70825L20PFI8 [IDT]

TQFP-80, Reel;
70825L20PFI8
型号: 70825L20PFI8
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

TQFP-80, Reel

静态存储器 内存集成电路
文件: 总21页 (文件大小:207K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IDT70825S/L  
HIGH SPEED 128K (8K X 16 BIT)  
SEQUENTIAL ACCESS  
RANDOM ACCESS MEMORY (SARAM™)  
Features  
Architecture based on Dual-Port RAM cells  
Compatible with Intel BMIC and 82430 PCI Set  
Width and Depth Expandable  
Sequential side  
High-speed access  
Military: 35/45ns (max.)  
– Commercial: 20/25/35/45ns (max.)  
Low-power operation  
Address based flags for buffer control  
IDT70825S  
– Pointer logic supports up to two internal buffers  
Battery backup operation - 2V data retention  
TTL-compatible, single 5V (+10%) power supply  
Available in 80-pin TQFP and 84-pin PGA  
Military product compliant to MIL-PRF-38535 QML  
Industrial temperature range (-40°C to +85°C) is available  
for selected speeds  
Active: 775mW (typ.)  
Standby: 5mW (typ.)  
IDT70825L  
Active: 775mW (typ.)  
Standby: 1mW (typ.)  
8K x 16 Sequential Access Random Access Memory  
(SARAM )  
– Sequential Access from one port and standard Random  
Access from the other port  
– Separate upper-byte and lower-byte control of the  
Random Access Port  
High speed operation  
– 20ns tAA for random access port  
– 20ns tCD for sequential port  
– 25ns clock cycle time  
Description  
The IDT70825 is a high-speed 8K x 16-Bit Sequential Access  
Random Access Memory (SARAM). The SARAM offers a single-chip  
solution to buffer data sequentially on one port, and be accessed  
randomly (asynchronously) through the other port. The device has a  
Functional Block Diagram  
13  
RST  
A
0-12  
CE  
OE  
SCLK  
CNTEN  
Random  
Access  
Port  
Sequential  
SOE  
Access  
SSTRT1  
Port  
R/W  
LB LSB  
UB MSB  
CMD  
SSTRT  
2
Controls  
Controls  
,
SCE  
SR/W  
SLD  
8K X 16  
Memory  
Array  
16  
16  
16  
R
Data  
Reg.  
13  
I/O  
DataL  
AddrL  
0-15  
SI/O  
0-15  
13  
AddrR  
13  
RST  
13  
Pointer/  
Counter  
13  
13  
Start Address for Buffer #1  
End Address for Buffer #1  
Start Address for Buffer #2  
End Address for Buffer #2  
Flow Control Buffer  
13  
EOB  
1
COMPARATOR  
EOB2  
Flag Status  
3016 drw 01  
APRIL 2000  
1
DSC-3016/9  
©2000IntegratedDeviceTechnology,Inc.  
6.07  
IDT70825S/L  
High-Speed 8K x 16 Sequential Access Random Access Memory  
Military, Industrial and Commercial Temperature Ranges  
Dual-PortRAMbasedarchitecturewithastandardSRAMinterfacefor port to enter a very low standby power mode.  
the random (asynchronous) access port, and a clocked interface with  
counter sequencing for the sequential (synchronous) access port.  
The IDT70825is packagedina 80-pinThinQuadFlatpack(TQFP)  
or84-pinPinGridArray(PGA).Militarygradeproductis manufactured  
FabricatedusingCMOShigh-performancetechnology,thismemory incompliance withthe latestrevisionofMIL-PRF-38535QML, making  
device typically operates on less than 775mW of power at maximum it ideally suited to military temperature applications demanding the  
high-speed clock-to-data and Random Access. An automatic power highest level of performance and reliability.  
down feature, controlled by CE, permits the on-chip circuitry of each  
Pin Configurations(1,2,3)  
INDEX  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
SI/O1  
SI/O0  
GND  
N/C  
A11  
A10  
A9  
60  
59  
1
2
58  
57  
3
A8  
4
SCE  
SR/W  
RST  
SLD  
SSTRT2  
56  
55  
A7  
A6  
A5  
A4  
A3  
A2  
VCC  
VCC  
A1  
5
6
54  
53  
52  
51  
7
8
9
IDT70825PF  
PN80-1(4)  
SSTRT1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
50  
49  
GND  
GND  
CNTEN  
SOE  
SCLK  
GND  
EOB2  
EOB1  
VCC  
I/O0  
80-PinTQFP  
Top View(5)  
48  
47  
A0  
46  
45  
CMD  
CE  
LB  
UB  
44  
43  
42  
41  
R/  
W
OE  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
,
3016 drw 02  
63  
61  
V
60  
58  
55  
54  
51  
48  
46  
45  
42  
11  
GND  
GNDSSTRT2 SR/W  
NC  
GND NC  
EOB1  
CNTEN  
I/O1  
CC  
66  
64  
62  
59  
56  
49  
47  
44  
43  
40  
50  
10  
09  
08  
07  
06  
05  
04  
03  
02  
01  
EOB2 SOE RST  
SCE  
SI/O0 SI/O1 SI/O3  
I/O2 NC  
SLD  
I/O0  
67  
65  
57  
53  
41  
39  
52  
SSTRT1  
I/O3 GND  
SCLK GND  
SI/O2 VCC  
69  
68  
38  
37  
I/O4  
VCC  
SI/O4 SI/O5  
72  
71  
73  
33  
35  
34  
I/O7 I/O6  
SI/O8  
SI/O  
7
GND  
GND  
IDT70825G  
G84-3(4)  
75  
70  
74  
32  
31  
36  
I/O9  
I/O5  
I/O  
8
SI/O  
9
SI/O10 SI/O6  
84-Pin PGA  
Top View(5)  
76  
77  
78  
28  
29  
30  
I/O10 I/O11  
VCC  
SI/O12 VCC SI/O11  
79  
80  
26  
27  
I/O12  
I/O13  
SI/O14  
SI/O13  
81  
83  
7
11  
12  
23  
25  
I/O14  
CMD  
NC  
VCC  
A2  
NC SI/O15  
82  
1
2
5
6
8
10  
14  
17  
20  
22  
24  
OE  
LB  
A7  
A12  
A4  
I/O15  
A0  
VCC  
A10  
GND  
GND  
84  
3
4
9
15  
13  
16  
18  
19  
21  
NC R/W  
UB  
CE  
A8  
A
1
A
5
A3  
G
9
A
6
A
A
11  
A
B
C
D
E
F
H
J
K
L
INDEX  
3016 drw 03  
NOTES:  
1. All VCC pins must be connected to power supply.  
2. All GND pins must be connected to ground supply.  
3. PN-80-1 package body is approximately 14mm x 14mm x 1.4mm.  
G84-3 package body is approximately 1.21 in x 1.21 in x .16 in.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part-marking.  
2
IDT70825S/L  
High-Speed 8K x 16 Sequential Access Random Access Memory  
Military, Industrial and Commercial Temperature Ranges  
Pin Descriptions: Random Access Port(1)  
SYMBOL  
A0-A12  
I/O0-I/O15  
CE  
NAME  
I/O  
DESCRIPTIONS  
Address Lines  
Inputs/Outputs  
Chip Enable  
I
I
I
Address inputs to access the 8192-word (16-Bit) memory array.  
Random access data inputs/outputs for 16-Bit wide data.  
When CE is LOW, the random access port is enabled. When CE is HIGH, the random access port is disabled  
into power-down mode and the I/O outputs are in the High-impedance state. All data is retained during CE =  
VIH, unless it is altered by the sequential port. CE and CMD may not be LOW at the same time.  
CMD  
Control Register  
Enable  
I
I
When CMD is LOW, address lines A0-A2, R/W, and inputs/outputs I/O0-I/O12, are used to access the control  
register, the flag register, and the start and end of buffer registers. CMD and CE may not be LOW at the same  
time.  
R/W  
Read/Write Enable  
Output Enable  
If CE is LOW and CMD is HIGH, data is written into the array when R/W is LOW and read out of the array when  
R/W is HIGH. If CE is HIGH and CMD is LOW, R/W is used to access the buffer command registers. CE and  
CMD may not be LOW at the same time.  
OE  
I
I
When OE is LOW and R/W is HIGH, I/O0-I/O15 outputs are enabled. When OE is HIGH, the I/O outputs are in  
the High-impedance state.  
Lower Byte, Upper  
Byte Enables  
When LB is LOW, I/O0-I/O7 are accessible for read and write operations. When LB is HIGH I/O0-I/O7 are tri-  
stated and blocked during read and write operations. UB controls access for I/O8-I/O15 in the same manner and  
is asynchronous from LB.  
LB, UB  
VCC  
Power Supply  
Ground  
I
I
Seven +5V power supply pins. All VCC pins must be connected to the same +5V VCC supply.  
GND  
Ten ground pins. All ground pins must be connected to the same ground supply.  
3016 tbl 01  
Pin Descriptions: Sequential Access Port(1)  
SYMBOL  
SI/O0-15  
SCLK  
NAME  
I/O  
DESCRIPTIONS  
Inputs/Outputs  
Clock  
I
I
Sequential data inputs/outputs for 16-bit wide data.  
SI/O0-SI/O15, SCE, SR/W, and SLD are registered on the LOW-to-HIGH transition of SCLK. Also, the sequential  
access port address pointer increments by 1 on each LOW-to-HIGH transition of SCLK when CNTEN is LOW.  
SCE  
Chip Enable  
I
When SCE is LOW, the sequential access port is enabled on the LOW-to-HIGH transition of SCLK. When SCE  
is HIGH, the sequential access port is disabled into powered-down mode on the LOW-to-HIGH transition of  
SCLK, and the SI/O outputs are in the High-impedance state. All data is retained, unless altered by the random  
access port.  
CNTEN  
Control Enable  
I
I
When CNTEN is LOW, the address pointer increments on the LOW-to-HIGH transition of SCLK. This function is  
independent of CE.  
SR/W  
Read/Write Enable  
When SR/W and SCE are LOW, a write cycle is initiated on the LOW-to-HIGH transition of SCLK. When SR/W is  
HIGH, and SCE and SOE are LOW, a read cycle is initiated on the LOW-to-HIGH transition of SCLK. Termination  
ofa write cycle is done on the LOW-to-HIGH transition of SCLK if SR/W or SCE is HIGH.  
SLD  
Address Pointer  
Load Control  
I
When SLD is sampled LOW, there is an internal delay of one cycle before the address pointer changes. When  
SLD is LOW, data on the inputs SI/O0-SI/O12 is loaded into a data-in registe r on the LOW-to-HIGH transition of  
SCLK. On the cycle following SLD, the address pointer changes to the address location contained in the data-  
in register. SSTRT1 and SSTRT2 may not be LOW while SLD is LOW or during the cycle following SLD.  
Load Start of  
Address Register  
I
I
SSTRT1,  
When SSTRT1 or SSTRT2 is LOW, the start of address register #1 or #2 is loaded into the address pointer on  
the LOW-to-HIGH transition of SCLK. The start address are stored in internal registers. SSTRT1 and SSTRT2  
may not be LOW while SLD is LOW or during the cycle following SLD.  
SSTRT2  
End of Buffer Flag  
EOB1 or EOB2 is output LOW when the address pointer is incremented to match the addre ss stored in the end  
of the buffer registers. The flags can be cleared by either asserting RST LOW or by writing zero into Bit 0  
and/or Bit 1 of the control register at address 101. EOB1 and EOB2 are dependent on separate internal  
registers, and therefore separate match addresses.  
EOB1,  
EOB2  
SOE  
Output Enable  
Reset  
I
I
SOE controls the data outputs and is independent of SCLK. When SOE is LOW, output buffers and the  
sequentially addressed data is output. When SOE is HIGH, the SI/O output bus is in the High-impedance state.  
SOE is asynchronous to SCLK.  
RST  
When RST is LOW, all internal registers are set to their default state, the address pointer is set to zero and the  
EOB1 and EOB2 flags are set HIGH. Rst is asynchronous to SCLK.  
3016 tbl 02  
NOTE:  
1. "I/O" is bidirectional input and output. "I" is input and "O" is output.  
6.42  
3
IDT70825S/L  
High-Speed 8K x 16 Sequential Access Random Access Memory  
Military, Industrial and Commercial Temperature Ranges  
Absolute Maximum Ratings(1)  
Recommended Operating  
TemperatureandSupplyVoltage(1,2)  
Symbol  
Rating  
Commercial  
& Industrial  
Military  
Unit  
Grade  
Ambient  
Temperature  
GND  
Vcc  
(2)  
VTERM  
Terminal Voltage  
with Respect  
to GND  
-0.5 to +7.0  
-0.5 to +7.0  
V
Military  
-55OC to +125OC  
0OC to +70OC  
0V  
0V  
0V  
5.0V 10%  
+
TBIAS  
TSTG  
IOUT  
Temperature  
Under Bias  
-55 to +125  
-55 to +125  
50  
-65 to +135  
-65 to +150  
50  
oC  
oC  
+
Commercial  
Industrial  
5.0V 10%  
-40OC to +85OC  
5.0V 10%  
+
Storage  
Temperature  
3016 tbl 04  
NOTES:  
1. This is the parameter TA.  
2. Industrial temperature: for specific speeds, packages and powers contact your  
DC Output  
Current  
mA  
sales office.  
3016 tbl 03  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may  
cause permanent damage to the device. This is a stress rating only and functional  
operationofthe device atthese oranyotherconditions above those indicatedinthe  
operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect reliability.  
Recommended DC Operating  
Conditions  
2. VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10ns  
maximum, and is limited to < 20mA for the period of VTERM > Vcc + 10%.  
Symbol  
Parameter  
Min.  
Typ.  
Max. Unit  
VCC  
Supply Voltage  
4.5  
5.0  
5.5  
0
V
V
V
GND Ground  
0
0
Capacitance  
(TA = +25°C, f = 1.0mhz, TQFP only)  
(2)  
____  
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
2.2  
6.0  
0.8  
-0.5(1)  
V
____  
Symbol  
CIN  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions(2 )  
Max. Unit  
3016 tbl 05  
NOTES:  
VIN = 3dV  
9
pF  
1. VIL > –1.5V for pulse width less than 10ns.  
2. VTERM must not exceed Vcc + 10%.  
COUT  
VOUT = 3dV  
10  
pF  
3016 tbl 06  
NOTES:  
1. This parameter is determined by device characterization, but is not production  
tested.  
2. 3dV references the interpolated capacitance when the input and output signals  
switch from 0V to 3V or from 3V to 0V.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VCC = 5.0V ± 10%)  
70825S  
70825L  
Symbol  
|ILI|  
Parameter  
Input Leakage Current  
Test Conditions  
VCC = 5.5V, VIN = 0V to VCC  
VOUT = 0V to VCC  
IOL = +4mA  
Min.  
Max.  
5
Min.  
Max.  
Unit  
µA  
µA  
V
___  
___  
1
1
___  
___  
___  
___  
|ILO|  
Output Leakage Current  
Output Low Voltage  
Output High Voltage  
5
VOL  
0.4  
0.4  
___  
___  
VOH  
IOH = -4mA  
2.4  
2.4  
V
3016 tbl 07  
4
IDT70825S/L  
High-Speed 8K x 16 Sequential Access Random Access Memory  
Military, Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1,2,8) (VCC = 5.0V ± 10%)  
70825X20  
Com'l Only  
70825X25  
Com'l Only  
70825X35  
Com'l &  
Military  
70825X45  
Com'l &  
Military  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.  
180  
Max.  
380  
Typ.  
170  
Max.  
360  
Typ.  
Max.  
Typ.  
Max.  
Unit  
ICC  
Dynamic Operating  
Current  
(Both Ports Active)  
S
L
160  
160  
340  
290  
155  
155  
340  
290  
mA  
CE = VIL,  
180  
330  
170  
310  
Outputs Open  
(5)  
SCE = VIL  
____  
____  
____  
____  
____  
____  
____  
____  
(3)  
MIL &  
IND  
S
L
160  
160  
400  
340  
155  
155  
400  
340  
f = fMAX  
(7)  
ISB1  
ISB2  
ISB3  
ISB4  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
S
L
25  
25  
70  
50  
25  
25  
70  
50  
20  
20  
70  
50  
16  
16  
70  
50  
mA  
mA  
mA  
SCE and CE > VIH  
CMD = VIH  
(3)  
f = fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
20  
20  
85  
65  
16  
16  
85  
65  
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
S
L
115  
115  
260  
230  
105  
105  
250  
220  
95  
95  
240  
210  
90  
90  
240  
210  
CE or SCE = VIH  
Active Port Outputs Open,  
(3)  
f=fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
95  
95  
290  
250  
90  
90  
290  
250  
Full Standby Current  
(Both Ports -  
CMOS Level Inputs)  
Both Ports CE and  
COM'L  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
(6,7)  
SCE > VCC - 0.2V  
VIN > VCC - 0.2V or  
VIN < 0.2V, f = 0(4)  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
1.0  
0.2  
30  
10  
1.0  
0.2  
30  
10  
Full Standby Current  
(One Port -  
CMOS Level Inputs)  
One Port CE or  
SCE > VCC - 0.2V  
mA  
COM'L  
S
L
110  
110  
240  
200  
100  
100  
230  
190  
90  
90  
220  
180  
85  
85  
220  
180  
(6)  
Outputs Open (Active Port)  
VIN > VCC - 0.2V or VIN < 0.2V  
____  
___  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
90  
90  
260  
215  
85  
85  
260  
215  
(3)  
f = fMAX  
3016 tbl 08  
NOTES:  
1. 'X' in part number indicates power rating (S or L).  
2. VCC = 5V, TA = +25°C; guaranteed by device characterization but not production tested.  
3. At f = fMAX, address, control lines (except Output Enable), and SCLK are cycling at the maximum frequency read cycle of 1/tRC.  
4. f = 0 means no address or control lines change.  
5. SCE may transition, but is LOW (SCE=VIL) when clocked in by SCLK.  
6. SCE may be - 0.2V, after it is clocked in, since SCLK=VIH must be clocked in prior to powerdown.  
7. If one port is enabled (either CE or SCE = LOW) then the other port is disabled (SCE or CE = HIGH, respectively). CMOS HIGH > Vcc - 0.2V and LOW < 0.2V, and  
TTL HIGH = VIH and LOW = VIL.  
8. Industrial temperature: for other speeds, packages and powers contact your sales office.  
Data Retention Characteristics Over All Temperature Ranges  
(L Version Only) (VLC < 0.2V, VHC > VCC - 0.2V)  
Symbol  
VDR  
ICCDR  
Parameter  
Test Condition  
Min.  
Typ.(1)  
Max.  
Unit  
V
___  
___  
VCC for Data Retention  
VCC = 2V  
2.0  
___  
Data Retention Current  
µA  
CE > VHC  
MIL. & IND.  
COM'L.  
100  
4000  
___  
___  
VIN = VHC or = VLC  
100  
1500  
(3)  
(4)  
___  
___  
tCDR  
Chip Deselect to Data Retention Time  
Operation Recovery Time  
V
SCE = VHC when SCLK =  
(3)  
(2)  
___  
___  
tR  
tRC  
V
CMD = VHC  
3016 tbl 09  
NOTES :  
1. TA = +25°C, VCC = 2V; guaranteed by device characterization but not production tested.  
2. tRC = Read Cycle Time  
3. This parameter is guaranteed by device characterization, but is not production tested.  
4. To initiate data retention, SCE = VIH must be clocked in.  
6.42  
5
IDT70825S/L  
High-Speed 8K x 16 Sequential Access Random Access Memory  
Military, Industrial and Commercial Temperature Ranges  
Data Retention and Power Down/Up Waveform  
(Random and Sequential Port)(1,2)  
DATA RETENTION MODE  
4.5V  
4.5V  
VCC  
VDR 2V  
tCDR  
VIH  
tR  
VDR  
VIH  
CE  
SCLK  
SCE  
tPD  
tPU  
ICC  
3016 drw 04  
ISB  
ISB  
NOTES:  
1. SCE is synchronized to the sequential clock input.  
2. CMD > VCC - 0.2V.  
5V  
5V  
893  
893Ω  
DATAOUT  
OUT  
DATA  
30pF  
5pF*  
347  
347Ω  
3016 drw 06  
3016 drw 05  
Figure 1. AC Output Test Load  
Figure 2. Output Test Load (for tCLZ, tBLZ, tOLZ, tCHZ,  
tBHZ, tOHZ, tWHZ, tCKHZ, and tCKLZ)  
*Including scope and jig.  
8
7
6
AC TEST CONDITIONS  
Input Pulse Levels  
GND to 3.0V  
3ns Max.  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
tAA/tCD/tEB  
(Typical, ns)  
5
4
3
2
1
1.5V  
1.5V  
10pF is the I/O  
capacitance of  
this device, and  
30pF is the AC  
Test Load  
Figures 1,2 and 3  
3016 tbl 10  
capacitance.  
-1  
-2  
-3  
20 40 60 80 100 120 140 160 180 200  
,
3016 drw 07  
CAPACITANCE (pF)  
Figure 3. Lumped Capacitance Load Typical Derating Curve  
6
IDT70825S/L  
High-Speed 8K x 16 Sequential Access Random Access Memory  
Military, Industrial and Commercial Temperature Ranges  
Truth Table I: Random Access Read and Write(1,2)  
Inputs/Outputs  
R/W  
H
H
H
L
I/O0-I/O7  
DATAOUT  
DATAOUT  
High-Z  
I/O8-I/O15  
Mode  
CE  
L
CMD  
H
OE  
L
LB  
L
UB  
L
DATAOUT Read both Bytes.  
L
H
L
L
H
L
High-Z  
Read lower Byte only.  
L
H
L
H
L
DATAOUT Read upper Byte only.  
(3)  
L
H
H
L
DATAIN  
DATAIN  
High-Z  
DATAIN  
High-Z  
DATAIN  
High-Z  
High-Z  
High-Z  
DATAIN  
DATAOUT  
Write to both Bytes.  
(3)  
L
H
L
H
L
H
L
Write to lower Byte only.  
Write to upper Byte only.  
(3)  
L
H
L
H
X
H
X
H
X
X
H
H
L
H
X
H
X
L
X
X
H
High-Z  
Both Bytes deselected and powered down.  
Outputs disabled but not powered down.  
Both Bytes deselected but not powered down.  
Write I/O0-I/O11 to the Buffer Command Register.  
H
High-Z  
L
H
High-Z  
(3)  
(4)  
(4)  
H
H
L
H
L
L
L
DATAIN  
DATAOUT  
(4)  
(4)  
L
L
L
H
Read contents of the Buffer Command Register  
via I/O0-I/O12.  
3016 tbl 11  
NOTES:  
1. H = VIH, L = VIL, X = Don't Care, and High-Z = High-impedance.  
2. RST, SCE, CNTEN, SR/W, SLD, SSTRT1, SSTRT2, SCLK, SI/O0-SI/O15, EOB1, EOB2, and SOE are unrelated to the random access port control and operation.  
3. If OE = VIL during write, tWHZ must be added to the tWP or tCW write pulse width to allow the bus to float prior to being driven.  
4. Byte operations to control register using UB and LB separately are also allowed.  
Truth Table II: Sequential Read(1,2,3,6,8)  
Inputs/Outputs  
SCLK  
SR/W  
H
1
2
SI/O  
MODE  
SCE  
L
CNTEN  
EOB  
EOB  
SOE  
L
L
H
L
H
L
LOW LAST  
LAST LAST  
[EOB1]  
Counter Advanced Sequential Read with EOB1 reached.  
L
H
L
[EOB1 - 1] Non-Counter Advanced Sequential Read, without EOB1 reached  
[EOB2] Counter Advanced Sequential Read with EOB2 reched.  
[EOB2 - 1] Non-Counter Advanced Sequential Read without EOB2 reached.  
High-Z Counter Advanced Sequential Non-Read with EOB1 and EOB2 reached.  
L
H
LAST  
LAST LAST  
LOW LOW  
LOW  
L
L
H
L
L
H
H
3016 tbl 12  
Truth Table III: Sequential Write(1,2,3,4,5,6,7,8)  
Inputs/Outputs  
SCLK  
SR/W  
L
1
2
SI/O  
MODE  
SCE CNTEN  
EOB  
LAST LAST  
LOW LOW  
EOB  
SOE  
H
L
L
H
L
H
L
SI/OIN Non-Counter Advanced Sequential Write, without EOB1 or EOB2 reached.  
SI/OIN Coounter Advanced Sequential Write with EOB1 and EOB2 reached.  
High-Z No Write or Read due to Sequential port Deselect. No counter advance.  
High-Z No Write or Read due to Sequential port Deselect. Counter does advance.  
L
H
H
H
X
LAST LAST  
NEXT NEXT  
X
X
X
3016 tbl 13  
NOTES:  
1. H = VIH, L = VIL, X = Don't Care, and HIGH-Z = High-impedance. LOW = VOL.  
2. RST, SLD, SSTRT1, SSTRT2 are continuously HIGH during a sequential write access, other than pointer access operations.  
3. CE, OE, R/W, CMD, LB, UB, and I/O0-I/O15 are unrelated to the sequential port control and operation except for CMD which must not be used concurrently with the sequential  
port operation (due to the counter and register control). CMD should be HIGH (CMD = VIH) during sequential port access.  
4. SOE must be HIGH (SOE=VIH) prior to write conditions only if the previous cycle is a read cycle, since the data being written must be an input at the rising edge of the clock  
during the cycle in which SR/W = VIL.  
5. SI/OIN refers to SI/O0-SI/O15 inputs.  
6. "LAST" refers to the previous value still being output, no change.  
7. Termination of a write is done on the LOW-to-HIGH transition of SCLK if SR/W or SCE is HIGH.  
8. When CLKEN=LOW, the address is incremented on the next rising edge before any operation takes place. See the diagrams called "Sequential Counter Enable Cycle after  
Reset, Read (and write) Cycle".  
6.42  
7
IDT70825S/L  
High-Speed 8K x 16 Sequential Access Random Access Memory  
Military, Industrial and Commercial Temperature Ranges  
Truth Table IV: Sequential Address Pointer Operations(1,2,3,4,5)  
Inputs/Outputs  
SCLK  
1
2
MODE  
Start address for Buffer #1 loaded into Address Pointer.  
Start address for Buffer #2 loaded into Address Pointer.  
Data on SI/O0-SI/O12 loaded into Address Pointer.  
SLD  
H
SSTRT  
SSTRT  
SOE  
X
L
H
H
H
L
H
X
(6)  
L
H
H
3016 tbl 14  
NOTES:  
1. H = VIH, L = VIL, X = Don't Care, and High-Z = High-impedance.  
2. RST is continuously HIGH. The conditions of SCE, CNTEN, and SR/W are unrelated to the sequential address pointer operations.  
3. CE, OE, R/W, LB, UB, and I/O0-I/O15 are unrelated to the sequential port control and operation, except for CMD which must not be used concurrently with the sequential port  
operation (due to the counter and register control). CMD should be HIGH (CMD = VIH) during sequential port access.  
4. Address pointer can also change when it reaches an end of buffer address. See Flow Control Bits table.  
5. When SLD is sampled LOW, there is an internal delay of one cycle before the address pointer changes. The state of CNTEN is ignored and the address is not incremented  
during the two cycles.  
6. SOE may be LOW with SCE deselect or in the write mode using SR/W.  
Address Pointer Load Control (SLD)  
data-in register. SSTRT1, SSTRT2 may not be low while SLD is LOW,  
or during the cycle following SLD. The SSTRT1 and SSTRT2 require  
only one clock cycle, since these addresses are pre-loaded in the  
registers already.  
In SLD mode, there is an internal delay of one cycle before the  
address pointer changes in the cycle following SLD. When SLD is  
LOW, data on the inputs SI/O0-SI/O12 is loaded into a data-in register  
on the LOW-to-HIGH transition of SCLK. On the cycle following SLD,  
the address pointer changes to the address location contained in the  
SLD MODE(1)  
SLD  
SCLK(1)  
B
A
ADDRIN  
C
SI/O0-12  
DATAOUT  
SSTRT(1 or 2)  
3016 drw 08  
NOTE:  
1. At SCLK edge (A), SI/O0-SI/O12 data is loaded into a data-in register. At edge (B), contents of the data-in register are loaded into the address pointer (i.e. address  
pointer changes). At SCLK edge (A), SSTRT1 and SSTRT2 must be HIGH to ensure for proper sequential address pointer loading. At SCLK edge (B), SLD and  
SSTRT1,2 must be HIGH to ensure for proper sequential address pointer loading. For SSTRT1 or SSTRT2, the data to be read will be ready for edge (B), while data will  
not be ready at edge (B) when SLD is used, but will be ready at edge (C).  
Sequential Load of Address into Pointer/Counter(1)  
15  
H
14  
H
13  
H
12 ------------------------------------------------------------------------------------------------------------ 0  
Address Loaded into Pointer  
LSB SI/O BITS  
MSB  
3016 drw 09  
NOTE:  
1. "H" = VIH for the SI/O intput state.  
8
IDT70825S/L  
High-Speed 8K x 16 Sequential Access Random Access Memory  
Military, Industrial and Commercial Temperature Ranges  
Reset (RST)  
Register  
Address Pointer  
Contents  
0
Setting RST LOW resets the control state of the SARAM. RST  
functions asynchronously of SCLK, (i.e. not registered). The default  
states after a reset operation are as follows:  
Cleared to High State  
BUFFER CHAINING  
EOB Flags  
Buffer Flow Mode  
Start Address Buffer #1  
End Address Buffer #1  
Start Address Buffer #2  
End Address Buffer #2  
Registered State  
0
(1)  
4095  
4096  
8191  
(4K)  
(4K+1)  
(8K)  
SCE = VIH, SR/W = VIL  
3016 tbl 15  
BUFFER COMMAND MODE (CMD)  
Buffer Command Mode (CMD) allows the random access port to Command Mode also allows reading and clearing the status of the  
control the state of the two buffers. Address pins A0-A2 and I/O pins I/ EOBflags.SevendifferentCMDcasesareavailabledependingonthe  
O0-I/O12 are used to access the start of buffer and the end of buffer conditions of A0-A2 and R/W. Address bits A3-A12 and data I/O bits  
addresses and to set the flow control mode of each buffer. The Buffer I/O13-I/O15 are not used during this operation.  
Random Access Port CMD Mode(1)  
Case #  
A2-A0  
R/W  
0 (1)  
0 (1)  
0 (1)  
0 (1)  
0 (1)  
0
DESCRIPTIONS  
Write (read) the start address of Buffer #1 through I/O0-I/O12.  
Write (read) the end address of Buffer #1 through I/O0-I/O12.  
Write (read) the start address of Buffer #2 through I/O0-I/O12.  
Write (read) the end address of Buffer #2 through I/O0-I/O12.  
Write (read) flow control register.  
1
2
3
4
5
6
7
8
000  
001  
010  
011  
100  
101  
Write only - clear EOB1 and/or EOB2 flag.  
101  
1
Read only - flag status register.  
110/111  
(X)  
(Reserved)  
3016 tbl 16  
NOTES:  
1. R/W input "0(1)" indicates a write(0) or read(1) occurring with the same address input.  
Cases 1 through 4: Start and End of Buffer Register Description(1,2)  
15  
H
14  
H
13  
H
12 ------------------------------------------------------------------------------------------------------------ 0  
Address Loaded into Buffer  
LSB I/O BITS  
MSB  
3016 drw 10  
NOTES:  
1. "H" = VOH for I/O in the output state and "Don't Cares" for I/O in the input state.  
2. A write into the buffer occurs when R/W = VIL and a read when R/W = VIH. EOB1/SOB1 and EOB2/SOB2 are chosen through address A0-A2 while CMD = VIL and CE = VIH.  
Case 5: Buffer Flow Modes  
Within the SARAM, the user can designate one of four buffer flow start address of the other buffer. In STOP mode, the address pointer  
modes for each buffer. Each buffer flow mode defines a unique set of stops incrementing after it reaches the end of the buffer. In LINEAR  
actions for the sequential port address pointer and EOB flags. In mode, the address pointer ignores the end of buffer address and  
BUFFER CHAINING mode, after the address pointer reaches the end increments past it, but sets the EOB flag. MASK mode is the same as  
ofthebuffer,itsetsthecorrespondingEOBflagandcontinuesfromthe LINEAR mode except EOB flags are not set.  
6.42  
9
IDT70825S/L  
High-Speed 8K x 16 Sequential Access Random Access Memory  
Military, Industrial and Commercial Temperature Ranges  
Flow Control Register Description(1,2)  
0
15  
MSB  
H
H
H
H
H
H
H
H
H
H
4
3
2
1
0
LSB I/O BITS  
H
Counter Release  
(STOP Mode Only)  
Buffer #1 flow control  
Buffer #2 flow control  
3016 drw 11  
NOTES:  
1. "H" = VOH for I/O in the output state and "Don't Cares"' for I/O in the input state.  
2. Writing a 0 into bit 4 releases the address pointer after it is stopped due to the STOP mode and allows sequential write operations to resume. This occurs asynchronously  
of SCLK, and therefore caution should be taken. The pointer will be at address EOB+2 on the next rising edge of SCLK that is enabled by CNTEN. The pointer is also released  
by RST, SLD, SSTRT1 and SSTRT2 operations.  
Flow Control Bits  
Flow Control  
Bit 1 & Bit 0  
(Bit 3 & Bit 2)  
Mode  
Functional Description  
00  
01  
BUFFER  
CHAINING  
EOB1 (EOB2) is asserted (active LOW output) when the pointer matches the end address of Buffer #1 (Buffer #2). The  
pointer value is changed to the start address of Buffer #2 (Buffer #1)(1,3)  
STOP  
EOB1 (EOB2) is asserted when the pointer matches the end address of Buffer #1 (Buffer #2).  
The address pointer will stop incrementing when it reaches the next address (EOB address + 1), if CNTEN is LOW on the  
next clock's rising edge. Otherwise, the address pointer will stop incrementing on EOB. Sequential write operations are  
inhibited after the address pointer is stopped. The pointer can be released by bit 4 of the flow control register.(1,2,4)  
10  
11  
LINEAR  
MASK  
EOB1 (EOB2) is asserted when the pointer matches the end address of Buffer #1 (Buffer #2). The pointer keeps  
incrementing for further operations.(1)  
EOB1 (EOB2) is not asserted when the pointer reaches the end address of Buffer #1 (Buffer #2), although the flag status  
bits will be set. The pointer keeps incrementing for further operations.  
3016 tbl 17  
NOTES:  
1. EOB1 and EOB2 may be asserted (set) at the same time, if both end addresses have been loaded with the same value.  
2. CMD flow control bits are unchanged, the count does not continue advancement.  
3. If EOB1 and EOB2 are equal, then the pointer will jump to the start of Buffer #1.  
4. If counter has stopped at EOBx and was released by bit 4 of the flow control register, CNTEN must be LOW on the next rising edge of SCLK otherwise the flow control will  
remain in the STOP mode.  
Cases 6 and 7: Flag Status Register Bit Description(1)  
0
0
15  
MSB  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
1
LSB I/O BITS  
End of buffer flag for Buffer #1  
End of buffer flag for Buffer #2  
NOTE:  
1. "H" = VOH for I/O in the output state and "Don't Cares" for I/O in the input state.  
3016 drw 12  
Cases 6: Flag Status Register  
Write Conditions(1)  
Case 7: Flag Status Register Read  
Conditions  
Flag Status Bit 0, (Bit 1)  
Functional Description  
Flag Status Bit 0, (Bit 1)  
Functional Description  
0
1
Clears Buffer Flag EOB1, (EOB2).  
0
EOB1 (EOB2) flag has not been set, the  
pointer has not reached the end of the  
buffer.  
No change to the Buffer Flag.(2)  
3016 tbl 18  
NOTES:  
1
EOB1 (EOB2) flag has been set, the  
pointer has reached the end of the  
buffer.  
1. Either bit 0 or bit 1, or both bits, may be changed simultaneously. One may be  
cleared while the second is left alone or cleared.  
2. Remains as it was prior to the CMD operation, either HIGH (1) or LOW (0).  
3016 tbl 19  
Cases 8 and 9: (Reserved)  
Illegal operations. All outputs will be HIGH on the I/O bus during a READ.  
10  
IDT70825S/L  
High-Speed 8K x 16 Sequential Access Random Access Memory  
Military, Industrial and Commercial Temperature Ranges  
Random Access port: AC Electrical Characteristics Over the  
Operating Temperature and Supply Voltage Range(2,4,5)  
70825X20  
Com'l Only  
70825X25  
Com'l Only  
70825X35  
Com'l &  
Military  
70825X45  
Com'l &  
Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
tRC  
____  
____  
____  
____  
Read Cycle Time  
20  
25  
35  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
____  
tAA  
Address Access Time  
20  
20  
20  
25  
25  
25  
35  
35  
35  
45  
45  
55  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tACE  
tBE  
Chip Enable Access Time  
Byte Enable Access Time  
Output Enable Access Time  
Output Hold from Address Change  
Chip Select Low-Z Time(1)  
Byte Enable Low-Z Time(1)  
Output Enable Low-Z Time(1)  
Chip Select High-Z Time(1)  
Byte Enable High-Z Time(1)  
Output Enable High-Z Time(1)  
Chip Select Power Up Time  
Chip Select Power Down Time  
tOE  
10  
10  
15  
20  
____  
____  
____  
____  
tOH  
3
3
3
3
3
3
3
3
3
3
3
3
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tCL Z  
tBLZ  
tOLZ  
tCHZ  
tBHZ  
tOHZ  
tPU  
2
2
2
2
____  
____  
____  
____  
10  
10  
12  
12  
15  
15  
15  
15  
____  
____  
____  
____  
____  
____  
____  
____  
9
11  
15  
15  
____  
____  
____  
____  
0
0
0
0
____  
____  
____  
____  
tPD  
20  
25  
35  
45  
ns  
3016 tbl 20  
Random Access Port: AC Electrical Characteristics  
Over the Operating Temperature and Supply Voltage(2,4,5)  
70825X20  
Com'l Only  
70825X25  
Com'l Only  
70825X35  
Com'l &  
Military  
70825X45  
Com'l &  
Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tWC  
tCW  
tAW  
tAS  
Write Cycle Time  
20  
15  
15  
0
25  
20  
20  
0
35  
25  
25  
0
45  
30  
30  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip Enable to End-of-Write  
Address Valid to End-of-Write(3)  
Address Set-up Time  
tWP  
tBP  
Write Pulse Width(3)  
13  
15  
20  
20  
25  
25  
30  
30  
(3)  
Byte Enable Pulse Width  
tWR  
tWHZ  
tDW  
tDH  
tOW  
Write Recovery Time  
0
0
0
0
Write Enable Output in High-Z Time(1)  
Data Set-up Time  
10  
12  
15  
15  
____  
____  
____  
____  
____  
____  
____  
____  
13  
0
15  
0
20  
0
25  
0
____  
____  
____  
____  
____  
____  
____  
____  
Data Hold Time  
Output Active from End-of-Write  
3
3
3
3
ns  
3016 tbl 21  
NOTES:  
1. Transition measured at 0mV from steady state. This parameter is guaranteed with the AC Output Test Load (Figure 1) by device characterization, but is not production  
tested.  
2. 'X' in part number indicates power rating (S or L).  
3. OE is continuously HIGH, OE = VIH. If during the R/W controlled write cycle the OE is LOW, tWP must be greater or equal to tWHZ + tDW to allow the I/O drivers to turn off and  
on the data to be placed on the bus for the required tDW. If OE is HIGH during the R/W controlled write cycle, this requirement does not apply and the minimum write pulse  
is the specified tWP. For the CE controlled write cycle, OE may be LOW with no degradation to tCW timing.  
4. CMD access follows standard timing listed for both read and write accesses, (CE = VIH when CMD = VIL) or (CMD = VIH when CE = VIL).  
5. Industrial temperature: for specific speeds, packages and powers contact your sales office.  
6.42  
11  
IDT70825S/L  
High-Speed 8K x 16 Sequential Access Random Access Memory  
Military, Industrial and Commercial Temperature Ranges  
Waveform of Read Cycles: Random Access Port(1,2)  
tRC  
ADDR  
tAA  
tOH  
(2)  
tACS  
CE  
tCHZ  
tCLZ  
LB, UB  
tBHZ  
tOHZ  
tBE  
tBLZ  
OE  
tOE  
tOLZ  
Valid Data Out  
I/OOUT  
3016 drw 13  
NOTES:  
1. R/W is HIGH for read cycle.  
2. Address valid prior to or coincident with CE transition LOW; otherwise tAA is the limiting parameter.  
Waveform of Read Cycles: Buffer Command Mode  
tRC  
ADDR  
tAA  
tOH  
CMD(1)  
tACS  
tCHZ  
tCLZ  
LB, UB  
tBHZ  
tBE  
tOE  
tBLZ  
OE  
tOHZ  
tOLZ  
I/OOUT  
Valid Data Out  
3016 drw 14  
NOTE:  
1. CE = VIH when CMD = VIL.  
12  
IDT70825S/L  
High-Speed 8K x 16 Sequential Access Random Access Memory  
Military, Industrial and Commercial Temperature Ranges  
Waveform of Write Cycle No.1 (R/W Controlled Timing)  
Random Access Port(1,6)  
tWC  
ADDR  
tAW  
R/W  
(3)  
(2)  
tWR  
tWP  
tAS  
CE, LB, UB(8)  
(5)  
tDH  
tDW  
I/OIN  
Valid Data In  
OE  
tOHZ  
tWHZ  
(4)  
Data Out  
Data Out(4)  
I/OOUT  
tACS  
tBE  
tOW  
3016 drw 15  
Waveform of Write Cycle No.2 (CE, LB, and/or UB Controlled Timing)  
Random Access Port(1,6,7)  
tWC  
ADDR  
tAW  
CE, LB, UB (8)  
(5)  
tAS  
(3)  
tWR  
(2)  
tCW  
(2)  
tBP  
R/W  
tDW  
tDH  
I/OIN  
Valid Data  
3016 drw 16  
NOTES:  
1. R/W, CE, or LB and UB must be inactive during all address transitions.  
2. A write occurs during the overlap of R/W = VIL, CE = VIL and LB = VIL and/or UB = VIL.  
3. tWR is measured from the earlier of CE (and LB and/or UB) or R/W going HIGH to the end of the write cycle.  
4. During this period, I/O pins are in the output state and the input signals must not be applied.  
5. If the CE LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the High-impedance state.  
6. OE is continuously HIGH, OE = VIH. If during the R/W controlled write cycle the OE is LOW, tWP must be greater or equal to tWHZ + tDW to allow the I/O drivers to turn off and  
on the data to be placed on the bus for the required tDW. If OE is HIGH during the R/W controlled write cycle, this requirement does not apply and the minimum write pulse  
is the specified tWP. For the CE controlled write cycle, OE may be LOW with no degregation to tCW timing.  
7. I/OOUT is never enabled, therefore the output is in HIGH-Z state during the entire write cycle.  
8. CMD access follows the standard CE access described above. If CMD = VIL, then CE must = VIH or, when CE = VIL, CMD must = VIH.  
6.42  
13  
IDT70825S/L  
High-Speed 8K x 16 Sequential Access Random Access Memory  
Military, Industrial and Commercial Temperature Ranges  
Sequential Port: AC Electrical Characteristics Over the  
Operating Temperature and Supply Voltage Range(1,3)  
70825X20  
Com'l Only  
70825X25  
Com'l Only  
70825X35  
Com'l &  
Military  
70825X45  
Com'l &  
Military  
Symbol  
READ CYCLE  
tCYC  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
Sequential Clock Cycle Time  
25  
10  
10  
5
30  
12  
12  
5
40  
15  
15  
6
50  
18  
18  
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCH  
Clock Pulse HIGH  
tCL  
Clock Pulse LOW  
tES  
Count Enable and Address Pointer Set-up Time  
CountEnable and Address Pointer Hold Time  
Output Enable to Data Valid  
Output Enable Low-Z Time(2)  
Output Enable High-Z Time(2)  
Clock to Valid Data  
tEH  
2
2
2
2
____  
____  
____  
____  
tSOE  
8
10  
15  
20  
____  
____  
____  
____  
tOLZ  
2
2
2
2
____  
____  
____  
____  
tOHZ  
9
11  
25  
15  
35  
15  
45  
____  
____  
____  
____  
____  
____  
____  
____  
tCD  
20  
tCKHZ  
tCKLZ  
tEB  
Clock High-Z Time(2)  
12  
14  
17  
20  
Clock Low-Z Time(2)  
3
3
3
3
____  
____  
____  
____  
____  
____  
____  
____  
Clock to EOB  
13  
15  
18  
23  
ns  
3016 tbl 22  
Sequential Port: AC Electrical Characteristics  
Over the Operating Temperature and Supply Voltage(1,3)  
70825X20  
Com'l Only  
70825X25  
Com'l Only  
70825X35  
Com'l &  
Military  
70825X45  
Com'l &  
Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tCYC  
tFS  
Sequential Clock Cycle Time  
25  
13  
5
30  
15  
5
40  
20  
6
50  
20  
6
ns  
ns  
ns  
ns  
ns  
Flow Restart Time  
tWS  
tWH  
tDS  
Chip Select and Read/Write Set-up Time  
Chip Select and Read/Write Hold Time  
Input Data Set-up Time  
2
2
2
2
5
5
6
6
tDH  
Input Data Hold Time  
2
2
2
2
ns  
3016 tbl 23  
NOTES:  
1. 'X' in part number indicates power rating (S or L).  
2. Transition measured at 0mV from steady state. This parameter is guaranteed with the AC Output Test Load (Figure 1) by device characterization, but is not production  
tested.  
3. Industrial temperature: for specific speeds, packages and powers contact your sales office.  
14  
IDT70825S/L  
High-Speed 8K x 16 Sequential Access Random Access Memory  
Military, Industrial and Commercial Temperature Ranges  
Sequential Port: AC Electrical Characteristics  
Over the Operating Temperature and Supply Voltage(1,2)  
70825X20  
Com'l Only  
70825X25  
Com'l Only  
70825X35  
Com'l &  
Military  
70825X45  
Com'l &  
Military  
Symbol  
RESET CYCLE  
tRSPW  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
Reset Pulse Width  
13  
10  
10  
15  
15  
10  
10  
20  
20  
10  
10  
25  
20  
10  
10  
25  
ns  
ns  
ns  
tWERS  
Write Enable HIGH to Reset HIGH  
Reset HIGH to Write Enable LOW  
Reset HIGH to Flag Valid  
tRSRC  
tRSFV  
ns  
3016 tbl 24  
NOTE:  
1. 'X' in part number indicates power rating (S or L).  
2. Industrial temperature: for specific speeds, packages and powers contact your sales office.  
Sequential Port: Write, Pointer Load Non-Incrementing Read  
tCYC  
tCH  
tCL  
SCLK  
tEH  
tES  
(2)  
(3)  
CNTEN  
SLD  
tEH  
tES  
(1)  
tDS  
A0  
tDH  
HIGH IMPEDANCE  
SI/OIN  
Dx  
tWS  
tWS  
tWS  
tWH  
tWH  
tWH  
tWH  
SR/W  
SCE  
tWS  
tCSZ  
tCKHZ  
tCD  
SOE  
tSOE  
tOLZ  
tOHZ  
SI/OOUT  
D0  
D0  
D0  
tCKLZ  
3016 drw 17  
NOTES:  
1. If SLD = VIL, then address will be clocked in on the SCLK's rising edge.  
2. If CNTEN = VIH for the SCLK's rising edge, the internal address counter will not advance.  
3. Pointer is not incremented on cycle immediately following SLD even if CNTEN is LOW.  
6.42  
15  
IDT70825S/L  
High-Speed 8K x 16 Sequential Access Random Access Memory  
Military, Industrial and Commercial Temperature Ranges  
Sequential Port: Write, Pointer Load, Burst Read  
tCYC  
tCH  
tCL  
SCLK  
tEH  
tES  
(3)  
(2)  
CNTEN  
tEH  
tES  
(1)  
SLD  
tDS  
A0  
tDS  
tDH  
tDH  
HIGH IMPEDANCE  
D2  
SI/OIN  
Dx  
tWS  
tWS  
tWS  
WH  
t
tWH  
tWH  
SR/W  
SCE  
tWS  
tWH  
tCD  
tSOE  
t
SOE  
OLZ  
tOHZ  
(2)  
SI/OOUT  
D0  
D1  
3016 drw 18  
tCKLZ  
NOTES:  
1. If SLD = VIL, then address will be clocked in on the SCLK's rising edge.  
2. If CNTEN = VIH for the SCLK's rising edge, the internal address counter will not advance.  
3. Pointer is not incremented on cycle immediately following SLD even if CNTEN is LOW.  
Read STRT/EOB Flag Timing - Sequential Port(1)  
tCYC  
tCH  
tCL  
SCLK  
tEH  
tES  
(4)  
(2)  
CNTEN  
tES  
tEH  
(1)  
1/2  
SSTRT  
tDS  
tDH  
HIGH IMPEDANCE  
SI/OIN  
Dx  
D3  
tWS  
tWS  
tWH  
tWH  
tWH  
SR/  
W
tWS  
tWS  
tWH  
(3)  
SCE  
SOE  
tCD  
tSOE  
tOLZ  
tOHZ  
(5)  
(2)  
SI/OOUT  
D2  
D0  
D1  
tCKLZ  
EOB1/2  
tEB  
3016 drw19  
NOTES: (Also used in the Figure "Read STRT/EOB Flag Timing")  
1. If SSTRT1 or SSTRT2 = VIL, then address will be clocked in on the SCLK's rising edge.  
2. If CNTEN = VIH for the SCLK's rising edge, the internal address counter will not advance.  
3. SOE will control the output and should be HIGH on power-up. If SCE = VIL and is clocked in while SR/W = VIH, the data addressed will be read out within that cycle. If SCE  
= VIL and is clocked in while SR/W = VIL, the data addressed will be written to if the last cycle was a read. SOE may be used to control the bus contention and permit a write  
on this cycle.  
4. Unlike SLD case, CNTEN is not disabled on cycle immediately following SSTRT.  
5. If SR/W = VIL, data would be written to D0 again since CNTEN = VIH.  
6. SOE = VIL makes no difference at this point since the SR/W = VIL disables the output until SR/W = VIH is clocked in on the next rising clock edge.  
16  
IDT70825S/L  
High-Speed 8K x 16 Sequential Access Random Access Memory  
Military, Industrial and Commercial Temperature Ranges  
Waveform of Write Cycles: Sequential Port  
tCYC  
tCH  
tCL  
SCLK  
tEH  
tEH  
(4)  
tES  
tES  
CNTEN  
SLD  
(3)  
tEH  
tES  
(1)  
tDS  
tDS  
D1  
tDS  
tDH  
tDH  
tDH  
HIGH IMPEDANCE  
SI/OIN  
Dx  
A0  
D0  
tWS  
tWS  
tWH  
tWH  
tWH  
tWH  
(4)  
SR/W  
SCE  
tWS  
tWS  
tCKHZ  
tCD  
(5)  
SOE  
tOHZ  
HIGH IMPEDANCE  
SI/OOUT  
D0  
3016 drw 20  
tCKLZ  
Waveform of Burst Write Cycles: Sequential Port  
tCYC  
tCH  
tCL  
SCLK  
tEH  
tES  
(3)  
(2)  
CNTEN  
tES  
tEH  
(1)  
SLD  
SI/OIN  
SR/W  
tDS  
tDS  
tDH  
tDH  
Dx  
A0  
D0  
D1  
D2  
tWS  
tWS  
tWH  
tWH  
tWH  
tWH  
(5)  
tWS  
tWS  
SCE  
SOE  
(5)  
tCKLZ  
tCD  
HIGH IMPEDANCE  
SI/OOUT  
D2  
3016 drw 21  
NOTES :  
1. If SLD = VIL, then address will be clocked in on the SCLK's rising edge.  
2. If CNTEN = VIH for the SCLK's rising edge, the internal address counter will not advance.  
3. Pointer is not incrementing on cycle immediately following SLD even if CNTEN is LOW.  
4. If SR/W = VIL, data would be written to D0 again since CNTEN = VIH.  
5. SOE = VIL makes no difference at this point since the SR/W = VIL disables the output until SR/W = VIH is clocked in on the next rising clock edge.  
6.42  
17  
IDT70825S/L  
High-Speed 8K x 16 Sequential Access Random Access Memory  
Military, Industrial and Commercial Temperature Ranges  
Waveform of Write Cycles: Sequential Port (STRT/EOB Flag Timing)  
tCH  
tCL  
SCLK  
tEH  
tES  
(4)  
(2)  
CNTEN  
tES  
tEH  
(1)  
SSTRT1/2  
tDS  
tDH  
HIGH IMPEDANCE  
D0  
D1  
Dx  
D2  
SI/OIN  
D3  
tWS  
tWS  
tWH  
tWH  
tWH  
tWH  
(5)  
SR/  
W
tWS  
tWS  
(3)  
SCE  
SOE  
(6)  
tCKLZ  
tCD  
HIGH IMPEDANCE  
D3  
SI/OOUT  
tEB  
EOB1/2  
3016 drw 22  
NOTES: (Also used in the Figure "Read STRT/EOB Flag Timing")  
1. If SSTRT1 or SSTRT2 = VIL, then address will be clocked in on the SCLK's rising edge.  
2. If CNTEN = VIH for the SCLK's rising edge, the internal address counter will not advance.  
3. SOE will control the output and should be HIGH on power-up. If SCE = VIL and is clocked in while SR/W = VIH, the data addressed will be read out within that cycle. If  
SCE = VIL and is clocked in while SR/W = VIL, the data addressed will be written to if the last cycle was a read. SOE may be used to control the bus contention and  
permit a write on this cycle.  
4. Unlike SLD case, CNTEN is not disabled on cycle immediately following SSTRT.  
5. If SR/W = VIL, data would be written to D0 again since CNTEN = VIH.  
6. SOE = VIL makes no difference at this point since the SR/W = VIL disables the output until SR/W = VIH is clocked in on the next rising clock edge.  
18  
IDT70825S/L  
High-Speed 8K x 16 Sequential Access Random Access Memory  
Military, Industrial and Commercial Temperature Ranges  
Sequential Counter Enable Cycle After Reset, Write Cycle(1,4,6)  
SCLK  
RST  
(2)  
CNTEN  
D0  
D1  
D2  
D3  
D4  
SI/OIN  
3016 drw 23  
Sequential Counter Enable Cycle After Reset, Read Cycle(1,4)  
SCLK  
RST  
(3)  
SR/W  
(5)  
CNTEN  
D0(5)  
D3  
D1  
D2  
SI/OOUT  
3016 drw 24  
NOTES:  
1. 'D0' represents data input for Address=0, 'D1' represents data input for Address=1, etc.  
1. If CNTEN=VIL then 'D1' would be written into 'A1' at this point.  
3. Data output is available at a tCD after the SR/W=VIH is clocked. The RST sets SR/W=LOW internally and therefore disables the output until the next clock.  
4. SCE=VIL throughout all cycles.  
5. If CNTEN=VIL then 'D1' would be clocked out (read) at this point.  
6. SR/W=VIL.  
6.42  
19  
IDT70825S/L  
High-Speed 8K x 16 Sequential Access Random Access Memory  
Military, Industrial and Commercial Temperature Ranges  
Random Access Port - Reset Timing  
tRSPW  
RST  
tRSRC  
R/W, SR/W CMD  
(4)  
UB LB  
or (  
+
)
tWERS  
tRSFV  
EOB(1 or 2)  
Flag Valid  
3016 drw 25  
Random Access Port Restart Timing of Sequential Port(1)  
0.5 x tCYC  
tFS  
SCLK  
R/W  
(2)  
2-5ns  
6-7ns  
(3)  
CLR  
Block  
3016 drw 26  
(Internal Signal)  
NOTES:  
1. The sequential port is in the STOP mode and is being restarted from the random port by the Bit 4 Counter Release (see Case 5).  
2. "0" is written to Bit 4 from the random port at address [A2 - A0] = 100, when CMD = VIL and CE = VIH. The device is in the Buffer Command Mode  
(see Case 5).  
3. CLR is an internal signal only and is shown for reference only.  
4. Sequential port must also prohibit SR/W or SCE from being LOW for tWERS and tRSRC periods, or SCLK must not toggle from LOW-to-HIGH until after tRSRC.  
20  
IDT70825S/L  
High-Speed 8K x 16 Sequential Access Random Access Memory  
Military, Industrial and Commercial Temperature Ranges  
Ordering Information  
IDT 70825  
X
XX  
X
X
Device  
Type  
Power  
Speed  
Package  
Process/  
Temperature  
Range  
Blank Commercial (0°C to +70°C)  
I(1)  
B
Industrial (-40°C to +85°C)  
Military (–55°C to +125°C)  
Compliant to MIL-PRF-38535 QML  
G
PF  
84-pin PGA (G84-3)  
80-pin TQFP (PN80-1)  
20  
25  
35  
45  
Commercial Only  
Commercial Only  
Commercial & Military  
Commercial & Military  
Speed in nanoseconds  
S
L
Standard Power  
Low Power  
70825 128K (8K x 16) Sequential Access Random Access  
Memory  
3016 drw 27  
NOTE:  
1. Industrial temperature range is available.  
For specific speeds, packages and powers contact your sales office.  
Datasheet Document History  
1/27/99:  
Initiated datasheet document history  
Converted to new format  
Changeddrawingformat  
Replaced IDT logo  
Page 3 Changed"Clock"to"Inputs/Outputs"inRandompindescriptiontable  
Added"Outputs"inSequentialpindescriptiontable  
Changed±200mVto0mVinnotes  
6/4/99:  
11/10/99:  
4/18/00:  
CORPORATE HEADQUARTERS  
2975 Stender Way  
Santa Clara, CA 95054  
for SALES:  
for Tech Support:  
831-754-4613  
DualPortHelp@idt.com  
800-345-7015 or 408-727-6166  
fax: 408-492-8674  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
6.42  
21  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY