Ind & Military  
Commercial & Military  
Commercial & Military  
Speed in Nanoseconds  
Standard Power  
Low Power  
S
L
7016  
144K (16K x 9) Dual-Port RAM  
3190 drw 21  
NOTES:  
1. Contact your local sales office for industrial temp range for other speeds, packages and powers.  
2. Green parts available. For specific speeds, packages and powers contact your local sales office.  
DatasheetDocumentHistory  
01/11/99:  
Initiateddatasheetdocumenthistory  
Convertedtonewformat  
Cosmeticandtypographicalcorrections  
Pages 2 and 3  
Page 1  
Addedadditionalnotestopinconfigurations  
Changeddrawingformat  
CorrectedDSCnumber  
06/03/99  
11/10/99:  
05/19/00:  
Replaced IDT logo  
Increasedstoragetemperatureparameter  
ClarifiedTAparameter  
Page 4  
Page 6  
DCElectricalparameters–changedwordingfromopentodisabled  
Changed±200mVto0mVinnotes  
01/10/02:  
Pages 2 & 3  
Pages 4, 6, 7, 9 & 12  
Pages 6, 7, 9, 12 & 14  
Page 20  
Pages 1 & 20  
Page 1  
Addeddaterevisionforpinconfigurations  
RemovedIndustrialtempfootnotefromalltables  
AddedIndustrialtempfor20nsspeedtoDCandACElectricalCharacteristics  
AddedIndustrialtempofferingto20nsorderinginformation  
Replaced TM logo with ® logo  
Addedgreenavailabilitytofeatures  
Addedindicatortoorderinginformation  
Removed "IDT" from orderable part number  
04/04/06:  
01/09/09:  
Page 20  
Page 20  
CORPORATE HEADQUARTERS  
for SALES:  
for Tech Support:  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
408-284-2794  
DualPortHelp@idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
20  
6.42  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY