7024S35JGB8 [IDT]

HIGH-SPEED 4K x 16 DUAL-PORT STATIC RAM;
7024S35JGB8
型号: 7024S35JGB8
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

HIGH-SPEED 4K x 16 DUAL-PORT STATIC RAM

静态存储器 内存集成电路
文件: 总22页 (文件大小:192K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED  
IDT7024S/L  
4K x 16 DUAL-PORT  
STATIC RAM  
IDT7024 easily expands data bus width to 32 bits or more  
using the Master/Slave select when cascading more than  
one device  
M/S = H for BUSY output flag on Master  
M/S = L for BUSY input on Slave  
Interrupt Flag  
On-chip port arbitration logic  
Full on-chip hardware support of semaphore signaling  
between ports  
Fully asynchronous operation from either port  
Battery backup operation2V data retention  
TTL-compatible, single 5V (±10%) power supply  
Available in 84-pin PGA, Flatpack, PLCC, and 100-pin Thin  
Quad Flatpack  
Industrial temperature range (–40°C to +85°C) is available  
for selected speeds  
Green parts availble, see ordering information  
Features  
True Dual-Ported memory cells which allow simultaneous  
reads of the same memory location  
High-speed access  
Military:20/25/35/55/70ns(max.)  
Industrial:55ns (max.)  
– Commercial:15/17/20/25/35/55ns(max.)  
Low-power operation  
IDT7024S  
Active:750mW(typ.)  
Standby: 5mW (typ.)  
IDT7024L  
Active:750mW(typ.)  
Standby: 1mW (typ.)  
Separate upper-byte and lower-byte control for multiplexed  
bus compatibility  
FunctionalBlockDiagram  
R/W  
L
R/W  
R
R
UB  
UBL  
LB  
CE  
OE  
L
L
L
LBR  
CE  
R
R
OE  
I/O8L-I/O15L  
I/O0L-I/O7L  
I/O8R-I/O15R  
I/O  
Control  
I/O  
Control  
I/O0R-I/O7R  
BUSY (1,2)  
L
BUSYR  
(1,2)  
A
11R  
0R  
A
11L  
Address  
Decoder  
MEMORY  
ARRAY  
Address  
Decoder  
A
0L  
A
12  
12  
ARBITRATION  
INTERRUPT  
SEMAPHORE  
LOGIC  
CE  
OE  
R/W  
R
CE  
OE  
R/W  
L
L
R
R
L
SEM  
R
SEM  
L
(2)  
INT (2)  
L
M/S  
INTR  
2740 drw 01  
NOTES:  
1. (MASTER): BUSY is output; (SLAVE): BUSY is input.  
2. BUSY outputs and INT outputs are non-tri-stated push-pull.  
JUNE 2013  
1
DSC 2740/14  
©2013IntegratedDeviceTechnology,Inc.  
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Description  
port to enter a very low standby power mode.  
The IDT7024 is a high-speed 4Kx 16 Dual-Port Static RAM. The  
IDT7024isdesignedtobeusedasastand-alone64K-bitDual-PortRAM  
orasacombinationMASTER/SLAVEDual-PortRAMfor32-bitormore  
wordsystems.UsingtheIDTMASTER/SLAVEDual-PortRAMapproach  
in32-bitorwidermemorysystemapplicationsresultsinfull-speed,error-  
freeoperationwithouttheneedforadditionaldiscretelogic.  
FabricatedusingIDT’sCMOShigh-performancetechnology,these  
devices typically operate on only 750mW of power. Low-power (L)  
versionsofferbatterybackupdataretentioncapabilitywithtypicalpower  
consumptionof500µWfroma2Vbattery.  
TheIDT7024ispackagedinaceramic84-pinPGA,an84-pinFlatpack  
andPLCC,anda100-pinTQFP.Militarygradeproductismanufactured  
incompliancewiththelatestrevisionofMIL-PRF-38535QML,makingit  
ideallysuitedtomilitarytemperatureapplicationsdemandingthehighest  
levelofperformanceandreliability.  
This device provides two independent ports with separate control,  
address,andI/Opinsthatpermitindependent,asynchronousaccessfor  
reads or writes to any location in memory. An automatic power down  
featurecontrolledbychipenable(CE)permitstheon-chipcircuitryofeach  
PinConfigurations(1,2,3)  
INDEX  
11/06/01  
11 10  
9
8
7
6
5
4
3
2
1 84 83 82 81 80 79 78 77 76 75  
74  
I/O8L  
I/O9L  
A
A
A
A
A
A
A
A
7L  
6L  
5L  
4L  
3L  
2L  
1L  
0L  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
I/O10L  
I/O11L  
I/O12L  
I/O13L  
GND  
IDT7024J or F  
I/O14L  
I/O15L  
(4)  
J84-1  
F84-2  
INT  
L
(4)  
BUSY  
L
VCC  
84-Pin PLCC / Flatpack  
GND  
I/O0R  
I/O1R  
I/O2R  
GND  
(5)  
Top View  
M/S  
BUSY  
R
INT  
R
VCC  
A
A
A
A
A
A
A
0R  
I/O3R  
I/O4R  
I/O5R  
I/O6R  
I/O7R  
I/O8R  
1R  
2R  
3R  
4R  
5R  
6R  
Index  
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53  
,
2740 drw 02  
11/06/01  
10099 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
1
N/C  
N/C  
N/C  
N/C  
I/O10L  
I/O11L  
I/O12L  
I/O13L  
GND  
75  
N/C  
N/C  
N/C  
N/C  
2
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
3
4
5
A5L  
A4L  
A3L  
A2L  
A1L  
A0L  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
I/O14L  
I/O15L  
IDT7024PF  
(4)  
INTL  
PN100-1  
VCC  
BUSY  
GND  
M/S  
BUSY  
INTR  
L
GND  
I/O0R  
I/O1R  
I/O2R  
100-Pin TQFP  
(5)  
Top View  
R
VCC  
A
A
A
A
A
0R  
I/O3R  
I/O4R  
I/O5R  
I/O6R  
N/C  
N/C  
N/C  
N/C  
1R  
2R  
3R  
4R  
NOTES:  
N/C  
N/C  
N/C  
N/C  
1. All VCC pins must be connected to the power supply.  
2. All GND pins must be connected to the ground supply.  
3. J84-1 package body is approximately 1.15 in x 1.15 in x .17 in.  
F84-2 package body is approximately 1.17 in x 1.17 in x .11 in.  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
2740 drw 03  
PN100-1 package body is approximately 14mm x 14mm x 1.4mm.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part-marking.  
6.42  
2
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Pin Configurations(1,2,3) (con't.)  
11/06/01  
63  
61  
60  
58  
55  
I/O0L  
54  
51  
48  
46  
45  
42  
11  
10  
09  
08  
07  
06  
05  
04  
03  
02  
01  
I/O7L  
I/O5L  
I/O4L  
I/O2L  
A
11L  
A
10L  
A
7L  
OE  
L
SEM  
L
LBL  
66  
I/O10L  
64  
I/O8L  
62  
I/O6L  
59  
I/O3L  
56  
I/O1L  
49  
50  
47  
44  
43  
40  
N/C  
A
9L  
A
8L  
6L  
3L  
0L  
A5L  
UB  
L
CEL  
67  
I/O11L  
65  
I/O9L  
68  
I/O12L  
71  
I/O14L  
70  
57  
53  
52  
41  
39  
R/W  
L
GND  
VCC  
A
A4L  
69  
I/O13L  
38  
37  
A
A2L  
72  
I/O15L  
73  
33  
35  
34  
BUSY  
L
VCC  
A
INTL  
IDT7024G  
(4)  
75  
I/O0R  
74  
32  
31  
36  
G84-3  
GND  
GND  
GND  
M/S  
A1L  
84-Pin PGA  
Top View  
(5)  
76  
I/O1R  
77  
I/O2R  
80  
I/O4R  
83  
I/O7R  
78  
28  
29  
30  
V
CC  
A
0R  
INT  
R
BUSY  
R
79  
I/O3R  
81  
I/O5R  
82  
I/O6R  
26  
27  
A
2R  
A
1R  
7
11  
12  
23  
25  
SEM  
R
A
5R  
GND  
GND  
A
3R  
1
2
5
8
10  
14  
17  
20  
22  
24  
I/O9R  
I/O10R I/O13R I/O15R  
R/W  
R
A
11R  
A
8R  
A
6R  
A
4R  
UB  
R
84  
I/O8R  
3
4
6
9
15  
13  
16  
18  
19  
21  
I/O11R I/O12R I/O14R  
N/C  
A
10R  
A
9R  
A
7R  
OER  
LB  
R
CER  
A
B
C
D
E
F
G
H
J
K
L
2740 drw 04  
Index  
NOTES:  
1. All VCC pins must be connected to the power supply.  
2. All GND pins must be connected to the ground supply.  
3. Package body is approximately 1.12 in x 1.12 in x .16 in.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part-marking.  
PinNames  
MaximumOperatingTemperature  
andSupplyVoltage(1)  
Left Port  
Right Port  
Names  
Grade  
Ambient  
GND  
Vcc  
Chip Enable  
CE  
R/W  
OE  
L
CE  
R/W  
OE  
R
Temperature  
L
R
Read/Write Enable  
Output Enable  
Address  
Military  
-55OC to +125OC  
0OC to +70OC  
0V  
0V  
0V  
5.0V  
+
+
+
10%  
L
R
Commercial  
Industrial  
5.0V  
5.0V  
10%  
A0L - A11 L  
A
0R - A11R  
-40OC to +85OC  
10%  
I/O0L - I/O15L  
I/O0R - I/O15R  
Data Input/Output  
Semaphore Enable  
Upper Byte Select  
Lower Byte Select  
Interrupt Flag  
2740 tbl 02  
NOTES:  
SEM  
UB  
LB  
INT  
BUSY  
L
SEM  
UB  
LB  
INT  
BUSY  
M/S  
R
1. This is the parameter TA. This is the "instant on" case temperature.  
L
R
L
R
L
R
Busy Flag  
L
R
Master or Slave Select  
Power  
VCC  
GND  
Ground  
2740 tbl 01  
6.42  
3
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Truth Table I: Non-Contention Read/Write Control  
Inputs(1)  
Outputs  
R/W  
X
X
L
I/O8-15  
High-Z  
High-Z  
DATAIN  
High-Z  
DATAIN  
I/O0-7  
High-Z  
High-Z  
High-Z  
DATAIN  
DATAIN  
High-Z  
DATAOUT  
DATAOUT  
High-Z  
Mode  
CE  
H
X
L
OE  
X
X
X
X
X
L
UB  
X
H
L
LB  
X
H
H
L
SEM  
H
Deselcted: Power-Down  
Both Bytes Deselected  
Write to Upper Byte Only  
Write to Lower Byte Only  
Write to Both Bytes  
H
H
L
L
H
L
H
L
L
L
H
L
H
H
H
X
L
H
L
H
DATAOUT  
High-Z  
Read Upper Byte Only  
Read Lower Byte Only  
Read Both Bytes  
L
L
H
L
H
L
L
L
H
DATAOUT  
High-Z  
X
H
X
X
X
Outputs Disabled  
2740 tbl 03  
NOTE:  
1. A0L A11L A0R A11R  
Truth Table II: Semaphore Read/Write Control(1)  
Inputs(1)  
Outputs  
CE(2)  
H
OE  
L
UB  
X
H
X
H
L
LB  
X
H
X
H
X
L
SEM  
L
R/W  
H
I/O8-15  
I/O0-7  
Mode  
Read Semaphore Flag Data Out  
Read Semaphore Flag Data Out  
DATAOUT  
DATAOUT  
DATAIN  
DATAOUT  
DATAOUT  
DATAIN  
X
H
L
L
H
X
X
X
X
L
Write I/O into Semaphore Flag  
0
X
L
DATAIN  
DATAIN  
Write I/O0 into Semaphore Flag  
____  
____  
L
X
L
Not Allowed  
Not Allowed  
____  
____  
L
X
X
L
2740 tbl 04  
NOTE:  
1. There are eight semaphore flags written to via I/O0 and read from all of the I/O's (I/O0 - I/O15).  
These eight semaphores are addressed by A0 - A2.  
AbsoluteMaximumRatings(1)  
RecommendedDCOperating  
Conditions  
Symbol  
Rating  
Commercial  
& Industrial  
Military  
Unit  
Symbol  
Parameter  
Supply Voltage  
GND Ground  
Min.  
Typ. Max. Unit  
(2)  
V
TERM  
Terminal Voltage  
with Respect  
to GND  
-0.5 to +7.0  
-0.5 to +7.0  
V
VCC  
4.5  
5.0  
5.5  
0
V
V
V
0
0
Temperature  
Under Bias  
-55 to +125  
-65 to +150  
50  
-65 to +135  
-65 to +150  
50  
oC  
oC  
T
BIAS  
V
IH  
Input High Voltage  
Input Low Voltage  
2.2  
6.0(2)  
0.8  
____  
-0.5(1)  
V
____  
VIL  
Storage  
Temperature  
TSTG  
2740 tbl 06  
NOTES:  
IOUT  
DC Output  
Current  
mA  
1. VIL > -1.5V for pulse width less than 10ns.  
2. VTERM must not exceed Vcc + 10%.  
2740 tbl 05  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS  
may cause permanent damage to the device. This is a stress rating only  
and functional operation of the device at these or any other conditions above  
those indicated in the operational sections of this specification is not implied.  
Exposure to absolute maximum rating conditions for extended periods may  
affect reliability.  
2. VTERM must not exceed Vcc +10% for more than 25% of the cycle time or 10ns  
maximum, and is limited to < 20mA for the period over VTERM > Vcc + 10%.  
6.42  
4
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
(1)  
Capacitance (TA = +25°C, f = 1.0MHz)  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions(2)  
Max. Unit  
CIN  
VIN = 3dV  
9
pF  
COUT  
VOUT = 3dV  
10  
pF  
2740 tbl 07  
NOTES:  
1. This parameter are determined by device characterization, but is not  
production tested.  
2. 3dV references the interpolated capacitance when the input and  
output signals switch from 0V to 3V or from 3V to 0V.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VCC = 5.0V ± 10%)  
7024S  
7024L  
Symbol  
|ILI  
|ILO  
Parameter  
Test Conditions  
Min.  
Max.  
10  
Min.  
Max.  
5
Unit  
µA  
µA  
V
(1)  
___  
___  
|
Input Leakage Current  
V
CC = 5.5V, VIN = 0V to VCC  
___  
___  
___  
___  
|
Output Leakage Current  
Output Low Voltage  
Output High Voltage  
10  
5
CE = VIH, VOUT = 0V to VCC  
VOL  
I
OL = +4mA  
0.4  
0.4  
___  
___  
VOH  
IOH = -4mA  
2.4  
2.4  
V
2740 tbl 08  
NOTE:  
1. At Vcc < 2.0V input leakages are undefined.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1) (VCC = 5.0V ± 10%)  
7024X15  
7024X17  
7024X20  
7024X25  
Com'l &  
Military  
Com'l Only  
Com'l Only  
Com'l, Ind  
& Military  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
ICC  
Dynamic Operating  
Current  
(Both Ports Active)  
S
L
170  
170  
310  
260  
170  
170  
310  
260  
160  
160  
290  
240  
155  
155  
265  
220  
mA  
CE = VIL  
,
Outputs Disabled  
SEM = VIH  
____  
____  
____  
____  
____  
____  
____  
____  
(3)  
MIL &  
IND  
S
L
160  
160  
370  
320  
155  
155  
340  
280  
f = fMAX  
I
SB1  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
S
L
20  
20  
60  
50  
20  
20  
60  
50  
20  
20  
60  
50  
16  
16  
60  
50  
mA  
mA  
mA  
mA  
= SLEM  
L
= VIH  
CE  
R
SEM  
= CE = VIH  
R
(3)  
f = fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
20  
20  
90  
70  
16  
16  
80  
65  
(5)  
ISB2  
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
S
L
105  
105  
190  
160  
105  
105  
190  
160  
95  
95  
180  
150  
90  
90  
170  
140  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
(3 )  
f=fMAX  
SEM  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
95  
95  
240  
210  
90  
90  
215  
180  
R
= SEML = VIH  
ISB3  
Full Standby Current  
Both Ports CE  
CE > VCC - 0.2V,  
IN > VCC - 0.2V or  
L and  
COM'L  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
(Both Ports  
-
R
CMOS Level Inputs)  
V
____  
____  
____  
____  
____  
____  
____  
____  
V
< 0.2V, f = 0(4 )  
MIL &  
IND  
S
L
1.0  
0.2  
30  
10  
1.0  
0.2  
30  
10  
SEINM  
R
= SEML > VCC - 0.2V  
ISB4  
Full Standby Current  
(One Port -  
CMOS Level Inputs)  
COM'L  
S
L
100  
100  
170  
140  
100  
100  
170  
140  
90  
90  
155  
130  
85  
85  
145  
120  
CE < 0.2V and  
CE"BA" > V - 0.2V  
(5)  
SEM  
R
= SCECM  
L > VCC - 0.2V  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
90  
90  
225  
200  
85  
85  
200  
170  
V
IN > VCC - 0.2V or VIN < 0.2V  
Active Port Outputs Disabled,  
(3)  
f = fMAX  
2740 tbl 09a  
NOTES:  
1. 'X' in part number indicates power rating (S or L)  
2. VCC = 5V, TA = +25°C, and are not production tested. ICC DC = 120mA (TYP.)  
3. At f = fMAX, address and I/O'S are cycling at the maximum frequency read cycle of 1/tRC, and using AC Test Conditions” of input levels of GND to 3V.  
4. f = 0 means no address or control lines change.  
5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
6.42  
5
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1) (con’t.) (VCC = 5.0V ± 10%)  
7024X35  
Com'l &  
Military  
7024X55  
Com'l, Ind  
& Military  
7024X70  
Military Only  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
____  
____  
____  
____  
mA  
ICC  
Dynamic Operating  
Current  
(Both Ports Active)  
S
L
150  
150  
250  
210  
150  
150  
250  
210  
CE = VIL,  
Outputs Disabled  
SEM = VIH  
(3)  
MIL &  
IND  
S
L
150  
150  
300  
250  
150  
150  
300  
250  
140  
140  
300  
250  
f = fMAX  
____  
____  
____  
____  
mA  
mA  
ISB1  
ISB2  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
S
L
13  
13  
60  
50  
13  
13  
60  
50  
CER = CEL = VIH  
SEMR = SEML = VIH  
(3)  
f = fMAX  
MIL &  
IND  
S
L
13  
13  
80  
65  
13  
13  
80  
65  
10  
10  
80  
65  
(5)  
____  
____  
____  
____  
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
S
L
85  
85  
155  
130  
95  
95  
155  
130  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
(3)  
f=fMAX  
MIL &  
IND  
S
L
85  
85  
190  
160  
95  
95  
190  
160  
80  
80  
190  
160  
SEMR = SEML = VIH  
____  
____  
____  
____  
mA  
mA  
ISB3  
ISB4  
Full Standby Current  
(Both Ports -  
Both Ports CEL and  
CER > VCC - 0.2V,  
COM'L  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
CMOS Level Inputs)  
VIN > VCC - 0.2V or  
VIN < 0.2V, f = 0(4)  
SEMR = SEML > VCC - 0.2V  
MIL &  
IND  
S
L
1.0  
0.2  
30  
10  
1.0  
0.2  
30  
10  
1.0  
0.2  
30  
10  
____  
____  
____  
____  
Full Standby Current  
(One Port -  
CMOS Level Inputs)  
COM'L  
S
L
80  
80  
135  
110  
80  
80  
135  
110  
CE"A" < 0.2V and  
(5)  
CE"B" > VCC - 0.2V  
SEMR = SEML > VCC - 0.2V  
VIN > VCC - 0.2V or VIN < 0.2V  
Active Port Outputs Disabled,  
MIL &  
IND  
S
L
80  
80  
175  
150  
80  
80  
175  
150  
75  
75  
175  
150  
(3)  
f = fMAX  
2740 tbl 09b  
NOTES:  
1. 'X' in part number indicates power rating (S or L)  
2. VCC = 5V, TA = +25°C, and are not production tested.  
3. At f = fMAX, address and I/O'S are cycling at the maximum frequency read cycle of 1/tRC, and using AC Test Conditionsof input levels of GND to 3V.  
4. f = 0 means no address or control lines change.  
5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
Data Retention Characteristics Over All Temperature Ranges  
(4)  
(L Version Only) (VLC = 0.2V, VHC = VCC - 0.2V)  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.(1)  
Max.  
Unit  
V
___  
___  
VDR  
VCC for Data Retention  
VCC = 2V  
2.0  
___  
ICCDR  
Data Retention Current  
µA  
CE > VHC  
IN > VHC or < VLC  
MIL. & IND.  
COM'L.  
100  
4000  
___  
V
100  
1500  
(3)  
CDR  
___  
___  
t
Chip Deselect to Data Retention Time  
Operation Recovery Time  
0
ns  
SEM > VHC  
(3)  
(2)  
___  
___  
t
R
t
RC  
ns  
2740 tbl 10  
NOTES:  
1. TA = +25°C, VCC = 2V, and are by device characterization but are not production tested.  
2. tRC = Read Cycle Time  
3. This parameter is guaranteed but not tested.  
4. At Vcc < 2.0V, input leakages are not defined.  
6.42  
6
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Data Retention Waveform  
DATA RETENTION MODE  
VDR  
4.5V  
4.5V  
VCC  
2V  
t
CDR  
tR  
V
DR  
V
IH  
VIH  
CE  
2740 drw 05  
AC Test Conditions  
Input Pulse Levels  
GND to 3.0V  
5ns  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
1.5V  
1.5V  
Figures 1 and 2  
2740 tbl 11  
5V  
5V  
1250Ω  
1250Ω  
DATAOUT  
BUSY  
INT  
DATAOUT  
30pF  
775Ω  
5pF*  
775Ω  
2740 drw 06  
Figure 1. AC Output Test Load  
Figure 2. Output Test Load  
(for tLZ, tHZ, tWZ, tOW)  
*Including scope and Jig  
6.42  
7
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(4)  
7024X15  
7024X17  
7024X20  
Com'l, Ind  
& Military  
7024X25  
Com'l &  
Military  
Com'l Only  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
____  
t
RC  
AA  
ACE  
ABE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
SAA  
Read Cycle Time  
15  
17  
20  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
____  
t
Address Access Time  
15  
15  
15  
17  
17  
17  
20  
20  
20  
25  
25  
25  
Chip Enable Access Time(3)  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
t
Byte Enable Access Time(3)  
t
Output Enable Access Time  
10  
10  
12  
13  
____  
____  
____  
____  
t
Output Hold from Address Change  
Output Low-Z Time(1,2)  
3
3
3
3
____  
____  
____  
____  
t
3
3
3
3
Output High-Z Time(1,2)  
10  
10  
12  
15  
____  
____  
____  
____  
t
t
Chip Enable to Power Up Time(1,2)  
Chip Disable to Power Down Time(1,2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access(3)  
0
0
0
0
____  
____  
____  
____  
____  
____  
____  
____  
t
15  
17  
20  
25  
____  
____  
____  
____  
t
10  
10  
10  
10  
____  
____  
____  
____  
t
15  
17  
20  
25  
ns  
2740 tbl 12a  
7024X35  
Com'l &  
Military  
7024X55  
Com'l, Ind  
& Military  
7024X70  
Military Only  
Symbol  
READ CYCLE  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
t
RC  
AA  
ACE  
ABE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
SAA  
Read Cycle Time  
35  
55  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
t
Address Access Time  
35  
35  
35  
55  
55  
55  
70  
70  
70  
Chip Enable Access Time(3)  
Byte Enable Access Time(3)  
Output Enable Access Time  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
t
t
20  
30  
35  
____  
____  
____  
t
3
3
3
____  
____  
____  
t
3
3
3
Output High-Z Time(1,2)  
15  
25  
30  
____  
____  
____  
t
t
Chip Enable to Power Up Time(1,2)  
Chip Disable to Power Down Time(1,2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access(3)  
0
0
0
____  
____  
____  
____  
____  
____  
t
35  
50  
50  
____  
____  
____  
t
15  
15  
15  
____  
____  
____  
t
35  
55  
70  
ns  
2740 tbl 12b  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE = VIL, UB or LB = VIL, and SEM =VIH. To access semaphore, CE = VIH or UB & LB = VIH, and SEM =VIL.  
4. 'X' in part number indicates power rating (S or L).  
6.42  
8
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of Read Cycles(5)  
tRC  
ADDR  
(4)  
t
t
AA  
(4)  
ACE  
CE  
OE  
(4)  
tAOE  
(4)  
t
ABE  
UB, LB  
R/W  
(1)  
tOH  
tLZ  
VALID DATA(4)  
DATAOUT  
(2)  
tHZ  
BUSYOUT  
(3,4)  
2740 drw 07  
tBDD  
NOTES:  
1. Timing depends on which signal is asserted last, CE, OE, LB, or UB.  
2. Timing depends on which signal is de-asserted first, CE, OE, LB, or UB.  
3. tBDD delay is required only in cases where opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY has  
no relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last tABE, tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
Timing of Power-Up Power-Down  
CE  
tPU  
t
PD  
I
CC  
SB  
I
,
2740 drw 08  
6.42  
9
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage(5)  
7024X15  
7024X17  
Com'l Only  
7024X20  
Com'l, Ind  
& Military  
7024X25  
Com'l &  
Military  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
15  
12  
12  
0
17  
12  
12  
0
20  
15  
15  
0
25  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
t
t
t
12  
0
12  
0
15  
0
20  
0
t
Write Recovery Time  
t
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
10  
10  
15  
15  
____  
____  
____  
____  
t
10  
10  
12  
15  
____  
____  
____  
____  
t
0
0
0
0
(1,2)  
____  
____  
____  
____  
t
Write Enable to Output in High-Z  
Output Active from End-of-Write(1,2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
10  
10  
12  
15  
____  
____  
____  
____  
t
0
5
5
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
____  
____  
t
t
ns  
2740 tbl 13a  
7024X35  
Com'l &  
Military  
7024X55  
Com'l, Ind  
& Military  
7024X70  
Military Only  
Symbol  
WRITE CYCLE  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
35  
30  
30  
0
55  
45  
45  
0
70  
50  
50  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
t
t
t
25  
0
40  
0
50  
0
t
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
t
15  
30  
40  
____  
____  
____  
t
15  
25  
30  
____  
____  
____  
t
0
0
0
(1,2)  
____  
____  
____  
t
Write Enable to Output in High-Z  
Output Active from End-of-Write(1,2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
15  
25  
30  
____  
____  
____  
t
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
t
t
ns  
2740 tbl 13b  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE = VIL, UB or LB = VIL, SEM = VIH. To access semaphore, CE = VIH or UB & LB = VIH, and SEM = VIL.  
Either condition must be valid for the entire tEW time.  
4. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH  
and tOW values will vary over voltage and temperature, the actual tDH will always be smaller than the actual tOW.  
5. 'X' in part number indicates power rating (S or L).  
6.42  
10  
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
t
WC  
ADDRESS  
(7)  
tHZ  
OE  
t
AW  
CE or SEM (9)  
UB or LB (9)  
R/W  
(3)  
(2)  
(6)  
tWR  
t
WP  
tAS  
(7)  
t
WZ  
tOW  
(4)  
(4)  
DATAOUT  
DATAIN  
t
DW  
tDH  
2740 drw 09  
Timing Waveform of Write Cycle No. 2, CE, UB, LB Controlled Timing(1,5)  
t
WC  
ADDRESS  
t
AW  
CE or SEM(9)  
(3)  
(2)  
(6)  
AS  
t
WR  
t
EW  
t
UB or LB(9)  
R/W  
tDW  
tDH  
DATAIN  
2740 drw 10  
NOTES:  
1. R/W or CE or UB & LB = VIH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a UB or LB = VIL and a CE = VIL and a R/W = VIL for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH = VIL to the end-of-write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM LOW = VIL transition occurs simultaneously with or after the R/W = VIL transition, the outputs remain in the High-impedance state.  
6. Timing depends on which enable signal is asserted last, CE, R/W, UB, or LB.  
7. This parameter is guaranted by device characterization, but is not production tested. Transition is measured 0mV steady state with the Output Test Load  
(Figure 2).  
8. If OE = VIL during R/W controlled write cycle, the write pulse width must be the larger of tWP for (tWZ + tDW) to allow the I/O drivers to turn off and data to be  
placed on the bus for the required tDW. If OE = VIH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the  
specified tWP .  
9. To access RAM, CE = VIL, UB or LB = VIL, and SEM = VIH. To access Semaphore, CE = VIH or UB & LB = VIH, and SEM = VIL. tEW must be  
met for either condition.  
6.42  
11  
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
t
OH  
tSAA  
A0-A2  
VALID ADDRESS  
VALID ADDRESS  
tWR  
t
ACE  
tAW  
tEW  
SEM  
tSOP  
t
DW  
DATAOUT  
VALID(2)  
DATAIN  
VALID  
I/O0  
t
AS  
tWP  
tDH  
R/W  
tSWRD  
tAOE  
OE  
Write Cycle  
Read Cycle  
2740 drw 11  
NOTES:  
1. CE = VIH or UB & LB = VIH for the duration of the above timing (both write and read cycle).  
2. DATAOUT VALID” represents all I/O's (I/O0-I/O15) equal to the semaphore value.  
Timing Waveform of Semaphore Write Contention(1,3,4)  
A0"A"-A2"A"  
MATCH  
SIDE(2)  
"A"  
R/W"A"  
SEM"A"  
tSPS  
A0"B"-A2"B"  
MATCH  
SIDE(2)  
"B"  
R/W"B"  
SEM"B"  
2740 drw 12  
NOTES:  
1. D0R = D0L = VIL, CER = CEL = VIH, or both UB & LB = VIH, semaphore flag is released from both sides (reads as ones from both sides) at cycle start.  
2. All timing is the same for left and right ports. Port A” may be either left or right port. Port B” is the opposite from port A”.  
3. This parameter is measured from R/WA or SEMA going HIGH to R/WB or SEMB going HIGH.  
4. If tSPS is not satisfied, there is no guarantee which side will obtain the semaphore flag.  
6.42  
12  
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(6)  
7024X15  
7024X17  
7024X20  
Com'l, Ind  
& Military  
7024X25  
Com'l &  
Military  
Com'l Only  
Com'l Only  
Symbol  
BUSY TIMING (M/S = VIH  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
)
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
15  
15  
15  
17  
17  
17  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Match  
BUSY Access Time from Chip Enable Low  
BUSY Disable Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
t
t
t
15  
17  
17  
17  
____  
____  
____  
____  
t
5
5
5
5
____  
____  
____  
____  
BUSY Disable to Valid Data(3)  
t
18  
18  
30  
30  
(5)  
____  
____  
____  
____  
t
Write Hold After BUSY  
12  
13  
15  
17  
BUSY INPUT TIMING (M/S = VIH  
)
____  
____  
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
t
WB  
0
0
0
0
ns  
ns  
(5)  
tWH  
Write Hold After BUSY  
12  
13  
15  
17  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
____  
____  
____  
____  
t
WDD  
Write Pulse to Data Delay(1)  
30  
25  
30  
25  
45  
35  
50  
35  
ns  
tDDD  
Write Data Valid to Read Data Delay(1)  
ns  
2740 tbl 14a  
7024X35  
Com'l &  
Military  
7024X55  
Com'l, Ind  
& Military  
7024X70  
Military Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
BUSY TIMING (M/S = VIH  
)
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
20  
20  
20  
45  
40  
40  
45  
40  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Match  
BUSY Access Time from Chip Enable Low  
BUSY Disable Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
t
t
t
20  
35  
35  
____  
____  
____  
t
5
5
5
____  
____  
____  
BUSY Disable to Valid Data(3)  
t
35  
40  
45  
(5)  
____  
____  
____  
t
Write Hold After BUSY  
25  
25  
25  
BUSY INPUT TIMING (M/S = VIH  
)
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
t
WB  
0
0
0
ns  
ns  
(5)  
tWH  
Write Hold After BUSY  
25  
25  
25  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
____  
____  
t
WDD  
Write Pulse to Data Delay(1)  
60  
45  
80  
65  
95  
80  
ns  
tDDD  
Write Data Valid to Read Data Delay(1)  
ns  
2740 tbl 14b  
NOTES:  
1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write Port-to-Port Read and BUSY (M/S = VIH)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0ns, tWDD – tWP (actual) or tDDD – tDW (actual).  
4. To ensure that the write cycle is inhibited on port 'B' during contention with port 'A'.  
5. To ensure that a write cycle is completed on port 'B' after contention with port 'A'.  
6. 'X' in part number indicates power rating (S or L).  
6.42  
13  
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
TimingWaveformof WritewithPort-to-PortReadandBUSY(2,4,5)(M/S =VIH)  
tWC  
MATCH  
ADDR"A"  
R/W"A"  
tWP  
t
DH  
tDW  
VALID  
DATAIN "A"  
(1)  
tAPS  
MATCH  
ADDR"B"  
tBAA  
tBDA  
tBDD  
BUSY"B"  
tWDD  
VALID  
DATAOUT "B"  
(3)  
tDDD  
2740 drw 13  
NOTES:  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S = VIL (SLAVE).  
2. CEL = CER = VIL.  
3. OE = VIL for the reading port.  
4. If M/S = VIL (slave) then BUSY is an input BUSY"A" = VIL and BUSY"B" = don't care, for this example.  
5. All timing is the same for both left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".  
Timing Waveform of Write with BUSY  
tWP  
R/W"A"  
(3)  
tWB  
BUSY"B"  
(1)  
tWH  
,
(2)  
R/W"B"  
2740 drw 14  
NOTES:  
1. tWH must be met for both BUSY input (slave) and output (master).  
2. BUSY is asserted on port "B" Blocking R/W"B", until BUSY"B" goes HIGH.  
3. tWB is only for the 'Slave' Version.  
6.42  
14  
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of BUSY Arbitration Controlled by CE Timing(1) (M/S = VIH)  
ADDR"A"  
ADDRESSES MATCH  
and "B"  
CE"A"  
(2)  
t
APS  
CE"B"  
t
BAC  
tBDC  
BUSY"B"  
2740 drw 15  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(1) (M/S = VIH)  
ADDR"A"  
ADDR"B"  
BUSY"B"  
ADDRESS "N"  
(2)  
tAPS  
MATCHING ADDRESS "N"  
tBAA  
tBDA  
2740 drw 16  
NOTES:  
1. All timing is the same for left and right ports. Port A” may be either the left or right port. Port B” is the port opposite from A”.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(1)  
7024X15  
7024X17  
7024X20  
Com'l , Ind  
& Military  
7024X25  
Com'l &  
Military  
Com'l Only  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
0
0
ns  
ns  
ns  
t
0
0
0
0
____  
____  
____  
____  
t
15  
15  
15  
15  
20  
20  
20  
20  
____  
____  
____  
____  
t
Interrupt Reset Time  
ns  
2740 tbl 15a  
7024X35  
Com'l &  
Military  
7024X55  
Com'l, Ind  
& Military  
7024X70  
Military Only  
Symbol  
INTERRUPT TIMING  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
0
ns  
ns  
ns  
t
0
0
0
____  
____  
____  
t
25  
25  
40  
40  
50  
50  
____  
____  
____  
t
Interrupt Reset Time  
ns  
2740 tbl 15b  
NOTES:  
1. 'X' in part number indicates power rating (S or L).  
6.42  
15  
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing(1)  
tWC  
INTERRUPT SET ADDRESS (2)  
ADDR"A"  
(4)  
(3)  
t
AS  
tWR  
CE"A"  
R/W"A"  
INT"B"  
(3)  
t
INS  
2740 drw 17  
tRC  
INTERRUPT CLEAR ADDRESS (2)  
ADDR"B"  
CE"B"  
(3)  
tAS  
OE"B"  
(3)  
INR  
t
INT"B"  
2740 drw 18  
NOTES:  
1. All timing is the same for left and right ports. Port A” may be either the left or right port. Port B” is the port opposite from A”.  
2. See Interrupt Truth Table III.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
Truth Table III — Interrupt Flag(1,4)  
Left Port  
Right Port  
OE  
R/WL  
A11L-A0L  
R/WR  
A
11R-A0R  
Function  
Set Right INT Flag  
Reset Right INT Flag  
Set Left INT Flag  
Reset Left INT Flag  
CEL  
OEL  
INTL  
CER  
R
INTR  
(2)  
L
L
X
X
L
X
X
X
L
FFF  
X
X
X
X
L
L
X
X
L
X
FFF  
FFE  
X
L
R
(3)  
X
X
X
H
R
(3)  
X
X
L
L
X
X
X
X
L
(2)  
X
FFE  
H
X
L
2740 tbl 16  
NOTES:  
1. Assumes BUSYL = BUSYR = VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
4. INTR and INTL must be initialized at power-up.  
6.42  
16  
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Truth Table IV —  
Address BUSY Arbritration  
Inputs  
Outputs  
A
0L-A11L  
(1)  
(1)  
A
0R-A11R  
Function  
Normal  
Normal  
Normal  
CE  
L
CE  
R
BUSY  
L
BUSYR  
X
H
X
L
X
X
H
L
NO MATCH  
MATCH  
H
H
H
H
MATCH  
H
H
(3)  
MATCH  
(2)  
(2)  
Write Inhibit  
2740 tbl 17  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSYX outputs on the IDT7024 are  
push pull, not open drain outputs. On slaves, the BUSY asserted input internally inhibits write.  
2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address  
and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs cannot be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored  
when BUSYR outputs are driving LOW regardless of actual logic level on the pin.  
Truth Table V — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0  
- D15 Left  
D0  
- D15 Right  
Status  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
2740 tbl 18  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT7024.  
2. There are eight semaphore flags written to via I/O0 and read from all the I/O's. These eight semaphores are addressed by A0-A2.  
3. CE = VIH, SEM = VIL, to access the Semaphores. Refer to the Semaphore Read/Write Control Truth Table.  
FunctionalDescription  
TheIDT7024providestwoportswithseparatecontrol,addressand  
I/Opinsthatpermitindependentaccessforreadsorwritestoanylocation  
inmemory.TheIDT7024hasanautomaticpowerdownfeaturecontrolled  
by CE. The CE controls on-chip power down circuitry that permits the  
respectiveporttogointoastandbymodewhennotselected(CE=VIH).  
Whenaportisenabled,accesstotheentirememoryarrayispermitted.  
ormessagecenter)is assignedtoeachport. Theleftportinterruptflag  
(INTL) is asserted when the right port writes to memory location FFE  
(HEX), whereawriteisdefinedastheCE=R/W=VILpertheTruthTable  
III.TheleftportclearstheinterruptbyaccessaddresslocationFFEaccess  
when CER = OER = VIL, R/W is a "don't care". Likewise, the right port  
interruptflag(INTR)isassertedwhentheleftportwritestomemorylocation  
FFF(HEX)andtocleartheinterruptflag(INTR),therightportmustaccess  
thememorylocationFFF. Themessage(16bits)atFFEorFFFisuser-  
defined,sinceitisanaddressableSRAMlocation.Iftheinterruptfunction  
Interrupts  
Iftheuserchoosestheinterruptfunction,amemorylocation(mailbox  
6.42  
17  
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
isnotused,addresslocationsFFEandFFFarenotusedasmailboxes,  
butaspartoftherandomaccessmemory.RefertoTruthTableIIIforthe  
interruptoperation.  
CE  
CE  
MASTER  
Dual Port  
RAM  
SLAVE  
Dual Port  
RAM  
BUSY (R)  
BUSY (R)  
BUSY (L)  
BUSY (L)  
BusyLogic  
BusyLogicprovidesahardwareindicationthatbothportsoftheRAM  
haveaccessedthesamelocationatthesametime.Italsoallowsoneofthe  
twoaccessestoproceedandsignalstheothersidethattheRAMisbusy.  
TheBUSYpincanthenbeusedtostalltheaccessuntiltheoperationon  
theothersideiscompleted.Ifawriteoperationhasbeenattemptedfrom  
thesidethatreceivesaBUSYindication,thewritesignalisgatedinternally  
topreventthewritefromproceeding.  
MASTER  
Dual Port  
RAM  
SLAVE  
Dual Port  
RAM  
CE  
CE  
BUSY (R)  
BUSY (L) BUSY (R)  
BUSY (L) BUSY (R)  
BUSY (L)  
2740 drw 19  
Figure 3. Busy and chip enable routing for both width and depth  
expansion with IDT7024 RAMs.  
TheuseofBUSYlogicisnotrequiredordesirableforallapplications.  
InsomecasesitmaybeusefultologicallyORtheBUSYoutputstogether  
anduse anyBUSYindicationas aninterruptsource toflagthe eventof  
anillegalorillogicaloperation.IfthewriteinhibitfunctionofBUSYlogicis  
notdesirable,theBUSYlogiccanbedisabledbyplacingthepartinslave  
modewiththeM/Spin.OnceinslavemodetheBUSYpinoperatessolely  
asawriteinhibitinputpin.Normaloperationcanbeprogrammedbytying  
the BUSY pins HIGH. If desired, unintended write operations can be  
prevented to a port by tying the BUSY pin for that port LOW.  
TheBUSYoutputsontheIDT7024SRAMinmastermode,arepush-  
pulltypeoutputsanddonotrequirepullupresistorstooperate.Ifthese  
RAMs are being expanded in depth, then the BUSY indication for the  
resulting array requires the use of an external AND gate.  
usedbyoneprocessortoinhibittheotherfromaccessingaportionofthe  
Dual-Port RAM or any other shared resource.  
The Dual-PortRAMfeatures a fastaccess time, andbothports are  
completelyindependentofeachother.Thismeansthattheactivityonthe  
leftportinnowayslows theaccess timeoftherightport.Bothports are  
identicalinfunctiontostandardCMOSStaticRAMandcanbereadfrom,  
orwrittento,atthesametimewiththeonlypossibleconflictarisingfromthe  
simultaneous writing of, or a simultaneous READ/WRITE of, a non-  
semaphorelocation.Semaphoresareprotectedagainstsuchambiguous  
situationsandmaybeusedbythesystemprogramtoavoidanyconflicts  
inthenon-semaphoreportionoftheDual-PortRAM.Thesedeviceshave  
anautomaticpower-downfeaturecontrolledbyCE,theDual-PortRAM  
enable,andSEM,thesemaphoreenable.TheCEandSEMpinscontrol  
on-chippowerdowncircuitrythatpermits the respective porttogointo  
standbymodewhennotselected.Thisistheconditionwhichisshownin  
Truth Table I where CE and SEM = VIH.  
SystemswhichcanbestusetheIDT7024containmultipleprocessors  
or controllers and are typically very high-speed systems which are  
softwarecontrolledorsoftwareintensive.Thesesystemscanbenefitfrom  
aperformanceincreaseofferedbytheIDT7024'shardwaresemaphores,  
whichprovidealockoutmechanismwithoutrequiringcomplexprogram-  
ming.  
Softwarehandshakingbetweenprocessors offers themaximumin  
systemflexibilitybypermittingsharedresourcestobeallocatedinvarying  
configurations.TheIDT7024doesnotuseitssemaphoreflagstocontrol  
anyresourcesthroughhardware,thusallowingthesystemdesignertotal  
flexibilityinsystemarchitecture.  
An advantage of using semaphores rather than the more common  
methods of hardware arbitration is that wait states are never incurred  
in either processor. This can prove to be a major advantage in very  
high-speedsystems.  
Width Expansion with BUSY Logic  
Master/SlaveArrays  
WhenexpandinganIDT7024RAMarrayinwidthwhileusingBUSY  
logic,onemasterpartisusedtodecidewhichsideoftheRAMarraywill  
receiveaBUSYindication,andtooutputthatindication.Anynumberof  
slaves to be addressed in the same address range as the master, use  
theBUSYsignalasawriteinhibitsignal.ThusontheIDT7024RAMthe  
BUSYpinisanoutputifthepartisusedasamaster(M/Spin=VIH),and  
theBUSYpinisaninputifthepartusedasaslave(M/Spin=VIL)as shown  
in Figure 3.  
Iftwoormoremasterpartswereusedwhenexpandinginwidth,asplit  
decisioncouldresultwithonemasterindicatingBUSYononesideofthe  
arrayandanothermasterindicatingBUSYononeothersideofthearray.  
Thiswouldinhibitthewriteoperationsfromoneportforpartofawordand  
inhibitthewriteoperationsfromtheotherportfortheotherpartoftheword.  
TheBUSYarbitration,onamaster,isbasedonthechipenableand  
address signals only. Itignores whetheranaccess is a readorwrite. In  
a master/slave array, bothaddress andchipenable mustbe validlong  
enoughforaBUSYflagtobeoutputfromthemasterbeforetheactualwrite  
pulsecanbeinitiatedwitheithertheR/Wsignalorthebyteenables.Failure  
toobservethistimingcanresultinaglitchedinternalwriteinhibitsignaland  
corrupteddataintheslave.  
How the Semaphore Flags Work  
Thesemaphorelogicisasetofeightlatcheswhichareindependent  
oftheDual-PortRAM.Theselatchescanbeusedtopassaflag,ortoken,  
fromoneporttotheothertoindicatethatasharedresourceisinuse.The  
semaphores provide a hardware assist for a use assignment method  
calledTokenPassingAllocation.”Inthismethod,thestateofasemaphore  
latchisusedasatokenindicatingthatsharedresourceisinuse.Iftheleft  
processorwantstousethisresource,itrequeststhetokenbysettingthe  
latch.Thisprocessorthenverifiesitssuccessinsettingthelatchbyreading  
Semaphores  
TheIDT7024isanextremelyfastDual-Port4Kx16CMOSStaticRAM  
withanadditional8addresslocationsdedicatedtobinarysemaphoreflags.  
TheseflagsalloweitherprocessorontheleftorrightsideoftheDual-Port  
RAMtoclaimaprivilegeovertheotherprocessorforfunctionsdefinedby  
thesystemdesignerssoftware.Asanexample,thesemaphorecanbe  
6.42  
18  
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
it. If it was successful, it proceeds to assume control over the shared  
Itisimportanttonotethatafailedsemaphorerequestmustbefollowed  
resource.Ifitwasnotsuccessfulinsettingthelatch,itdeterminesthatthe byeitherrepeatedreadsorbywritingaoneintothesamelocation.The  
rightsideprocessorhassetthelatchfirst, hasthetokenandisusingthe reasonforthisiseasilyunderstoodbylookingatthesimplelogicdiagram  
sharedresource.Theleftprocessorcantheneitherrepeatedlyrequest ofthesemaphoreflaginFigure4.Twosemaphorerequestlatchesfeed  
thatsemaphoresstatusorremoveitsrequestforthatsemaphoretoperform into a semaphore flag. Whichever latch is first to present a zero to the  
anothertaskandoccasionallyattemptagaintogaincontrolofthetokenvia semaphoreflagwillforceitssideofthesemaphoreflagLOWandtheother  
thesetandtestsequence.Oncetherightsidehasrelinquishedthetoken, sideHIGH.Thisconditionwillcontinueuntilaoneiswrittentothesame  
theleftsideshouldsucceedingainingcontrol.  
semaphorerequestlatch.Shouldtheothersidessemaphorerequestlatch  
ThesemaphoreflagsareactiveLOW.Atokenisrequestedbywriting havebeenwrittentoazerointhemeantime,thesemaphoreflagwillflip  
azerointoasemaphorelatchandisreleasedwhenthesamesidewrites overtotheothersideassoonasaoneiswrittenintothefirstsidesrequest  
aonetothatlatch.  
latch.ThesecondsidesflagwillnowstayLOWuntilitssemaphorerequest  
The eightsemaphore flags reside withinthe IDT7024ina separate latchiswrittentoaone.Fromthisitiseasytounderstandthat,ifasemaphore  
memoryspacefromtheDual-PortRAM.This addressspaceisaccessed is requestedandthe processorwhichrequesteditnolongerneeds the  
byplacingaLOWinputontheSEMpin(whichactsasachipselectforthe resource, the entire system can hang up until a one is written into that  
semaphore flags) and using the other control pins (Address, OE, and semaphorerequestlatch.  
R/W)as theywouldbeusedinaccessingastandardStaticRAM.Each  
The critical case of semaphore timing is when both sides request  
oftheflagshasauniqueaddresswhichcanbeaccessedbyeitherside a single token by attempting to write a zero into it at the same time.  
throughaddresspinsA0A2.Whenaccessingthesemaphores,noneof The semaphore logic is specially designed to resolve this problem.  
theotheraddresspinshasanyeffect.  
Ifsimultaneous requests are made, the logicguarantees thatonlyone  
Whenwritingtoasemaphore,onlydatapinD0 isused.Ifalowlevel sidereceivesthetoken.Ifonesideisearlierthantheotherinmakingthe  
iswrittenintoanunusedsemaphorelocation,thatflagwillbesettoazero request, the firstside tomake the requestwillreceive the token. Ifboth  
on that side and a one on the other side (see Truth Table III). That requestsarriveatthesametime,theassignmentwillbearbitrarilymade  
semaphorecannowonlybemodifiedbythesideshowingthezero.When to one port or the other.  
aoneiswrittenintothesamelocationfromthesameside,theflagwillbe  
One caution that should be noted when using semaphores is that  
settoaoneforbothsides(unlessasemaphorerequestfromtheotherside semaphoresalonedonotguaranteethataccesstoaresourceissecure.  
ispending)andthencanbewrittentobybothsides.Thefactthattheside Aswithanypowerfulprogrammingtechnique,ifsemaphoresaremisused  
whichisabletowriteazerointoasemaphoresubsequentlylocksoutwrites ormisinterpreted, a software errorcaneasilyhappen.  
fromtheothersideiswhatmakessemaphoreflagsusefulininterprocessor  
Initializationofthesemaphoresisnotautomaticandmustbehandled  
communications.(Athoroughdiscussionontheuseofthisfeaturefollows viatheinitializationprogramatpower-up.Sinceanysemaphorerequest  
shortly.)Azerowrittenintothesamelocationfromtheothersidewillbe flagwhichcontainsazeromustberesettoaone,allsemaphoresonboth  
storedinthesemaphorerequestlatchforthatsideuntilthesemaphoreis sidesshouldhaveaonewrittenintothematinitializationfrombothsides  
freedbythefirstside.  
to assure that they will be free when needed.  
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso  
thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining  
azeroreadsasallzeros.Thereadvalueislatchedintoonesidesoutput  
registerwhenthatside'ssemaphoreselect(SEM)andoutputenable(OE)  
signalsgoactive.Thisservestodisallowthesemaphorefromchanging  
stateinthemiddleofareadcycleduetoawritecyclefromtheotherside.  
Becauseofthislatch,arepeatedreadofasemaphoreinatestloopmust  
cause either signal (SEM or OE) to go inactive or the output will never  
change.  
UsingSemaphores—SomeExamples  
Perhapsthesimplestapplicationofsemaphoresistheirapplicationas  
resourcemarkersfortheIDT7024’sDual-PortRAM.Saythe4Kx16RAM  
was tobedividedintotwo2Kx16blocks whichweretobededicatedat  
anyonetimetoservicingeithertheleftorrightport.Semaphore0could  
be used to indicate the side which would control the lower section of  
memory,andSemaphore1couldbedefinedastheindicatorfortheupper  
sectionofmemory.  
AsequenceWRITE/READmustbeusedbythesemaphoreinorder  
to guarantee that no system level contention will occur. A processor  
requestsaccesstosharedresourcesbyattemptingtowriteazerointoa  
semaphorelocation.Ifthesemaphoreisalreadyinuse,thesemaphore  
requestlatchwillcontainazero,yetthesemaphoreflagwillappearasone,  
afactwhichtheprocessorwillverifybythesubsequentread(seeTruth  
TableIII).Asanexample,assumeaprocessorwritesazerototheleftport  
atafreesemaphorelocation.Onasubsequentread,theprocessorwill  
verifythatithaswrittensuccessfullytothatlocationandwillassumecontrol  
overtheresourceinquestion.Meanwhile,ifaprocessorontherightside  
attempts towriteazerotothesamesemaphoreflagitwillfail,as willbe  
verifiedbythefactthataonewillbereadfromthatsemaphoreontheright  
side during subsequent read. Had a sequence of READ/WRITE been  
usedinstead,systemcontentionproblemscouldhaveoccurredduringthe  
gap between the read and write cycles.  
Totakearesource,inthis examplethelower2KofDual-PortRAM,  
the processor on the left port could write and then read a zero in to  
Semaphore0.Ifthistaskweresuccessfullycompleted(azerowasread  
backratherthana one), the leftprocessorwouldassume controlofthe  
lower2K.Meanwhiletherightprocessorwasattemptingtogaincontrolof  
theresourceaftertheleftprocessor,itwouldreadbackaoneinresponse  
tothezeroithadattemptedtowriteintoSemaphore0.Atthis point,the  
softwarecouldchoosetotryandgaincontrolofthesecond2Ksectionby  
writing,thenreadingazerointoSemaphore1.Ifitsucceededingaining  
control,itwouldlockouttheleftside.  
Once the left side was finished with its task, it would write a one to  
Semaphore 0 and may then try to gain access to Semaphore 1. If  
Semaphore1wasstilloccupiedbytherightside,theleftsidecouldundo  
itssemaphorerequestandperformothertasksuntilitwasabletowrite,then  
6.42  
19  
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
readazerointoSemaphore1.Iftherightprocessorperformsasimilartask  
SemaphoresarealsousefulinapplicationswherenomemoryWAIT”  
withSemaphore0,thisprotocolwouldallowthetwoprocessorstoswap stateisavailableononeorbothsides.Onceasemaphorehandshakehas  
2Kblocks ofDual-PortRAMwitheachother. been performed, both processors can access their assigned RAM  
The blocks do not have to be any particular size and can even be segmentsatfullspeed.  
variable, depending upon the complexity of the software using the  
Anotherapplicationisintheareaofcomplexdatastructures. Inthis  
semaphoreflags.AlleightsemaphorescouldbeusedtodividetheDual- case,blockarbitrationisveryimportant.Forthisapplicationoneprocessor  
PortRAMorothersharedresources intoeightparts. Semaphores can mayberesponsibleforbuildingandupdatingadatastructure.Theother  
evenbeassigneddifferentmeaningsondifferentsidesratherthanbeing processorthenreadsandinterpretsthatdatastructure.Iftheinterpreting  
given a common meaning as was shown in the example above.  
processorreadsanincompletedatastructure,amajorerrorconditionmay  
Semaphores are a useful form of arbitration in systems like disk exist.Therefore,somesortofarbitrationmustbeusedbetweenthetwo  
interfaceswheretheCPUmustbelockedoutofasectionofmemoryduring differentprocessors.Thebuildingprocessorarbitratesfortheblock,locks  
atransferandtheI/Odevicecannottolerateanywaitstates.Withtheuse itandthenisabletogoinandupdatethedatastructure.Whentheupdate  
ofsemaphores,oncethetwodeviceshasdeterminedwhichmemoryarea is completed, the data structure block is released. This allows the  
wasoff-limitstotheCPU,boththeCPUandtheI/Odevicescouldaccess interpretingprocessortocomebackandreadthecompletedatastructure,  
theirassignedportionsofmemorycontinuouslywithoutanywaitstates. therebyguaranteeingaconsistentdatastructure.  
L PORT  
SEMAPHORE  
R PORT  
SEMAPHORE  
REQUEST FLIP FLOP  
REQUEST FLIP FLOP  
0
D
0
D
D
D
Q
Q
WRITE  
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
READ  
,
2740 drw 20  
Figure 4. IDT7024 Semaphore Logic  
6.42  
20  
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
OrderingInformation  
XXXXX  
A
999  
A
A
A
A
Device  
Type  
Power  
Speed  
Package  
Process/  
Temperature  
Range  
Tube or Tray  
Tape & Reel  
Blank  
8
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
Military (-55°C to +125°C)  
Blank  
I(1)  
B
Compliant to MIL-PRF-38535 QML  
G(2)  
Green  
PF  
G
J
100-pin TQFP (PN100-1)  
84-pin PGA (G84-3)  
84-pin PLCC (J84-1)  
84-pin Flatpack (F84-2)  
F
15  
17  
20  
25  
35  
55  
70  
Commercial Only  
Commercial Only  
Commercial, Industrial & Military  
Commercial & Military  
Commercial & Military  
Commercial, Industrial & Military  
Military Only  
Speed in  
nanoseconds  
S
L
Standard Power  
Low Power  
7024  
64K (4K x 16) Dual-Port RAM  
2740 drw 21  
NOTE:  
1. Industrial temperature range is available on selected PLCC packages in standard power. For other speeds, packages and powers contact your sales office.  
2. Green parts available. For specific speeds, packages and powers contact your local sales office.  
DatasheetDocumentHistory  
1/13/99:  
Initiateddatasheetdocumenthistory  
Convertedtonewformat  
Cosmeticandtypographicalcorrections  
Pages2and3Addedadditionalnotestopinconfigurations  
Changeddrawingformat  
Page 1 CorrectedDSCnumber  
Replaced IDT logo  
6/4/99:  
4/4/00:  
Page 6CorrectedtypoinData Retentionchart  
Changed±500mVto0mVinnotes  
5/19/00:  
Page 3 ClarifiedTAparameter  
Page 4 Increasedstoragetemperatureparameter  
Pages 5and6DCElectricalparameters–changedwordingfrom"open"to"disabled"  
Datasheet Document History continued on page 22  
6.42  
21  
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
DatasheetDocumentHistory(continued)  
9/12/01:  
Page 2 & 3 Added date revision for pin configurations  
Page 5 AddedIndustrialtemptothecolumnheadingfor20nstoDCElectricalCharacteristics  
Pages8,10,13&15 AddedIndustrialtemptothecolumnheadingsfor20nstoACElectricalCharacteristics  
Pages3,5,6,8,10,13&15 RemovedIndustrialtempnotefromalltablesfootnotes  
Page 21 AddedIndustrialto20nsorderinginformation  
07/25/05:  
Page 1 Addedgreenavailabilitytofeatures  
Page 21 Addedgreenindicatortoorderinginformation  
Page 1 & 21 Replaced old IDT ® logo with the new IDTTM logo  
Page21Updatedaddressandphonecontactinformation  
10/29/08:  
06/11/13:  
Page 21 Removed "IDT" from orderable part number  
Page 21OrderingInformation:AddedT&R  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
408-284-2794  
DualPortHelp@idt.com  
800-345-7015 or 408-284-8200  
fax: 408-824-2775  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
6.42  
22  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY