7025S55FGI8 [IDT]

HIGH-SPEED 8K x 16 DUAL-PORT STATIC RAM;
7025S55FGI8
型号: 7025S55FGI8
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

HIGH-SPEED 8K x 16 DUAL-PORT STATIC RAM

文件: 总22页 (文件大小:201K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED  
IDT7025S/L  
8K x 16 DUAL-PORT  
STATIC RAM  
LEAD FINISH (SnPb) ARE IN EOL PROCESS - LAST TIME BUY EXPIRES JUNE 15, 2018  
IDT7025 easily expands data bus width to 32 bits or more  
using the Master/Slave select when cascading more than  
one device  
M/S = H for BUSY output flag on Master  
M/S = L for BUSY input on Slave  
Interrupt Flag  
On-chip port arbitration logic  
Full on-chip hardware support of semaphore signaling  
between ports  
Fully asynchronous operation from either port  
Battery backup operation—2V data retention  
TTL-compatible, single 5V (±10%) power supply  
Available in 84-pin PGA, Flatpack, PLCC, and 100-pin Thin  
Quad Flatpack  
Features  
True Dual-Ported memory cells which allow simultaneous  
reads of the same memory location  
High-speed access  
– Military:20/25/35/55/70ns(max.)  
– Industrial: 55ns (max.)  
– Commercial:15/17/20/25/35/55ns(max.)  
Low-power operation  
– IDT7025S  
Active:750mW(typ.)  
Standby: 5mW (typ.)  
– IDT7025L  
Active:750mW(typ.)  
Standby: 1mW (typ.)  
Separate upper-byte and lower-byte control for multiplexed  
Industrial temperature range (–40°C to +85°C) is available  
for selected speeds  
Green parts available, see ordering information  
bus compatibility  
FunctionalBlockDiagram  
R/W  
R
R
R/W  
L
L
UB  
UB  
LB  
R
LB  
L
CEL  
L
CER  
OE  
OE  
R
I/O8L-I/O15L  
I/O0L-I/O7L  
I/O8R-I/O15R  
I/O  
Control  
I/O  
Control  
I/O0R-I/O7R  
(1,2)  
(1,2)  
R
BUSY  
BUSY  
L
A
12R  
0R  
A
12L  
Address  
Decoder  
MEMORY  
ARRAY  
Address  
Decoder  
A
0L  
A
13  
13  
ARBITRATION  
INTERRUPT  
SEMAPHORE  
LOGIC  
CE  
OE  
R/W  
L
CE  
OE  
R/W  
R
L
R
L
R
SEM  
L
SEM  
R
(2)  
INT (2)  
L
INTR  
M/S  
2683 drw 01  
NOTES:  
1. (MASTER): BUSY is output; (SLAVE): BUSY is input.  
2. BUSY outputs and INT outputs are non-tri-stated push-pull.  
MARCH 2018  
1
DSC 2683/12  
©2018 Integrated Device Technology, Inc.  
IDT7025S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
featurecontrolledbyChipEnable(CE)permitstheon-chipcircuitryofeach  
port to enter a very low standby power mode.  
FabricatedusingIDT’sCMOShigh-performancetechnology,these  
devices typically operate on only 750mW of power. Low-power (L)  
versionsofferbatterybackupdataretentioncapabilitywithtypical power  
consumptionof500µWfroma2Vbattery.  
The IDT7025 is packaged in a ceramic 84-pin PGA, an 84-pin  
Flatpack, PLCC, and a 100-pin TQFP. Military grade product is manu-  
facturedincompliancewiththelatestrevisionofMIL-PRF-38535QML,  
makingitideallysuitedtomilitarytemperatureapplicationsdemandingthe  
highestlevelofperformanceandreliability.  
Description  
The IDT7025 is a high-speed 8K x 16 Dual-Port Static RAM. The  
IDT7025isdesignedtobeusedasastand-alone128K-bitDual-PortRAM  
orasacombinationMASTER/SLAVEDual-PortRAMfor32-bitormore  
wordsystems.UsingtheIDTMASTER/SLAVEDual-PortRAMapproach  
in32-bitorwidermemorysystemapplicationsresultsinfull-speed,error-  
freeoperationwithouttheneedforadditionaldiscretelogic.  
This device provides two independent ports with separate control,  
address,andI/Opinsthatpermitindependent,asynchronousaccessfor  
reads or writes to any location in memory. An automatic power down  
PinConfigurations(1,2,3)  
INDEX  
11/06/01  
11 10  
9
8
7
6
5
4
3
2
1 84 83 82 81 80 79 78 77 76 75  
74  
A
A
A
A
A
A
A
A
7L  
6L  
5L  
4L  
3L  
2L  
1L  
0L  
I/O8L  
I/O9L  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
73  
72  
71  
70  
69  
68  
I/O10L  
I/O11L  
I/O12L  
I/O13L  
GND  
IDT7025J or F  
J84-1(4)  
I/O14L  
I/O15L  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
INT  
L
F84-2(4)  
BUSY  
GND  
M/S  
L
V
CC  
84-Pin PLCC/Flatpack  
Top View(5)  
GND  
I/O0R  
I/O1R  
I/O2R  
BUSY  
R
INT  
R
V
CC  
A
A
A
A
A
A
A
0R  
I/O3R  
I/O4R  
I/O5R  
I/O6R  
I/O7R  
I/O8R  
1R  
2R  
3R  
4R  
5R  
6R  
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53  
2683 drw 02  
Index  
11/06/01  
100 9998 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
1
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
75  
2
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
3
4
N/C  
5
I/O10L  
I/O11L  
I/O12L  
I/O13L  
GND  
I/O14L  
I/O15L  
A5L  
A4L  
A3L  
A2L  
A1L  
A0L  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
IDT7025PF  
PN100-1(4)  
INTL  
VCC  
BUSY  
GND  
M/S  
BUSY  
INTR  
L
100-Pin TQFP  
Top View(5)  
GND  
I/O0R  
I/O1R  
I/O2R  
R
A
A
A
A
A
0R  
VCC  
NOTES:  
1R  
2R  
3R  
4R  
I/O3R  
I/O4R  
I/O5R  
I/O6R  
N/C  
N/C  
N/C  
N/C  
1. All VCC pins must be connected to power supply.  
2. All GND pins must be connected to ground supply.  
3. J84-1 package body is approximately 1.15 in x 1.15 in x .17 in.  
F84-2 package body is approximately 1.17 in x 1.17 in x .11 in.  
PN100-1 package body is approximately 14mm x 14mm x 1.4mm.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part-marking.  
N/C  
N/C  
N/C  
N/C  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
.
2683 drw 03  
6.422  
IDT7025S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Pin Configurations(1,2,3) (con't.)  
11/06/01  
63  
I/O7L  
66  
I/O10L  
67  
I/O11L  
69  
I/O13L  
72  
I/O15L  
75  
I/O0R  
76  
I/O1R  
79  
I/O3R  
81  
I/O5R  
82  
I/O6R  
61  
I/O5L  
64  
I/O8L  
65  
I/O9L  
68  
I/O12L  
71  
I/O14L  
70  
60  
I/O4L  
62  
I/O6L  
58  
I/O2L  
59  
I/O3L  
55  
I/O0L  
56  
I/O1L  
57  
54  
51  
48  
46  
45  
42  
11  
10  
09  
08  
07  
06  
05  
04  
03  
02  
01  
A
11L  
A
10L  
A
7L  
OE  
L
SEM  
L
LB  
L
49  
50  
47  
44  
43  
41  
40  
A
9L  
A
8L  
A
5L  
UB  
L
CE  
L
A
12L  
53  
52  
39  
R/W  
L
GND  
VCC  
A
6L  
3L  
0L  
A
4L  
38  
37  
A
A
2L  
73  
33  
35  
34  
BUSY  
L
A
V
CC  
INT  
L
IDT7025G  
G84-3(4)  
74  
32  
31  
36  
GND  
GND  
M/S  
GND  
A
1L  
84-Pin PGA  
Top View(5)  
77  
I/O2R  
80  
I/O4R  
83  
I/O7R  
78  
28  
29  
30  
V
CC  
A
0R  
INT  
R
BUSYR  
26  
27  
A
2R  
A
1R  
3R  
7
11  
12  
23  
25  
SEM  
R
GND  
GND  
A5R  
A
1
2
5
8
10  
14  
17  
20  
22  
24  
I/O9R  
I/O10R I/O13R I/O15R  
R/W  
R
A
11R  
A
8R  
A
6R  
9R  
A
4R  
7R  
UB  
R
84  
I/O8R  
3
4
6
9
15  
13  
16  
18  
19  
21  
I/O11R I/O12R I/O14R  
A
10R  
A
A
OE  
R
LB  
R
CER  
A
12R  
.
A
B
C
D
E
F
G
H
J
K
L
2683 drw 04  
Index  
NOTES:  
1. All VCC pins must be connected to power supply.  
2. All GND pins must be connected to ground supply.  
3. Package body is approximately 1.12 in x 1.12 in x .16 in.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part-marking.  
6.342  
IDT7025S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
PinNames  
Left Port  
Right Port  
Names  
Chip Enable  
CE  
R/W  
OE  
L
CE  
R/W  
OE  
R
L
R
Read/Write Enable  
Output Enable  
Address  
L
R
A
0L - A12L  
A
0R - A12R  
I/O0L - I/O15L  
I/O0R - I/O15R  
Data Input/Output  
Semaphore Enable  
Upper Byte Select  
Lower Byte Select  
Interrupt Flag  
SEM  
UB  
LB  
INT  
BUSY  
L
SEM  
UB  
LB  
INT  
BUSY  
M/S  
R
L
R
L
R
L
R
Busy Flag  
L
R
Master or Slave Select  
Power  
V
CC  
GND  
Ground  
2683 tbl 01  
6.442  
IDT7025S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Truth Table I: Non-Contention Read/Write Control  
Inputs(1)  
Outputs  
R/W  
X
I/O8-15  
High-Z  
High-Z  
DATAIN  
High-Z  
DATAIN  
I/O0-7  
High-Z  
High-Z  
High-Z  
DATAIN  
DATAIN  
High-Z  
DATAOUT  
DATAOUT  
High-Z  
Mode  
CE  
H
X
L
OE  
X
X
X
X
X
L
UB  
X
H
L
LB  
X
H
H
L
SEM  
H
Deselected  
X
H
Both Bytes Deselected  
L
H
Write to Upper Byte Only  
Write to Lower Byte Only  
Write to Both Bytes  
L
L
H
L
H
L
L
L
H
L
H
H
H
X
L
H
L
H
DATAOUT  
High-Z  
Read Upper Byte Only  
Read Lower Byte Only  
Read Both Bytes  
L
L
H
L
H
L
L
L
H
DATAOUT  
High-Z  
X
H
X
X
X
Outputs Disabled  
2683 tbl 02  
NOTE:  
1. A0L — A12L A0R — A12R.  
Truth Table II: Semaphore Read/Write Control(1)  
Inputs  
Outputs  
R/W  
H
I/O8-15  
I/O0-7  
Mode  
CE  
H
X
OE  
L
UB  
X
LB  
X
SEM  
L
L
L
L
L
L
DATAOUT  
DATAOUT  
DATAIN  
DATAOUT  
DATAOUT  
DATAIN  
Read Semaphore Flag Data Out  
Read Semaphore Flag Data Out  
H
L
H
X
H
X
H
X
X
Write I/O  
0
0
into Semaphore Flag  
into Semaphore Flag  
X
H
L
H
X
DATAIN  
DATAIN  
Write I/O  
____  
____  
L
X
X
Not Allowed  
Not Allowed  
____  
____  
L
X
X
X
L
2683 tbl 03  
NOTES:  
1. There are eight semaphore flags written to via I/O0 and read from I/O0 - I/O15. These eight semaphores are addressed by A0 - A2.  
6.542  
IDT7025S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AbsoluteMaximumRatings(1)  
MaximumOperatingTemperature  
andSupplyVoltage(1)  
Symbol  
Rating  
Commercial  
& Industrial  
Military  
Unit  
Grade  
GND  
Vcc  
(2)  
Ambient Temperature  
-55OC to +125OC  
0OC to +70OC  
V
TERM  
Terminal Voltage  
with Respect  
to GND  
-0.5 to +7.0  
-0.5 to +7.0  
V
Military  
0V  
0V  
0V  
5.0V  
+
+
+
10%  
T
BIAS  
Temperature  
Under Bias  
-55 to +125  
-65 to +150  
50  
-65 to +135  
-65 to +150  
50  
oC  
oC  
Commercial  
Industrial  
5.0V  
5.0V  
10%  
-40OC to +85OC  
10%  
TSTG  
Storage  
Temperature  
2683 tbl 05  
NOTES:  
1. This is parameter TA. This is the "instant on" case temperature.  
DC Output  
Current  
mA  
IOUT  
2683 tbl 04  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may  
cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those  
indicated in the operational sections of this specification is not implied. Exposure  
to absolute maximum rating conditions for extended periods may affect  
reliability.  
RecommendedDCOperating  
Conditions  
2. VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10ns  
maximum, and is limited to < 20 mA for the period over VTERM > Vcc + 10%.  
Symbol  
Parameter  
Min.  
Typ.  
Max. Unit  
V
CC  
Supply Voltage  
4.5  
5.0  
5.5  
0
V
V
V
GND  
Ground  
0
0
V
IH  
IL  
Input High Voltage  
Input Low Voltage  
2.2  
6.0(2)  
0.8  
____  
Capacitance(1) (TA = +25°C, f = 1.0mhz)  
-0.5(1)  
V
____  
V
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions(2)  
IN = 3dV  
OUT = 3dV  
Max. Unit  
2683 tbl 06  
NOTES:  
CIN  
V
9
pF  
1. VIL > -1.5V for pulse width less than 10ns.  
2. VTERM must not exceed Vcc + 10%.  
COUT  
V
10  
pF  
2683 tbl 07  
NOTES:  
1. This parameter is determined by device characterization but is not production  
tested. For TQFP package only.  
2. 3dV references the interpolated capacitance when the input and output signals  
switch from 0V to 3V or from 3V to 0V.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VCC = 5.0V ± 10%)  
7025S  
7025L  
Symbol  
Parameter  
Input Leakage Current(1)  
Output Leakage Current  
Output Low Voltage  
Test Conditions  
CC = 5.5V, VIN = 0V to VCC  
OUT = 0V to VCC  
Min.  
Max.  
10  
Min.  
Max.  
Unit  
µA  
µA  
V
___  
___  
|ILI|  
V
V
5
5
___  
___  
___  
___  
|ILO  
|
10  
V
OL  
OH  
I
OL = +4mA  
0.4  
0.4  
___  
___  
V
Output High Voltage  
I
OH = -4mA  
2.4  
2.4  
V
2683 tbl 08  
NOTE:  
1. At Vcc < 2.0V input leakages are undefined.  
6.462  
IDT7025S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the 0perating  
Temperature and Supply Voltage Range(1) (VCC = 5.0V ± 10%)  
7025X15  
7025X17  
7025X20  
Com'l, Ind  
& Military  
7025X25  
Com'l &  
Military  
Com'l Only  
Com'l Only  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
mA  
ICC  
Dynamic Operating  
Current  
(Both Ports Active)  
S
L
170  
170  
310  
260  
170  
170  
310  
260  
160  
160  
290  
240  
155  
155  
265  
220  
CE = VIL, Outputs Disabled  
SEM = VIH  
(3)  
f = fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
160  
160  
370  
320  
155  
155  
340  
280  
mA  
mA  
I
SB1  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
S
L
20  
20  
60  
50  
20  
20  
60  
50  
20  
20  
60  
50  
16  
16  
60  
50  
CE  
SEM  
f = fMAX  
L
= CE  
R
= VIH  
= VIH  
R
= SEM  
L
(3)  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
20  
20  
90  
70  
16  
16  
80  
65  
(5)  
ISB2  
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
S
L
105  
105  
190  
160  
105  
105  
190  
160  
95  
95  
180  
150  
90  
90  
170  
140  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
(3)  
f=fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
95  
95  
240  
210  
90  
90  
215  
180  
SEM  
R
= SEML = VIH  
mA  
mA  
I
SB3  
Full Standby Current  
(Both Ports -  
COM'L  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
CE  
L
and CE  
IN > VCC - 0.2V or  
IN < 0.2V, f = 0(4)  
= SEM > VCC - 0.2V  
R > VCC - 0.2V,  
V
V
CMOS Level Inputs)  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
1.0  
0.2  
30  
10  
1.0  
0.2  
30  
10  
SEM  
R
L
ISB4  
Full Standby Current  
(One Port -  
CMOS Level Inputs)  
COM'L  
S
L
100  
100  
170  
140  
100  
100  
170  
140  
90  
90  
155  
130  
85  
85  
145  
120  
CE"A" < 0.2V and  
CE"B" > VCC - 0.2V(5)  
SEM  
R
= SEML > VCC - 0.2V  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
90  
90  
225  
200  
85  
85  
200  
170  
V
IN > VCC - 0.2V or VIN < 0.2V  
Active Port Outputs Disabled,  
(3)  
f = fMAX  
2683 tbl 09a  
7025X35  
Com'l &  
Military  
7025X55  
Com'l, Ind  
& Military  
7025X70  
Military Only  
Symbol  
Parameter  
Test Condition  
Version  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
____  
____  
____  
____  
ICC  
Dynamic Operating  
Current  
(Both Ports Active)  
COM'L  
S
150  
150  
250  
210  
150  
150  
250  
210  
mA  
CE = VIL, Outputs Disabled  
SEM = VIH  
L
(3)  
f = fMAX  
MIL &  
IND  
S
L
150  
150  
300  
250  
150  
150  
300  
250  
140  
140  
300  
250  
____  
____  
____  
____  
I
SB1  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
S
L
13  
13  
60  
50  
13  
13  
60  
50  
mA  
mA  
CE  
SEM  
f = fMAX  
L
= CE  
R
= VIH  
= VIH  
R
= SEM  
L
(3)  
MIL &  
IND  
S
L
13  
13  
80  
65  
13  
13  
80  
65  
10  
10  
80  
65  
(5)  
____  
____  
____  
____  
ISB2  
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
S
L
85  
85  
155  
130  
85  
85  
155  
130  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
(3)  
f=fMAX  
MIL &  
IND  
S
L
85  
85  
190  
160  
85  
85  
190  
160  
80  
80  
190  
160  
SEM  
R
= SEML = VIH  
____  
____  
____  
____  
I
SB3  
Full Standby Current  
(Both Ports -  
COM'L  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
mA  
mA  
CE  
L
and CE  
IN > VCC - 0.2V or  
IN < 0.2V, f = 0(4)  
= SEM > VCC - 0.2V  
R > VCC - 0.2V,  
V
V
CMOS Level Inputs)  
MIL &  
IND  
S
L
1.0  
0.2  
30  
10  
1.0  
0.2  
30  
10  
1.0  
0.2  
30  
10  
SEM  
R
L
____  
____  
____  
____  
ISB4  
Full Standby Current  
(One Port -  
CMOS Level Inputs)  
COM'L  
S
L
80  
80  
135  
110  
80  
80  
135  
110  
CE"A" < 0.2V and  
CE"B" > V - 0.2V(5)  
SEM  
R
= SCECM  
L > VCC - 0.2V  
MIL &  
IND  
S
L
80  
80  
175  
150  
80  
80  
175  
150  
75  
75  
175  
150  
V
IN > VCC - 0.2V or VIN < 0.2V  
Active Port Outputs Disabled,  
(3)  
f = fMAX  
2683 tbl 09b  
NOTES:  
1. 'X' in part number indicates power rating (S or L)  
2. VCC = 5V, TA = +25°C, and are not production tested. Icc dc = 120mA (TYP)  
3. At f = fMAX, address and I/O'S are cycling at the maximum frequency read cycle of 1/tRC, and using “AC Test Conditions” of input levels of GND to 3V.  
4. f = 0 means no address or control lines change.  
5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
6.742  
IDT7025S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Data Retention Characteristics Over All Temperature Ranges  
(L Version Only)  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.(1)  
Max.  
Unit  
V
___  
___  
V
DR  
V
CC for Data Retention  
V
CC = 2V  
2.0  
___  
ICCDR  
Data Retention Current  
µA  
CE > VHC  
IN > VHC or < VLC  
MIL. & IND.  
COM'L.  
100  
4000  
___  
V
100  
1500  
(3)  
___  
___  
t
CDR  
Chip Deselect to Data Retention Time  
Operation Recovery Time  
0
ns  
SEM > VHC  
(3)  
(2)  
___  
___  
tR  
t
RC  
ns  
2683 tbl 10  
NOTES:  
1. TA = +25°C, VCC = 2V, and are not production tested.  
2. tRC = Read Cycle Time  
3. This parameter is guaranteed by device characterization, but is not production tested.  
4. At Vcc < 2.0V input leakages are undefined.  
Data Retention Waveform  
DATA RETENTION MODE  
VDR  
4.5V  
4.5V  
VCC  
2V  
tCDR  
tR  
VDR  
VIH  
VIH  
CE  
2683 drw 05  
AC Test Conditions  
Input Pulse Levels  
GND to 3.0V  
5ns Max.  
1.5V  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
1.5V  
Figures 1 and 2  
2683 tbl 11  
5V  
5V  
893  
893Ω  
DATAOUT  
BUSY  
INT  
DATAOUT  
30pF  
347Ω  
5pF*  
347Ω  
2683 drw 06  
Figure 2. Output Test Load  
(for tLZ, tHZ, tWZ, tOW)  
* including scope and jig.  
Figure 1. AC Output Test Load  
6.482  
IDT7025S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(4)  
7025X15  
7025X17  
7025X20  
Com'l, Ind  
& Military  
7025X25  
Com'l &  
Military  
Com'l Only  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
____  
t
RC  
AA  
ACE  
ABE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
SAA  
Read Cycle Time  
15  
17  
20  
25  
ns  
ns  
ns  
____  
____  
____  
____  
t
Address Access Time  
15  
15  
15  
17  
17  
17  
20  
20  
20  
25  
25  
25  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
Chip Enable Access Time(3)  
Byte Enable Access Time(3)  
t
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output Enable Access Time(3)  
t
10  
10  
12  
13  
____  
____  
____  
____  
t
Output Hold from Address Change  
3
3
3
3
____  
____  
____  
____  
Output Low-Z Time(1,2)  
t
3
3
3
3
____  
____  
____  
____  
Output High-Z Time(1,2)  
t
10  
10  
12  
15  
____  
____  
____  
____  
Chip Enable to Power Up Time(1,2)  
t
0
0
0
0
____  
____  
____  
____  
Chip Disable to Power Down Time(1,2)  
t
15  
17  
20  
25  
____  
____  
____  
____  
t
Semaphore Flag Update Pulse (OE or SEM)  
10  
10  
10  
10  
____  
____  
____  
____  
Semaphore Address Access(3)  
t
15  
17  
20  
25  
ns  
2683 tbl 12a  
7025X35  
Com'l &  
Military  
7025X55  
Com'l, Ind  
& Military  
7025X70  
Military Only  
Symbol  
READ CYCLE  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
t
RC  
AA  
ACE  
ABE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
SAA  
Read Cycle Time  
35  
55  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
t
Address Access Time  
35  
35  
35  
55  
55  
55  
70  
70  
70  
Chip Enable Access Time(3)  
Byte Enable Access Time(3)  
Output Enable Access Time(3)  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
t
t
20  
30  
35  
____  
____  
____  
t
3
3
3
____  
____  
____  
t
3
3
3
Output High-Z Time(1,2)  
15  
25  
30  
____  
____  
____  
t
t
Chip Enable to Power Up Time(1,2)  
Chip Disable to Power Down Time(1,2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access(3)  
0
0
0
____  
____  
____  
____  
____  
____  
t
35  
50  
50  
____  
____  
____  
t
15  
15  
15  
____  
____  
____  
t
35  
55  
70  
ns  
2683 tbl 12b  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterazation, but is not production tested.  
3. To access RAM, CE = VIL, UB or LB = VIL, and SEM = VIH. To access semephore, CE = VIH or UB & LB = VIH, and SEM = VIL.  
4. 'X' in part number indicates power rating (S or L).  
6.942  
IDT7025S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of Read Cycles(5)  
tRC  
ADDR  
(4)  
t
t
AA  
(4)  
ACE  
CE  
OE  
(4)  
tAOE  
(4)  
t
ABE  
UB, LB  
R/W  
(1)  
tOH  
tLZ  
VALID DATA(4)  
DATAOUT  
BUSYOUT  
(2)  
tHZ  
(3,4)  
2683 drw 07  
t
BDD  
NOTES:  
1. Timing depends on which signal is asserted last, OE, CE, LB, or UB.  
2. Timing depends on which signal is de-asserted first, CE, OE, LB, or UB.  
3. tBDD delay is required only in case where opposite port is completing a write operation to the same address location for simultaneous read operations BUSY  
has no relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last tABE, tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
Timing of Power-Up Power-Down  
CE  
tPU  
tPD  
I
CC  
SB  
50%  
50%  
I
.
2683 drw 08  
6.1402  
IDT7025S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage(5)  
7025X15  
7025X17  
Com'l Only  
7025X20  
Com'l, Ind  
& Military  
7025X25  
Com'l &  
Military  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
15  
12  
12  
0
17  
12  
12  
0
20  
15  
15  
0
25  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
t
t
t
12  
0
12  
0
15  
0
20  
0
t
Write Recovery Time  
t
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
10  
10  
15  
15  
____  
____  
____  
____  
t
10  
10  
12  
15  
____  
____  
____  
____  
t
0
0
0
0
(1,2)  
____  
____  
____  
____  
t
Write Enable to Output in High-Z  
Output Active from End-of-Write(1, 2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
10  
10  
12  
15  
____  
____  
____  
____  
t
0
5
5
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
____  
____  
t
t
ns  
2683 tbl 13a  
7025X35  
Com'l &  
Military  
7025X55  
Com'l, Ind  
& Military  
7025X70  
Military Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tWC  
tEW  
tAW  
tAS  
Write Cycle Time  
35  
30  
30  
0
55  
45  
45  
0
70  
50  
50  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
tWP  
tWR  
tDW  
tHZ  
25  
0
40  
0
50  
0
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
15  
30  
40  
____  
____  
____  
15  
25  
30  
____  
____  
____  
tDH  
0
0
0
(1,2)  
____  
____  
____  
tWZ  
Write Enable to Output in High-Z  
15  
25  
30  
tOW  
tSWRD  
tSPS  
Output Active from End-of-Write(1,2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
____  
____  
____  
ns  
2683 tbl 13b  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE = VIL, UB or LB = VIL, SEM = VIH. To access semaphore, CE = VIH or UB & LB = VIH, and SEM = VIL. Either condition must be valid for the  
entire tEW time.  
4. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH and tOW values will vary over voltage  
and temperature, the actual tDH will always be smaller than the actual tOW.  
5. 'X' in part number indicates power rating (S or L).  
61.412  
IDT7025S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
t
WC  
ADDRESS  
(7)  
tHZ  
OE  
tAW  
CE or SEM(9)  
UB or LB(9)  
(3)  
(2)  
(6)  
tWP  
tWR  
tAS  
R/W  
DATAOUT  
DATAIN  
(7)  
t
WZ  
tOW  
(4)  
(4)  
tDW  
tDH  
2683 drw 09  
Timing Waveform of Write Cycle No. 2, CE, UB, LB Controlled Timing(1,5)  
tWC  
ADDRESS  
tAW  
CE or SEM(9)  
(3)  
(2)  
(6)  
AS  
tWR  
t
EW  
t
UB or LB(9)  
R/W  
DATAIN  
tDW  
tDH  
2683 drw 10  
NOTES:  
1. R/W or CE or UB & LB = VIH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a UB or LB = VIL and a CE = VIL and a R/W = VIL for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going to VIH to the end-of-write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM LOW = VIL transition occurs simultaneously with or after the R/W = VIL transition, the outputs remain in the HIGH impedance state.  
6. Timing depends on which enable signal is asserted last, CE, R/W, or byte control.  
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with Output Test Load  
(Figure 2).  
8. If OE = VIL during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be  
placed on the bus for the required tDW. If OE = VIH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the  
specified tWP.  
9. To access RAM, CE = VIL, UB or LB = VIL, and SEM = VIH. To access Semaphore, CE = VIH or UB & LB = VIH, and SEM = VIL. tEW must be met  
for either condition.  
6.1422  
IDT7025S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
tSAA  
tOH  
A0 - A2  
VALID ADDRESS  
VALID ADDRESS  
tAW  
tWR  
tACE  
t
t
EW  
SEM  
t
SOP  
t
DW  
OUT  
(2)  
DATA  
DATAIN VALID  
DATA  
0
VALID  
tAS  
WP  
tDH  
R/W  
t
AOE  
t
SWRD  
OE  
tSOP  
Write Cycle  
Read Cycle  
2683 drw 11  
NOTE:  
1. CE = VIH or UB & LB = VIH for the duration of the above timing (both write and read cycle).  
2. "DATAOUT VALID" represents all I/O's (I/O0-I/O15) equal to the semaphore value.  
Timing Waveform of Semaphore Write Contention(1,3,4)  
A0"A"-A2"A"  
MATCH  
SIDE(2)  
"A"  
R/W"A"  
SEM"A"  
t
SPS  
A0"B"-A2"B"  
MATCH  
SIDE(2)  
"B"  
R/W"B"  
SEM"B"  
2683 drw 12  
NOTES:  
1. DOR = DOL = VIL, CER = CEL = VIH, or both UB & LB = VIH.  
2. All timing is the same for left and right port. Port “A” may be either left or right port. Port “B” is the opposite from port “A”.  
3. This parameter is measured from R/W"A" or SEM"A" going HIGH to R/W"B" or SEM"B" going HIGH.  
4. If tSPS is not satisfied, there is no guarantee which side will obtain the semaphore flag.  
61.432  
IDT7025S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureSupplyVoltageRange(6)  
7025X15  
7025X17  
7025X20  
Com'l, Ind  
& Military  
7025X25  
Com'l &  
Military  
Com'l Ony  
Com'l Only  
Symbol  
BUSY TIMING (M/S = VIH  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
)
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
15  
15  
15  
17  
17  
17  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable LOW  
BUSY Disable Time from Chip Enable HIGH  
Arbitration Priority Set-up Time(2)  
t
t
t
15  
17  
17  
17  
____  
____  
____  
____  
t
5
5
5
5
____  
____  
____  
____  
BUSY Disable to Valid Data(3)  
t
18  
18  
30  
30  
(5)  
____  
____  
____  
____  
t
Write Hold After BUSY  
12  
13  
15  
17  
BUSY TIMING (M/S = VIL  
)
____  
____  
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
t
WB  
0
0
0
0
ns  
ns  
(5)  
tWH  
Write Hold After BUSY  
12  
13  
15  
17  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
____  
____  
____  
____  
t
WDD  
Write Pulse to Data Delay(1)  
30  
25  
30  
25  
45  
35  
50  
35  
ns  
tDDD  
Write Data Valid to Read Data Delay(1)  
ns  
2683 tbl 14a  
7025X35  
Com'l &  
Military  
7025X55  
Com'l, Ind  
& Military  
7025X70  
Military Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
BUSY TIMING (M/S = VIH  
)
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
20  
20  
20  
45  
40  
40  
45  
40  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable LOW  
BUSY Disable Time from Chip Enable HIGH  
Arbitration Priority Set-up Time(2)  
t
t
t
20  
35  
35  
____  
____  
____  
t
5
5
5
____  
____  
____  
BUSY Disable to Valid Data(3)  
t
35  
40  
45  
(5)  
____  
____  
____  
t
Write Hold After BUSY  
25  
25  
25  
BUSY TIMING (M/S = VIL  
)
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
t
WB  
0
0
0
ns  
ns  
(5)  
tWH  
Write Hold After BUSY  
25  
25  
25  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
____  
____  
t
WDD  
Write Pulse to Data Delay(1)  
60  
45  
80  
65  
95  
80  
ns  
tDDD  
Write Data Valid to Read Data Delay(1)  
ns  
2683 tbl 14b  
NOTES:  
1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write Port-to-Port Read and BUSY (M/S = VIH)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0ns, tWDD – tWP (actual) or tDDD – tDW (actual).  
4. To ensure that the write cycle is inhibited on Port "B" during contention with Port "A".  
5. To ensure that a write cycle is completed on Port "B" after contention with Port "A".  
6. 'X' in part number indicates power rating (S or L).  
6.1442  
IDT7025S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Port-to-Port Read and BUSY(2,4,5) (M/S = VIH)  
tWC  
MATCH  
ADDR"A"  
t
WP  
R/W"A"  
tDW  
tDH  
VALID  
DATAIN "A"  
(1)  
tAPS  
MATCH  
ADDR"B"  
tBAA  
tBDA  
tBDD  
BUSY"B"  
tWDD  
VALID  
DATAOUT "B"  
(3)  
tDDD  
2683 drw 13  
NOTES:  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S = VIL (slave).  
2. CEL = CER = VIL.  
3. OE = VIL for the reading port.  
4. If M/S = VIL (SLAVE), then BUSY is an input. Therefore in this example BUSY"A" = VIH and BUSY"B" input is shown.  
5. All timing is the same for left and right ports. Port "A" may be either the left of right port. Port "B" is the opposite port from Port "A".  
Timing Waveform of Write with BUSY  
tWP  
R/W"A"  
(3)  
tWB  
BUSY"B"  
(1)  
tWH  
R/W"B"  
(2)  
2683 drw 14  
NOTES:  
1. tWH must be met for both BUSY input (slave) output master.  
2. BUSY is asserted on port "B" Blocking R/W"B", until BUSY"B" goes HIGH.  
3. tWB is only for the 'Slave' Version.  
61.452  
IDT7025S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of BUSY Arbitration Controlled by CE Timing(1) (M/S = VIH)  
ADDR"A"  
ADDRESSES MATCH  
and "B"  
CE"A"  
(2)  
tAPS  
CE"B"  
tBAC  
tBDC  
BUSY"B"  
2683 drw 15  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(1) (M/S = VIH)  
ADDR"A"  
ADDR"B"  
BUSY"B"  
ADDRESS "N"  
(2)  
tAPS  
MATCHING ADDRESS "N"  
tBAA  
tBDA  
2683 drw 16  
NOTES:  
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from “A”.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(1)  
7025X15  
7025X17  
7025X20  
Com'l, Ind  
& Military  
7025X25  
Com'l &  
Military  
Com'l Only  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
0
0
ns  
ns  
ns  
t
0
0
0
0
____  
____  
____  
____  
t
15  
15  
15  
15  
20  
20  
20  
20  
____  
____  
____  
____  
t
Interrupt Reset Time  
ns  
2683 tbl 15a  
7025X35  
Com'l &  
Military  
7025X55  
Com'l, Ind  
& Military  
7025X70  
Military Only  
Symbol  
INTERRUPT TIMING  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
0
ns  
ns  
ns  
t
0
0
0
____  
____  
____  
t
25  
25  
40  
40  
50  
50  
____  
____  
____  
t
Interrupt Reset Time  
ns  
2683 tbl 15b  
NOTES:  
1. 'X' in part number indicates power rating (S or L).  
6.1462  
IDT7025S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing(1)  
tWC  
INTERRUPT SET ADDRESS(2)  
ADDR"A"  
(4)  
(3)  
tAS  
tWR  
CE"A"  
R/W"A"  
INT"B"  
(3)  
tINS  
2683 drw 17  
tRC  
INTERRUPT CLEAR ADDRESS (2)  
ADDR"B"  
CE"B"  
(3)  
tAS  
OE"B"  
(3)  
INR  
t
INT"B"  
2683 drw 18  
NOTES:  
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from “A”.  
2. See Interrupt Flag Truth Table.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
TruthTables  
Truth Table I — Interrupt Flag(1)  
Left Port  
Right Port  
R/W  
L
A
0L-A12L  
R/W  
R
A
0R-A12R  
Function  
Set Right INT Flag  
Reset Right INT Flag  
Set Left INT Flag  
Reset Left INT Flag  
CE  
L
OE  
L
INT  
L
CE  
R
OE  
R
INTR  
L
X
X
X
L
X
X
L
X
1FFF  
X
X
X
X
L
L
X
X
X
L(2)  
H(3)  
X
R
X
X
X
L
1FFF  
1FFE  
X
R
X
X
L(3)  
H(2)  
L
X
L
L
1FFE  
X
X
X
L
2689 tbl 16  
NOTES:  
1. Assumes BUSYL = BUSYR = VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
4. INTR and INTL must be initialized at power-up.  
61.472  
IDT7025S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Truth Table II — Address BUSY  
Arbitration  
Inputs  
Outputs  
A
0L-A12L  
(1)  
(1)  
A
0R-A12R  
Function  
Normal  
Normal  
Normal  
CE  
L
CE  
R
BUSY  
L
BUSYR  
X
H
X
L
X
X
H
L
NO MATCH  
MATCH  
H
H
H
H
MATCH  
H
H
MATCH  
(2)  
(2)  
Write Inhibit(3)  
2683 tbl 17  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. BUSY are inputs when configured as a slave. BUSYx outputs on the IDT7025  
are push pull, not open drain outputs. On slaves the BUSY asserted internally inhibits write.  
2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address  
and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs cannot be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored  
when BUSYR outputs are driving LOW regardless of actual logic level on the pin.  
Truth Table III — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0  
- D15 Left  
D0  
- D15 Right  
Status  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
2683 tbl 18  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT7025.  
2. There are eight semaphore flags written to via I/O0 and read from all I/0's. These eight semaphores are addressed by A0 - A2.  
3. CE = VIH, SEM = VIL, to access the semaphores. Refer to the Semaphore Read/Write Truth Table.  
FunctionalDescription  
(HEX),whereawriteisdefinedastheCER =R/WR=VIL perTruthTable  
I. The left port clears the interrupt by an address location 1FFE access  
when CEL = OEL = VIL, R/WL is a "don't care". Likewise, the right port  
interruptflag(INTR)isassertedwhentheleftportwritestomemorylocation  
1FFF(HEX)andtocleartheinterruptflag(INTR),therightportmustaccess  
the memory location 1FFF, The message (16 bits) at 1FFE or 1FFF is  
user-defined, since it is an addressable SRAM location. If the interrupt  
functionisnotused, addresslocations1FFEand1FFFarenotusedas  
mailboxes,butaspartoftherandomaccessmemory.RefertoTruthTable  
Ifortheinterruptoperation.  
TheIDT7025providestwoportswithseparatecontrol,addressand  
I/Opinsthatpermitindependentaccessforreadsorwritestoanylocation  
inmemory.TheIDT7025hasanautomaticpowerdownfeaturecontrolled  
by CE. The CE controls on-chip power down circuitry that permits the  
respectiveporttogointoastandbymodewhennotselected(CE=VIH).  
Whenaportisenabled,accesstotheentirememoryarrayispermitted.  
Interrupts  
Iftheuserchoosestheinterruptfunction,amemorylocation(mailbox  
ormessagecenter)isassignedtoeachport. Theleftportinterruptflag  
(INTL) is asserted when the right port writes to memory location 1FFE  
6.1482  
IDT7025S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
BusyLogic  
BusyLogicprovidesahardwareindicationthatbothportsoftheRAM  
haveaccessedthesamelocationatthesametime.Italsoallowsoneofthe  
twoaccessestoproceedandsignalstheothersidethattheRAMisbusy”.  
TheBUSYpincanthenbeusedtostalltheaccessuntiltheoperationon  
theothersideiscompleted.Ifawriteoperationhasbeenattemptedfrom  
thesidethatreceivesaBUSYindication,thewritesignalisgatedinternally  
topreventthewritefromproceeding.  
CE  
CE  
MASTER  
Dual Port  
RAM  
SLAVE  
Dual Port  
RAM  
BUSY  
L
BUSY  
L
BUSYR  
BUSY  
R
MASTER  
Dual Port  
RAM  
CE  
SLAVE  
Dual Port  
RAM  
CE  
BUSY  
R
BUSY  
L
BUSY  
L
BUSY  
R
BUSYR  
BUSY  
L
TheuseofBUSYlogicisnotrequiredordesirableforallapplications.  
InsomecasesitmaybeusefultologicallyORtheBUSYoutputstogether  
and use any BUSYindication as an interrupt source to flag the event of  
anillegalorillogicaloperation.IfthewriteinhibitfunctionofBUSYlogicis  
notdesirable,theBUSYlogiccanbedisabledbyplacingthepartinslave  
modewiththeM/Spin.OnceinslavemodetheBUSYpinoperatessolely  
asawriteinhibitinputpin.Normaloperationcanbeprogrammedbytying  
the BUSY pins HIGH. If desired, unintended write operations can be  
prevented to a port by tying the BUSY pin for that port LOW.  
TheBUSYoutputsontheIDT7025RAMinmastermode,arepush-  
pulltypeoutputsanddonotrequirepullupresistorstooperate. Ifthese  
RAMs are being expanded in depth, then the BUSY indication for the  
resulting array requires the use of an external AND gate.  
2683 drw 19  
Figure 3. Busy and chip enable routing for both width and depth  
expansion with IDT7025 RAMs.  
leftportinnowayslowstheaccesstimeoftherightport. Bothportsare  
identicalinfunctiontostandardCMOSStaticRAMandcanbereadfrom,  
orwrittento,atthesametimewiththeonlypossibleconflictarisingfromthe  
simultaneous writing of, or a simultaneous READ/WRITE of, a non-  
semaphorelocation.Semaphoresareprotectedagainstsuchambiguous  
situationsandmaybeusedbythesystemprogramtoavoidanyconflicts  
inthenon-semaphoreportionoftheDual-PortRAM.Thesedeviceshave  
anautomaticpower-downfeaturecontrolledbyCE,theDual-PortRAM  
enable,andSEM,thesemaphoreenable.TheCEandSEMpinscontrol  
on-chip power down circuitry that permits the respective port to go into  
standbymodewhennotselected.Thisistheconditionwhichisshownin  
Truth Table I where CE and SEM are both = VIH.  
SystemswhichcanbestusetheIDT7025containmultipleprocessors  
or controllers and are typically very high-speed systems which are  
softwarecontrolledorsoftwareintensive.Thesesystemscanbenefitfrom  
a performance increase offered by the IDT7025's hardware sema-  
phores,whichprovidealockoutmechanismwithoutrequiringcomplex  
programming.  
Softwarehandshakingbetweenprocessorsoffersthemaximumin  
systemflexibilitybypermittingsharedresourcestobeallocatedinvarying  
configurations.TheIDT7025doesnotuseitssemaphoreflagstocontrol  
anyresourcesthroughhardware,thusallowingthesystemdesignertotal  
flexibilityinsystemarchitecture.  
An advantage of using semaphores rather than the more common  
methodsofhardwarearbitrationisthatwaitstatesareneverincurredin  
either processor. This can prove to be a major advantage in very high-  
speedsystems.  
Width Expansion with Busy Logic  
Master/SlaveArrays  
WhenexpandinganIDT7025RAMarrayinwidthwhileusingBUSY  
logic,onemasterpartisusedtodecidewhichsideoftheRAMarraywill  
receiveaBUSYindication,andtooutputthatindication.Anynumberof  
slaves to be addressed in the same address range as the master, use  
theBUSYsignalasawriteinhibitsignal.ThusontheIDT7025RAMthe  
BUSYpinisanoutputifthepartisusedasamaster(M/Spin=VIH),and  
theBUSYpinisaninputifthepartusedasaslave(M/Spin=VIL)asshown  
in Figure 3.  
Iftwoormoremasterpartswereusedwhenexpandinginwidth,asplit  
decisioncouldresultwithonemasterindicatingBUSYononesideofthe  
arrayandanothermasterindicatingBUSYononeothersideofthearray.  
Thiswouldinhibitthewriteoperationsfromoneportforpartofawordand  
inhibitthewriteoperationsfromtheotherportfortheotherpartoftheword.  
TheBUSYarbitration,onamaster,isbasedonthechipenableand  
address signals only. It ignores whether an access is a read or write. In  
a master/slave array, both address and chip enable must be valid long  
enoughforaBUSYflagtobeoutputfromthemasterbeforetheactualwrite  
pulsecanbeinitiatedwitheithertheR/Wsignalorthebyteenables.Failure  
toobservethistimingcanresultinaglitchedinternalwriteinhibitsignaland  
corrupteddataintheslave.  
How the Semaphore Flags Work  
Thesemaphorelogicisasetofeightlatcheswhichareindependent  
oftheDual-PortRAM.Theselatchescanbeusedtopassaflag,ortoken,  
fromoneporttotheothertoindicatethatasharedresourceisinuse.The  
semaphores provide a hardware assist for a use assignment method  
calledTokenPassingAllocation.Inthismethod,thestateofasemaphore  
latchisusedasatokenindicatingthatsharedresourceisinuse.Iftheleft  
processorwantstousethisresource,itrequeststhetokenbysettingthe  
latch.Thisprocessorthenverifiesitssuccessinsettingthelatchbyreading  
it. If it was successful, it proceeds to assume control over the shared  
resource.Ifitwasnotsuccessfulinsettingthelatch,itdeterminesthatthe  
rightsideprocessorhassetthelatchfirst, hasthetokenandisusingthe  
sharedresource.Theleftprocessorcantheneitherrepeatedlyrequest  
Semaphores  
TheIDT7025isanextremelyfastDual-Port8Kx16CMOSStaticRAM  
withanadditional8addresslocationsdedicatedtobinarysemaphoreflags.  
TheseflagsalloweitherprocessorontheleftorrightsideoftheDual-Port  
RAMtoclaimaprivilegeovertheotherprocessorforfunctionsdefinedby  
thesystemdesigner’ssoftware.Asanexample,thesemaphorecanbe  
usedbyoneprocessortoinhibittheotherfromaccessingaportionofthe  
Dual-Port RAM or any other shared resource.  
The Dual-Port RAM features a fast access time, and both ports are  
completelyindependentofeachother.Thismeansthattheactivityonthe  
61.492  
IDT7025S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
that semaphore’s status or remove its request for that semaphore to into a semaphore flag. Whichever latch is first to present a zero to the  
performanothertaskandoccasionallyattemptagaintogaincontrolofthe semaphoreflagwillforceitssideofthesemaphoreflagLOWandtheother  
tokenviathesetandtestsequence.Oncetherightsidehasrelinquished sideHIGH.Thisconditionwillcontinueuntilaoneiswrittentothesame  
thetoken,theleftsideshouldsucceedingainingcontrol.  
semaphorerequestlatch.Shouldtheotherside’ssemaphorerequestlatch  
ThesemaphoreflagsareactiveLOW.Atokenisrequestedbywriting havebeenwrittentoazerointhemeantime,thesemaphoreflagwillflip  
azerointoasemaphorelatchandisreleasedwhenthesamesidewrites overtotheothersideassoonasaoneiswrittenintothefirstside’srequest  
aonetothatlatch.  
latch.Thesecondside’sflagwillnowstayLOWuntilitssemaphorerequest  
The eight semaphore flags reside within the IDT7025 in a separate latchiswrittentoaone.Fromthisitiseasytounderstandthat,ifasemaphore  
memoryspacefromtheDual-PortRAM.Thisaddressspaceisaccessed is requested and the processor which requested it no longer needs the  
by placing a LOW input on the SEM pin (which acts as a chip select for resource, the entire system can hang up until a one is written into that  
thesemaphoreflags)andusingtheothercontrolpins(Address,OE,and semaphorerequestlatch.  
R/W)astheywouldbeusedinaccessingastandardStaticRAM. Each  
The critical case of semaphore timing is when both sides request a  
oftheflagshasauniqueaddresswhichcanbeaccessedbyeitherside single token by attempting to write a zero into it at the same time. The  
throughaddresspinsA0A2.Whenaccessingthesemaphores,noneof semaphore logic is specially designed to resolve this problem. If  
theotheraddresspinshasanyeffect.  
simultaneousrequestsaremade,thelogicguaranteesthatonlyoneside  
Whenwritingtoasemaphore,onlydatapinD0isused.IfaLOWlevel receives the token. If one side is earlier than the other in making the  
iswrittenintoanunusedsemaphorelocation,thatflagwillbesettoazero request, the first side to make the request will receive the token. If both  
on that side and a one on the other side (see Truth Table III). That requestsarriveatthesametime,theassignmentwillbearbitrarilymade  
semaphorecannowonlybemodifiedbythesideshowingthezero.When to one port or the other.  
aoneiswrittenintothesamelocationfromthesameside,theflagwillbe  
One caution that should be noted when using semaphores is that  
settoaoneforbothsides(unlessasemaphorerequestfromtheotherside semaphoresalonedonotguaranteethataccesstoaresourceissecure.  
ispending)andthencanbewrittentobybothsides.Thefactthattheside Aswithanypowerfulprogrammingtechnique,ifsemaphoresaremisused  
whichisabletowriteazerointoasemaphoresubsequentlylocksoutwrites or misinterpreted, a software error can easily happen.  
fromtheothersideiswhatmakessemaphoreflagsusefulininterprocessor  
Initializationofthesemaphoresisnotautomaticandmustbehandled  
communications.(Athoroughdiscussionontheuseofthisfeaturefollows viatheinitializationprogramatpower-up.Sinceanysemaphorerequest  
shortly.)Azerowrittenintothesamelocationfromtheothersidewillbe flagwhichcontainsazeromustberesettoaone,allsemaphoresonboth  
storedinthesemaphorerequestlatchforthatsideuntilthesemaphoreis sidesshouldhaveaonewrittenintothematinitializationfrombothsides  
freedbythefirstside.  
to assure that they will be free when needed.  
When a semaphore flag is read, its value is spread into all data bits  
so that a flag that is a one reads as a one in all data bits and a flag con-  
tainingazeroreadsasallzeros.Thereadvalueislatchedintooneside’s  
output register when that side's semaphore select (SEM) and output  
enable(OE)signalsgoactive.Thisservestodisallowthesemaphorefrom  
changingstateinthemiddleofareadcycleduetoawritecyclefromthe  
otherside.Becauseofthislatch,arepeatedreadofasemaphoreinatest  
loopmustcauseeithersignal(SEMorOE)togoinactiveortheoutputwill  
never change.  
UsingSemaphores—SomeExamples  
Perhapsthesimplestapplicationofsemaphoresistheirapplicationas  
resourcemarkersfortheIDT7025’sDual-PortRAM.Saythe8Kx16RAM  
wastobedividedintotwo4Kx16blockswhichweretobededicatedat  
anyonetimetoservicingeithertheleftorrightport.Semaphore0could  
be used to indicate the side which would control the lower section of  
memory,andSemaphore1couldbedefinedastheindicatorfortheupper  
sectionofmemory.  
AsequenceWRITE/READmustbeusedbythesemaphoreinorder  
to guarantee that no system level contention will occur. A processor  
requestsaccesstosharedresourcesbyattemptingtowriteazerointoa  
semaphorelocation.Ifthesemaphoreisalreadyinuse,thesemaphore  
requestlatchwillcontainazero,yetthesemaphoreflagwillappearasone,  
afactwhichtheprocessorwillverifybythesubsequentread(seeTruth  
TableIII).Asanexample,assumeaprocessorwritesazerototheleftport  
atafreesemaphorelocation.Onasubsequentread,theprocessorwill  
verifythatithaswrittensuccessfullytothatlocationandwillassumecontrol  
overtheresourceinquestion.Meanwhile,ifaprocessorontherightside  
attemptstowriteazerotothesamesemaphoreflagitwillfail, aswillbe  
verifiedbythefactthataonewillbereadfromthatsemaphoreontheright  
side during subsequent read. Had a sequence of READ/WRITE been  
usedinstead,systemcontentionproblemscouldhaveoccurredduringthe  
gap between the read and write cycles.  
Totakearesource, inthisexamplethelower4KofDual-PortRAM,  
the processor on the left port could write and then read a zero in to  
Semaphore0.Ifthistaskweresuccessfullycompleted(azerowasread  
back rather than a one), the left processor would assume control  
of the lower 4K. Meanwhile the right processor was attempting to gain  
controlofthe resourceaftertheleftprocessor,itwouldreadbackaone  
inresponsetothezeroithadattemptedtowriteintoSemaphore0.Atthis  
point,thesoftwarecouldchoosetotryandgaincontrolofthesecond4K  
sectionbywriting,thenreadingazerointoSemaphore1.Ifitsucceeded  
ingainingcontrol,itwouldlockouttheleftside.  
Once the left side was finished with its task, it would write a one to  
Semaphore 0 and may then try to gain access to Semaphore 1. If  
Semaphore1wasstilloccupiedbytherightside,theleftsidecouldundo  
itssemaphorerequestandperformothertasksuntilitwasabletowrite,then  
readazerointoSemaphore1.Iftherightprocessorperformsasimilartask  
withSemaphore0,thisprotocolwouldallowthetwoprocessorstoswap  
4K blocks of Dual-Port RAM with each other.  
Itisimportanttonotethatafailedsemaphorerequestmustbefollowed  
byeitherrepeatedreadsorbywritingaoneintothesamelocation. The  
reasonforthisiseasilyunderstoodbylookingatthesimplelogicdiagram  
ofthesemaphoreflaginFigure4.Twosemaphorerequestlatchesfeed  
The blocks do not have to be any particular size and can even be  
6.2402  
IDT7025S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
variable, depending upon the complexity of the software using the been performed, both processors can access their assigned RAM  
semaphoreflags.AlleightsemaphorescouldbeusedtodividetheDual- segmentsatfullspeed.  
Port RAM or other shared resources into eight parts. Semaphores can  
evenbeassigneddifferentmeaningsondifferentsidesratherthanbeing case,blockarbitrationisveryimportant.Forthisapplicationoneprocessor  
given a common meaning as was shown in the example above. mayberesponsibleforbuildingandupdatingadatastructure.Theother  
Anotherapplicationisintheareaofcomplexdatastructures.Inthis  
Semaphores are a useful form of arbitration in systems like disk processorthenreadsandinterpretsthatdatastructure.Iftheinterpreting  
interfaceswheretheCPUmustbelockedoutofasectionofmemoryduring processorreadsanincompletedatastructure,amajorerrorconditionmay  
atransferandtheI/Odevicecannottolerateanywaitstates.Withtheuse exist.Therefore,somesortofarbitrationmustbeusedbetweenthetwo  
ofsemaphores,oncethetwodeviceshasdeterminedwhichmemoryarea differentprocessors.Thebuildingprocessorarbitratesfortheblock,locks  
wasoff-limitstotheCPU,boththeCPUandtheI/Odevicescouldaccess itandthenisabletogoinandupdatethedatastructure.Whentheupdate  
theirassignedportionsofmemorycontinuouslywithoutanywaitstates. is completed, the data structure block is released. This allows the  
SemaphoresarealsousefulinapplicationswherenomemoryWAIT” interpretingprocessortocomebackandreadthecompletedatastructure,  
stateisavailableononeorbothsides.Onceasemaphorehandshakehas therebyguaranteeingaconsistentdatastructure.  
L PORT  
SEMAPHORE  
R PORT  
SEMAPHORE  
REQUEST FLIP FLOP  
REQUEST FLIP FLOP  
0
D
0
D
D
D
Q
Q
WRITE  
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
READ  
.
2683 drw 20  
Figure 4. IDT7025 Semaphore Logic  
62.412  
IDT7025S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
OrderingInformation  
A
XXXXX  
A
999  
A
A
A
Device  
Type  
Power  
Speed  
Package  
Process/  
Temperature  
Range  
Blank  
8
Tube or Tray  
Tape and Reel  
Blank  
I(1)  
B
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
Military (-55°C to +125°C)  
Compliant to MIL-PRF-38535 QML  
Green  
G
PF  
G
J
100-pin TQFP (PN100-1)  
84-pin PGA (G84-3)  
84-pin PLCC (J84-1)  
84-pin Flatpack (F84-2)  
F
15  
17  
20  
25  
35  
55  
70  
Commercial Only  
Commercial Only  
Commercial, Industrial & Military  
Commercial & Military  
Commercial & Military  
Commercial, Industrial & Military  
Military Only  
Speed in nanoseconds  
S
L
Standard Power  
Low Power  
7025  
128K (8K x 16) Dual-Port RAM  
2683 drw 21  
NOTES:  
1. Industrial range is available on selected PLCC packages in standard power.  
Forotherspeeds,packagesandpowerscontactyoursalesoffice.  
LEADFINISH(SnPb)partsareinEOLprocess.ProductDiscontinuationNotice-PDN#SP-17-02  
DatasheetDocumentHistory  
01/13/99:  
Initiateddatasheetdocument history  
Convertedtonewformat  
Cosmeticandtypographicalcorrections  
Pages2and3Addedadditionalnotestopinconfigurations  
Page 11 Fixedtypographicalerror  
05/19/99:  
06/03/99:  
Changeddrawingformat  
Page 1 Corrected DSC number  
04/04/00:  
05/22/00:  
09/13/01:  
ReplacedIDTlogo  
Page 7 FixedtypoinDataRetentionchart  
Changed ±500mV to 0mV in notes  
Page 5 Increasedstoragetemperatureparameter  
ClarifiedTA parameter  
Page 6 DCElectricalparameters–changedwordingfrom"open"to"disabled"  
Page 2 & 3 Added date revision for pin configurations  
Page 6 AddedIndustrialtemptothecolumnheadingfor20nstoDCElectricalCharacteristics  
Pages8,10,13&15 AddedIndustrialtemptothecolumnheadingsfor20nstoACElectricalCharacteristics  
Pages5,6,8,10,13&15 RemovedIndustrialtempfootnotefromalltables  
Page 21 AddedIndustrialtempto20nsinorderinginformation  
Page 22 Removed "IDT" from orderable part number  
10/21/08:  
07/17/12:  
03/07/18:  
Page 22 AddedT&Randgreenindicatorstoorderinginformation  
ProductDiscontinuationNotice-PDN#SP-17-02  
Last time buy expires June 15, 2018  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
408-284-2794  
DualPortHelp@idt.com  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
6.2422  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY