70T15L15BF [IDT]

CABGA-100, Tray;
70T15L15BF
型号: 70T15L15BF
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

CABGA-100, Tray

文件: 总18页 (文件大小:278K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED 2.5V  
16/8K X 9 DUAL-PORT  
STATIC RAM  
IDT70T16/5L  
Features  
True Dual-Ported memory cells which allow simultaneous  
reads of the same memory location  
High-speed access  
M/S = VIH for BUSY output flag on Master  
M/S = VIL for BUSY input on Slave  
Busy and Interrupt Flag  
On-chip port arbitration logic  
Full on-chip hardware support of semaphore signaling  
between ports  
Fully asynchronous operation from either port  
LVTTL-compatible, single 2.5V (±100mV) power supply  
Available in an 80-pin TQFP and 100-pin fpBGA  
Industrial temperature range (–40°C to +85°C) is available  
for selected speeds  
– Commercial:20/25ns(max.)  
– Industrial: 25ns (max.)  
Low-power operation  
– IDT70T16/5L  
Active:200mW(typ.)  
Standby: 600µW (typ.)  
IDT70T16/5 easily expands data bus width to 18 bits or  
more using the Master/Slave select when cascading more  
than one device  
FunctionalBlockDiagram  
OEL  
OER  
CER  
CEL  
R/WR  
R/W  
L
I/O0L- I/O8L  
I/O0R-I/O8R  
I/O  
I/O  
Control  
Control  
BUSY (2,3)  
L
(2,3)  
BUSY  
R
(1)  
(1)  
13L  
A
13R  
A
Address  
Decoder  
MEMORY  
ARRAY  
Address  
Decoder  
A0R  
A0L  
14  
14  
ARBITRATION  
INTERRUPT  
SEMAPHORE  
LOGIC  
CE  
L
L
CE  
OE  
R/W  
R
R
OE  
R
R/W  
L
SEM  
L
(3)  
SEM  
R
M/S  
(3)  
INTL  
INT  
R
5663 drw 01  
NOTES:  
1. A13 is a NC for IDT70T15.  
2. (MASTER): BUSY is output; (SLAVE): BUSY is input.  
3. BUSY outputs and INT outputs are non-tri-stated push-pull drivers.  
AUGUST 2004  
1
DSC 5663/2  
©2004 IntegratedDeviceTechnology,Inc.  
IDT70T16/5L  
High-Speed 2.5V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Description  
reads or writes to any location in memory. An automatic power down  
featurecontrolledbyCEpermitstheon-chipcircuitryofeachporttoenter  
a very low standby power mode.  
FabricatedusingIDT’sCMOShigh-performancetechnology,these  
devices typically operate on only 200mW of power.  
The IDT70T16/5 is a high-speed 16/8K x 9 Dual-Port Static RAM.  
TheIDT70T16/5isdesignedtobeusedasstand-aloneDual-PortRAMs  
orasacombinationMASTER/SLAVEDual-PortRAMfor18-bit-or-more  
wider systems. Using the IDT MASTER/SLAVE Dual-Port RAM ap-  
proachin18-bitorwidermemorysystemapplicationsresultsinfull-speed,  
error-freeoperationwithouttheneedforadditionaldiscretelogic.  
This device provides two independent ports with separate control,  
address,andI/Opinsthatpermitindependent,asynchronousaccessfor  
TheIDT70T16/5ispackagedinan80-pinTQFP(ThinQuadFlatpack)  
and a 100-pin fpBGA (fine pitch Ball Grid array) .  
PinConfigurations(1,2,3,4)  
07/11/02  
INDEX  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
NC  
1
2
NC  
I/O2L  
I/O3L  
I/O4L  
I/O5L  
A5L  
A4L  
A3L  
A2L  
A1L  
A0L  
3
4
5
VSS  
6
7
I/O6L  
I/O7L  
IDT70T16/5PF  
INT  
L
8
(5)  
PN80-1  
BUSY  
L
9
VDD  
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
NC  
80-Pin TQFP  
M/S  
V
SS  
I/O0R  
I/O1R  
I/O2R  
(6)  
Top View  
BUSY  
R
INT  
R
A
A
A
A
A
0R  
1R  
2R  
3R  
4R  
VDD  
I/O3R  
I/O4R  
I/O5R  
I/O6R  
NC  
NC  
NC  
,
5663 drw 02  
NOTES:  
1. A13 is a NC for IDT70T15.  
2. All VDD pins must be connected to power supply.  
3. All VSS pins must be connected to ground supply.  
4. Package body is approximately 1.18 in x 1.18 in x 0.16 in.  
5. This package code is used to reference the package diagram.  
6. This text does not imply orientation of Part-marking.  
2
6.42  
IDT70T16/5L  
High-Speed 2.5V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
PinConfigurations(con't.)(1,2,3,4)  
IDT70T16/5BF  
BF100(5)  
100-PinfpBGA  
TopView(6)  
08/14/02  
A1  
A2  
A3  
A6  
A7  
A8  
A9  
A4  
A5  
A10  
A6R  
A9R  
A12R  
VSS  
NC R/W  
R
NC  
NC  
VSS  
I/O7R  
B1  
B2  
B3  
C3  
B6  
B7  
13R  
B9  
B4  
B5  
B8  
B10  
(1)  
A
NC  
NC  
A
8R  
5R  
2R  
0R  
I/O8R  
A
10R  
NC  
OE  
R
I/O6R  
NC  
C1  
C5  
C6  
C2  
C4  
C7  
C8  
C9  
C10  
A
3R  
NC  
NC  
A
4R  
A
A
7R  
CER  
NC  
NC I/O3R  
D1  
D2  
D6  
D9  
D3  
D5  
D7  
D8  
D10  
D4  
A
1R INT  
R
I/O5R  
A
A
11R  
SEM  
R
NC  
I/O1R  
NC  
NC  
E5  
E6  
E7  
E8  
E9  
E10  
E1  
E2  
E3  
E4  
V
SS  
V
SS I/O4R I/O2R I/O0R  
V
DD  
M/S BUSY  
R
L
A
A1L  
F7  
F5  
F6  
F9  
F10  
F1  
F2  
F3  
G3  
H3  
F8  
F4  
VDD  
V
DD  
V
SS  
I/O6L I/O7L  
V
SS BUSY  
A0L  
I/O5L  
NC  
G1  
G5  
G2  
G4  
G6  
G8  
G9  
G7  
G10  
INT  
L
NC  
A
3L  
NC  
SEM  
L
I/O3L  
VSS  
A
6L  
NC  
I/O4L  
,
H7  
H8  
H9  
H10  
H5  
H6  
H4  
H1  
H2  
I/O8L NC  
NC I/O2L  
NC  
CE  
L
A
10L  
11L  
12L  
NC  
A
2L  
A5L  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
J10  
(1)  
A13L  
A4L  
A8L  
A
NC  
NC  
R/W  
L
NC  
VSS  
I/O1L  
K6  
K8  
K10  
K5  
K7  
K9  
K2  
K4  
K1  
K3  
VDD  
NC  
I/O0L  
A9L  
NC  
VDD  
NC  
OEL  
A7L  
A
5663 drw 03  
NOTES:  
1. A13 is a NC for IDT70T15.  
2. All VDD pins must be connected to power supply.  
3. All VSS pins must be connected to ground.  
4. BF-100 package body is approximately 10mm x 10mm x 1.4mm with 0.8mm ball pitch.  
5. This package code is used to reference the package diagram.  
6. This text does not indicate orientation of the actual part marking.  
6.432  
IDT70T16/5L  
High-Speed 2.5V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
PinNames  
Left Port  
Right Port  
Names  
Chip Enable  
CE  
R/W  
OE  
L
CE  
R/W  
OE  
R
L
R
Read/Write Enable  
Output Enable  
Address  
L
R
(1)  
(1)  
A
0L - A13L  
A
0R - A13R  
I/O0R - I/O8R  
SEM  
INT  
BUSY  
M/S  
I/O0L - I/O8L  
SEM  
INT  
BUSY  
Data Input/Output  
Semaphore Enable  
Interrupt Flag  
L
R
L
R
Busy Flag  
L
R
Master or Slave Select  
Power (2.5V)  
V
DD  
SS  
V
Ground (0V)  
5663 tbl 01  
NOTE:  
1. A13 is a NC for IDT70T15.  
Truth Table I: Non-Contention Read/Write Control  
Inputs(1)  
R/W  
Outputs  
I/O0-8  
Mode  
CE  
H
L
OE  
X
SEM  
H
X
L
High-Z  
DATAIN  
DATAOUT  
High-Z  
Deselcted: Power-Down  
Write to Memory  
Read Memory  
X
H
L
H
X
L
H
X
H
X
Outputs Disabled  
5663 tbl 02  
NOTE:  
1.  
Condition: A0L — A13L A0R — A13R  
Truth Table II: Semaphore Read/Write Control(1)  
Inputs  
Outputs  
R/W  
H
I/O0-8  
Mode  
- I/O  
CE  
H
OE  
L
SEM  
L
L
L
DATAOUT  
Read Semaphore Flag Data Out (I/O  
Write I/O into Semaphore Flag  
Not Allowed  
0
8)  
H
X
DATAIN  
0
____  
L
X
X
5663 tbl 03  
NOTE:  
1. There are eight semaphore flags written to via I/O0 and read from all I/Os (I/O0-I/O8). These eight semaphores are addressed by A0 - A2.  
4
6.42  
IDT70T16/5L  
High-Speed 2.5V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AbsoluteMaximumRatings(1)  
MaximumOperating  
TemperatureandSupplyVoltage(1)  
Symbol  
Rating  
Commercial  
& Industrial  
Unit  
V
Grade  
Ambient  
Temperature  
GND  
V
DD  
(2 )  
Terminal Voltage  
with Respect to GND  
-0.5 to +3.6  
-55 to +125  
V
TERM  
Commercial  
0OC to +70OC  
0V  
0V  
2.5V  
2.5V  
+
+
100mV  
100mV  
Temperature Under Bias  
oC  
(3)  
T
BIAS  
STG  
JN  
OUT  
Industrial  
-40OC to +85OC  
T
Storage Temperature  
Junction Temperature  
DC Output Current  
-65 to +150  
+150  
oC  
oC  
5663 tbl 05  
NOTES:  
1. This is the parameter TA. This is the "instant on" case temperature.  
T
I
50  
mA  
5663 tbl 04  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may  
cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above  
those indicated in the operational sections of this specification is not implied.  
Exposure to absolute maximum rating conditions for extended periods may  
affect reliability.  
RecommendedDCOperating  
Conditions  
2. VTERM must not exceed VDD+ 0.3V.  
3. Ambient Temperature Under Bias. No AC Conditions. Chip Deselected.  
Symbol  
Parameter  
Supply Voltage  
Ground  
Min.  
2.4  
Typ.  
Max.  
2.6  
Unit  
V
V
V
DD  
SS  
2.5  
0
0
0
V
DD+0.3(2)  
0.7  
V
____  
V
IH  
IL  
Input High Voltage  
Input Low Voltage  
1.7  
V
-0.3(1)  
V
____  
V
5663 tbl 06  
NOTES:  
Capacitance(1)(TA =+25°C, f=1.0MHz)  
1. VIL > -1.5V for pulse width less than 10ns.  
2. VTERM must not exceed VDD + 0.3V.  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions  
IN = 0V  
OUT = 0V  
Max. Unit  
CIN  
V
9
pF  
(2)  
OUT  
C
V
10  
pF  
5663 tbl 07  
NOTES:  
1. This parameter is determined by device characteristics but is not production  
tested.  
2. COUT also references CI/O.  
DC Electrical Characteristics Over the  
Operating Temperature and Supply Voltage Range (VDD = 2.5V ± 100mV)  
70T16/5L  
Symbol  
Parameter  
Input Leakage Current(1)  
Output Leakage Current  
Output Low Voltage  
Test Conditions  
Min.  
Max.  
Unit  
µA  
µA  
V
___  
|ILI|  
V
DD = 2.6V, VIN = 0V to VDD  
5
5
___  
___  
|ILO  
|
CE = VIH, VOUT = 0V to VDD  
OL = +2mA  
V
V
OL  
OH  
I
0.4  
___  
Output High Voltage  
IOH = -2mA  
2.0  
V
5663 tbl 08  
NOTE:  
1. At VDD < 2.0V, Input leakages are undefined.  
6.452  
IDT70T16/5L  
High-Speed 2.5V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(VDD = 2.5V ± 100mV)  
70T16/5L20  
Com'l Only  
70T16/5L25  
Com'l  
& Ind  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
IDD  
Dynamic Operating  
Current  
(Both Ports Active)  
mA  
L
L
L
L
80  
140  
70  
100  
7
130  
160  
17  
CE = VIL, Outputs Disabled  
SEM = VIH  
(3)  
____  
____  
IND  
f = fMAX  
ISB1  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
mA  
mA  
COM'L  
IND  
12  
20  
CE  
R
SEM  
and CE  
L
= VIH  
L = VIH  
R
= SEM  
(3)  
____  
____  
12  
25  
f = fMAX  
(1)  
ISB2  
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
f=fMAX  
L
L
55  
90  
40  
55  
80  
(3)  
____  
IND  
----  
100  
SEMR  
= SEML = VIH  
I
SB3  
Full Standby Current  
(Both Ports -  
CMOS Level Inputs)  
Both Ports CE  
CE > VDD - 0.2V,  
IN > VDD - 0.2V or  
IN < 0.2V, f = 0(4)  
SEM = SEM > VDD-0.2V  
L
and  
mA  
mA  
COM'L  
L
L
L
L
0.05  
2.5  
0.05  
0.2  
40  
2.5  
5.0  
80  
R
V
V
____  
____  
IND  
R
L
ISB4  
Full Standby Current  
(One Port -  
CMOS Level Inputs)  
CE"A" < 0.2V and  
COM'L  
CE"B" > VDD - 0.2V(1)  
55  
90  
SEM  
R
= SEML > VDD-0.2V  
V
IN > VDD - 0.2V or VIN < 0.2V  
____  
____  
IND  
55  
100  
Active Port Outputs Disabled,  
f = fMAX  
(3)  
5663 tbl 09  
NOTES:  
1. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
2. DD = 2.5V, TA = +25°C, and are not production tested. IDD dc = 85mA (typ.)  
V
3. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tRC, and using “AC Test Conditions” of input  
levels of GND to 3V.  
4. f = 0 means no address or control lines change.  
OutputLoadsand  
AC Test Conditions  
50  
50Ω  
Input Pulse Levels  
GND to 2.5V  
3ns Max.  
1.25V  
,
DATAOUT  
1.25V  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
BUSY  
INT  
10pF / 5pF*  
(Tester)  
1.25V  
5663 drw 04  
Figures 1  
Figure 1. AC Output Test Load  
*(For tLZ, tHZ, tWZ, tOW)  
5663 tbl 10  
Timing of Power-Up / Power-Down  
CE  
t
PU  
tPD  
I
CC  
50%  
50%  
I
SB  
,
5663 drw 06  
6
6.42  
IDT70T16/5L  
High-Speed 2.5V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange  
70T16/5L20  
Com'l Only  
70T16/5L25  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
t
RC  
AA  
ACE  
ABE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
SAA  
Read Cycle Time  
20  
25  
ns  
ns  
ns  
____  
____  
t
Address Access Time  
20  
20  
20  
25  
25  
25  
____  
____  
____  
____  
____  
____  
Chip Enable Access Time(3 )  
Byte Enable Access Time(3 )  
t
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output Enable Access Time(3)  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
t
12  
13  
____  
____  
t
3
3
____  
____  
t
3
3
____  
____  
Output High-Z Time(1,2)  
t
12  
15  
____  
____  
Chip Enable to Power Up Time(1,2)  
t
0
0
____  
____  
Chip Disable to Power Down Time(1,2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access(3)  
t
20  
25  
____  
____  
t
10  
10  
____  
____  
t
20  
25  
ns  
5663 tbl 11  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure1).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL.  
Waveform of Read Cycles(5)  
t
RC  
ADDR  
(4)  
AA  
t
t
(4)  
ACE  
CE  
OE  
(4)  
tAOE  
R/W  
(1)  
tOH  
tLZ  
(4)  
DATAOUT  
VALID DATA  
(2)  
t
HZ  
BUSYOUT  
(3,4)  
5663 drw 05  
tBDD  
NOTES:  
1. Timing depends on which signal is asserted last, OE or CE.  
2. Timing depends on which signal is de-asserted first, CE or OE.  
3. tBDD delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY  
has no relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last: tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
6.472  
IDT70T16/5L  
High-Speed 2.5V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage  
70T16/5L20  
Com'l Only  
70T16/5L25  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
20  
15  
15  
0
25  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
t
t
t
15  
0
20  
0
t
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
t
15  
15  
____  
____  
t
12  
15  
____  
____  
t
0
0
Write Enable to Output in High-Z(1,2)  
Output Active from End-of-Write(1, 2,4 )  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
12  
15  
____  
____  
t
____  
____  
t
0
5
5
0
5
5
____  
____  
____  
____  
t
t
ns  
5663 tbl 12  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 1).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time.  
4. The specification for tDH must be met by the device supplying write data to the SRAM under all operating conditions. Although tDH and tOW values will vary over  
voltage and temperature, the actual tDH will always be smaller than the actual tOW.  
8
6.42  
IDT70T16/5L  
High-Speed 2.5V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
tWC  
ADDRESS  
(7)  
t
HZ  
OE  
tAW  
CE or SEM(9)  
(7)  
t
HZ  
(3)  
(6)  
(2)  
t
WR  
t
AS  
tWP  
R/W  
(7)  
t
LZ  
tOW  
tWZ  
(4)  
(4)  
OUT  
DATA  
tDH  
t
DW  
IN  
DATA  
,
5663 drw 07  
Timing Waveform of Write Cycle No. 2, CE Controlled Timing(1,5)  
t
WC  
ADDRESS  
t
AW  
CE or SEM(9)  
R/W  
(6)  
AS  
(3)  
(2)  
t
WR  
t
tEW  
t
DW  
tDH  
DATAIN  
5663 drw 08  
NOTES:  
1. R/W or CE must be HIGH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a LOW CE and a LOW R/W for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH to the end of write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the High-impedance state.  
6. Timing depends on which enable signal is asserted last, CE or R/W.  
7. This parameter is guaranteed by device characterization but is not production tested. Transition is measured 0mV from steady state with the Output Test Load  
(Figure 1).  
8. If OE is LOW during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be  
placed on the bus for the required tDW. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as  
the specified tWP.  
9. To access RAM, CE = VIL and SEM = VIH. To access Semaphore, CE = VIH and SEM = VIL. tEW must be met for either condition.  
6.492  
IDT70T16/5L  
High-Speed 2.5V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
tSAA  
VALID ADDRESS  
VALID ADDRESS  
t
A0-A2  
tWR  
tAW  
ACE  
t
EW  
SEM  
I/O  
t
OH  
tDW  
tSOP  
DATAIN  
VALID  
DATAOUT  
VALID(2)  
tAS  
tWP  
t
DH  
R/W  
t
AOE  
tSWRD  
OE  
Read Cycle  
Write Cycle  
5663 drw 09  
NOTES:  
1. CE = VIH for the duration of the above timing (both write and read cycle).  
2. “DATAOUT VALID” represents all I/O's (I/O0-I/O8) equal to the semaphore value.  
Timing Waveform of Semaphore Write Condition(1,3,4)  
A0"A"-A2 "A"  
MATCH  
SIDE(2) "A"  
R/W"A"  
SEM"A"  
tSPS  
A0"B"-A2 "B"  
MATCH  
SIDE(2)  
"B"  
R/W"B"  
SEM"B"  
5663 drw 10  
NOTES:  
1. DOR = DOL =VIH, CER = CEL =VIH.  
2. All timing is the same for left and right ports. Port“A” may be either left or right port. “B” is the opposite port from “A”.  
3. This parameter is measured from R/W“A” or SEM“A” going HIGH to R/W“B” or SEM“B” going HIGH.  
4. If tSPS is not satisfied, there is no guarantee which side will obtain the semaphore flag.  
10  
6.42  
IDT70T16/5L  
High-Speed 2.5V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange  
70T16/5L20  
Com'l Only  
70T16/5L25  
Com'l  
& Ind  
Symbol  
BUSY TIMING (M/S = VIH  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
)
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable LOW  
BUSY Disable Time from Chip Enable HIGH  
Arbitration Priority Set-up Time(2)  
t
t
t
17  
17  
____  
____  
t
5
5
____  
____  
BUSY Disable to Valid Data(3)  
t
30  
30  
(5)  
____  
____  
t
Write Hold After BUSY  
15  
17  
BUSY TIMING (M/S = VIL  
)
____  
____  
____  
____  
BUSY Input to Write(4)  
t
WB  
0
0
ns  
ns  
(5)  
tWH  
Write Hold After BUSY  
15  
17  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
t
WDD  
Write Pulse to Data Delay(1)  
45  
35  
50  
35  
ns  
tDDD  
Write Data Valid to Read Data Delay(1)  
ns  
5663 tbl 13  
NOTES:  
1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveformof Write with Port-to-Port Read and BUSY (M/S = VIH)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0, tWDD – tWP (actual) or tDDD – tDW (actual).  
4. To ensure that the write cycle is inhibited on Port "B" during contention on Port "A".  
5. To ensure that a write cycle is completed on Port "B" after contention on Port "A".  
6. 'X' in part numbers indicates power rating (S or L).  
Timing Waveform of Read with BUSY(2,4,5) (M/S = VIH)  
tWC  
MATCH  
ADDR"A"  
tWP  
R/W"A"  
tDH  
tDW  
VALID  
DATAIN "A"  
(1)  
tAPS  
MATCH  
ADDR"B"  
tBDD  
tBDA  
BUSY"B"  
tWDD  
DATAOUT "B"  
VALID  
(3)  
t
DDD  
NOTES:  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S=VIL.  
5663 drw 11  
2. CEL = CER = VIL.  
3. OE = VIL for the reading port.  
4. If M/S=VIL (SLAVE), BUSY is an input. Then for this example BUSY“A” = VIH and BUSY“B” input is shown above.  
5. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from Port "A".  
6.1412  
IDT70T16/5L  
High-Speed 2.5V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write with BUSY(3)  
t
WP  
R/W"A"  
tWB  
BUSY"B"  
(1)  
tWH  
R/W"B"  
(2)  
5663 drw 12  
NOTES:  
1. tWH must be met for both BUSY input (SLAVE) and output (MASTER).  
2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.  
3. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from Port "A".  
Waveform of BUSY Arbitration Controlled by CE Timing(1) (M/S = VIH)  
ADDR"A"  
and "B"  
ADDRESSES MATCH  
CE"A"  
(2)  
t
APS  
CE"B"  
t
BAC  
t
BDC  
BUSY"B"  
5663 drw 13  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(1) (M/S = VIH)  
ADDRESS "N"  
ADDR"A"  
ADDR"B"  
BUSY"B"  
(2)  
tAPS  
MATCHING ADDRESS "N"  
tBAA  
tBDA  
5663 drw 14  
NOTES:  
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from “A”.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
12  
6.42  
IDT70T16/5L  
High-Speed 2.5V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange  
70T16/5L20  
Com'l Only  
70T16/5L25  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
ns  
ns  
ns  
t
0
0
____  
____  
t
20  
20  
20  
20  
____  
____  
t
Interrupt Reset Time  
ns  
5663 tbl 14  
Waveform of Interrupt Timing(1)  
tWC  
INTERRUPT SET ADDRESS (2)  
ADDR"A"  
(4)  
(3)  
tWR  
t
AS  
CE"A"  
R/W"A"  
INT"B"  
(3)  
tINS  
5663 drw 15  
t
RC  
INTERRUPT CLEAR ADDRESS (2)  
ADDR"B"  
CE"B"  
(3)  
tAS  
OE"B"  
(3)  
tINR  
INT"B"  
5663 drw 16  
NOTES:  
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from “A”.  
2. See Interrupt truth table.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
6.1432  
IDT70T16/5L  
High-Speed 2.5V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table III — Interrupt Flag(1)  
Left Port  
Right Port  
OE  
R/W  
L
A13L-A0L  
R/WR  
A
13R-A0R  
Function  
Set Right INT Flag  
Reset Right INT Flag  
Set Left INT Flag  
Reset Left INT Flag  
CEL  
OEL  
INTL  
CER  
R
INTR  
L
X
X
X
L
X
X
L
X
3FFF(4)  
X
X
X
L
X
L
X
L(2)  
H(3)  
X
R
X
X
X
X
X
3FFF(4)  
3FFE(4)  
X
R
X
L(3)  
H(2)  
L
L
X
X
L
L
3FFE(4)  
X
X
X
L
5663 tbl 15  
NOTES:  
1. Assumes BUSYL = BUSYR = VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
4. A13 is a NC for IDT70T15, therefore Interrupt Addresses are 1FFF and 1FFE.  
Truth Table IV — Address BUSY  
Arbitration  
Inputs  
Outputs  
(4)  
A
OL-A13L  
(1)  
(1)  
A
OR-A13R  
Function  
Normal  
Normal  
Normal  
CE  
L
CE  
R
BUSY  
L
BUSYR  
X
H
X
L
X
X
H
L
NO MATCH  
MATCH  
H
H
H
H
MATCH  
H
H
MATCH  
(2)  
(2)  
Write Inhibit(3 )  
5663 tbl 16  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSYX outputs on the  
IDT70T16/5 are push-pull, not open drain outputs. On slaves the BUSYX input internally inhibits writes.  
2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address  
and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs can not be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored  
when BUSYR outputs are driving LOW regardless of actual logic level on the pin.  
4. A13 is a NC for IDT70T15. Address comparison will be for A0 - A12.  
Truth Table V — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0  
- D8  
Left  
D0  
- D8  
Right  
Status  
No Action  
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
NOTES:  
0
0
1
1
0
1
1
1
0
1
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
5663 tbl 17  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT70T16/5.  
2. There are eight semaphore flags written to via I/O0 and read from all I/Os (I/O0 - I/O8). These eight semaphores are addressed by A0 - A2.  
e. CE = VIH, SEM = VIL to access the semaphores. Refer to the semaphore Read/Write Truth Table.  
14  
6.42  
IDT70T16/5L  
High-Speed 2.5V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
CE  
MASTER  
Dual Port  
RAM  
CE  
SLAVE  
Dual Port  
RAM  
BUSY (R)  
BUSY (L)  
BUSY (L)  
BUSY (R)  
MASTER  
Dual Port  
RAM  
CE  
SLAVE  
Dual Port  
RAM  
CE  
BUSY (R)  
BUSY (L) BUSY (R)  
BUSY (L) BUSY (R)  
BUSY (L)  
5663 drw 17  
Figure 3. Busy and chip enable routing for both width and depth expansion with IDT70T16/5 RAMs.  
the BUSY pins HIGH. If desired, unintended write operations can be  
FunctionalDescription  
prevented to a port by tying the BUSY pin for that port LOW.  
The BUSY outputs on the IDT70T16/5 RAM in master mode, are  
push-pulltypeoutputsanddonotrequirepullupresistorstooperate. If  
theseRAMsarebeingexpandedindepth,thentheBUSYindicationfor  
the resulting array requires the use of an external AND gate.  
The IDT70T16/5 provides two ports with separate control, address  
and I/O pins that permit independent access for reads or writes to any  
location in memory. The IDT70T16/5 has an automatic power down  
featurecontrolledbyCE.TheCEcontrolson-chippowerdowncircuitry  
thatpermitstherespectiveporttogointoastandbymodewhennotselected  
(CE HIGH). Whenaportisenabled, accesstotheentirememoryarray  
ispermitted.  
WidthExpansionBusyLogic  
Master/SlaveArrays  
When expanding an IDT70T16/5 RAM array in width while using  
BUSYlogic, one master part is used to decide which side of the RAM  
arraywillreceivea BUSYindication, andtooutputthatindication. Any  
number of slaves to be addressed in the same address range as the  
master use the BUSYsignal as a write inhibit signal. Thus on the  
IDT70T16/5 RAM the BUSY pin is an output if the part is used as a  
master (M/S pin = H), and the BUSY pin is an input if the part used as  
a slave (M/S pin = L) as shown in Figure 3.  
Interrupts  
Iftheuserchoosestheinterruptfunction,amemorylocation(mail  
box or message center) is assigned to each port. The left port  
interruptflag(INTL)isassertedwhentherightportwritestomemory  
location 3FFE where a write is defined as the CE = R/W = VIL per  
Truth Table III. The left port clears the interrupt by an address location  
3FFE access when CER =OER =VIL, R/W is a "don't care". Likewise,  
the right port interrupt flag (INTR) is asserted when the left port writes  
to memory location 3FFF(1FFE or 1FFF for IDT70T15) and to clear  
theinterrupt flag(INTR), theright portmustaccessmemorylocation  
3FFF. The message (9 bits) at 3FFE or 3FFF(1FFE or 1FFF for  
IDT70T15) is user-defined since it is in an addressable SRAM  
location.Iftheinterruptfunctionisnotused,addresslocations3FFE  
and 3FFF (1FFE or 1FFF for IDT70T15) are not used as mail boxes  
but are still part of the random access memory. Refer to Truth Table  
IIIfortheinterruptoperation.  
Iftwoormoremasterpartswereusedwhenexpandinginwidth,asplit  
decisioncouldresultwithonemasterindicatingBUSYononesideofthe  
arrayandanothermasterindicatingBUSYononeothersideofthearray.  
Thiswouldinhibitthewriteoperationsfromoneportforpartofawordand  
inhibitthewriteoperationsfromtheotherportfortheotherpartoftheword.  
TheBUSYarbitration,onamaster,isbasedonthechipenableand  
address signals only. It ignores whether an access is a read or write. In  
a master/slave array, both address and chip enable must be valid long  
enoughforaBUSYflagtobeoutputfromthemasterbeforetheactualwrite  
pulsecanbeinitiatedwiththeR/Wsignal.Failuretoobservethistimingcan  
result in a glitched internal write inhibit signal and corrupted data in the  
slave.  
BusyLogic  
BusyLogicprovidesahardwareindicationthatbothportsoftheRAM  
haveaccessedthesamelocationatthesametime.Italsoallowsoneofthe  
twoaccessestoproceedandsignalstheothersidethattheRAMisbusy”.  
The BUSYpincanthenbeusedtostalltheaccessuntiltheoperationon  
theothersideiscompleted.Ifawriteoperationhasbeenattemptedfrom  
thesidethatreceivesaBUSYindication,thewritesignalisgatedinternally  
topreventthewritefromproceeding.  
Semaphores  
The IDT70T16/5 are extremely fast Dual-Port 16/8Kx9 Static RAMs  
withanadditional8addresslocationsdedicatedtobinarysemaphoreflags.  
TheseflagsalloweitherprocessorontheleftorrightsideoftheDual-Port  
RAMtoclaimaprivilegeovertheotherprocessorforfunctionsdefinedby  
thesystemdesigner’ssoftware.Asanexample,thesemaphorecanbe  
usedbyoneprocessortoinhibittheotherfromaccessingaportionofthe  
Dual-Port RAM or any other shared resource.  
TheuseofBUSYlogicisnotrequiredordesirableforallapplications.  
InsomecasesitmaybeusefultologicallyORtheBUSYoutputstogether  
and use any BUSYindication as an interrupt source to flag the event of  
anillegalorillogicaloperation.IfthewriteinhibitfunctionofBUSYlogicis  
notdesirable,theBUSYlogiccanbedisabledbyplacingthepartinslave  
modewiththeM/Spin.OnceinslavemodetheBUSYpinoperatessolely  
asawriteinhibitinputpin.Normaloperationcanbeprogrammedbytying  
The Dual-Port RAM features a fast access time, and both ports are  
completelyindependentofeachother.Thismeansthattheactivityonthe  
leftportinnowayslowstheaccesstimeoftherightport. Bothportsare  
6.1452  
IDT70T16/5L  
High-Speed 2.5V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
iswrittenintoanunusedsemaphorelocation,thatflagwillbesettoazero  
on that side and a one on the other side (see Truth Table V). That  
semaphorecannowonlybemodifiedbythesideshowingthezero.When  
aoneiswrittenintothesamelocationfromthesameside,theflagwillbe  
settoaoneforbothsides(unlessasemaphorerequestfromtheotherside  
ispending)andthencanbewrittentobybothsides.Thefactthattheside  
which is able to write a zero into a semaphore subsequently locks out  
writes from the other side is what makes semaphore flags useful in  
interprocessorcommunications.(Athoroughdiscussionontheuseofthis  
featurefollowsshortly.)Azerowrittenintothesamelocationfromtheother  
side will be stored in the semaphore request latch for that side until the  
semaphoreisfreedbythefirstside.  
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso  
thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining  
azeroreadsasallzeros.Thereadvalueislatchedintooneside’soutput  
registerwhenthatside'ssemaphoreselect(SEM)andoutputenable(OE)  
signalsgoactive.Thisservestodisallowthesemaphorefromchanging  
stateinthemiddleofareadcycleduetoawritecyclefromtheotherside.  
Becauseofthislatch,arepeatedreadofasemaphoreinatestloopmust  
cause either signal (SEM or OE) to go inactive or the output will never  
change.  
AsequenceWRITE/READmustbeusedbythesemaphoreinorder  
to guarantee that no system level contention will occur. A processor  
requestsaccesstosharedresourcesbyattemptingtowriteazerointoa  
semaphorelocation.Ifthesemaphoreisalreadyinuse,thesemaphore  
requestlatchwillcontainazero,yetthesemaphoreflagwillappearasone,  
afactwhichtheprocessorwillverifybythesubsequentread(seeTruth  
TableV).Asanexample,assumeaprocessorwritesazerototheleftport  
atafreesemaphorelocation.Onasubsequentread,theprocessorwill  
verifythatithaswrittensuccessfullytothatlocationandwillassumecontrol  
overtheresourceinquestion.Meanwhile,ifaprocessorontherightside  
attemptstowriteazerotothesamesemaphoreflagitwillfail, aswillbe  
verifiedbythefactthataonewillbereadfromthatsemaphoreontheright  
side during subsequent read. Had a sequence of READ/WRITE been  
used instead,systemcontentionproblemscouldhaveoccurredduring  
the gap between the read and write cycles.  
Itisimportanttonotethatafailedsemaphorerequestmustbefollowed  
byeitherrepeatedreadsorbywritingaoneintothesamelocation. The  
reasonforthisiseasilyunderstoodbylookingatthesimplelogicdiagram  
ofthesemaphoreflaginFigure4.Twosemaphorerequestlatchesfeed  
into a semaphore flag. Whichever latch is first to present a zero to the  
semaphoreflagwillforceitssideofthesemaphoreflagLOWandtheother  
sideHIGH.Thisconditionwillcontinueuntilaoneiswrittentothesame  
semaphorerequestlatch.Shouldtheotherside’ssemaphorerequestlatch  
havebeenwrittentoazerointhemeantime,thesemaphoreflagwillflip  
overtotheothersideassoonasaoneiswrittenintothefirstside’srequest  
latch.Thesecondside’sflagwillnowstayLOWuntilitssemaphorerequest  
latchiswrittentoaone.Fromthisitiseasytounderstandthat,ifasemaphore  
is requested and the processor which requested it no longer needs the  
resource, the entire system can hang up until a one is written into that  
semaphorerequestlatch.  
identicalinfunctiontostandardCMOSStaticRAMandcanbereadfrom,  
orwrittento,atthesametimewiththeonlypossibleconflictarisingfromthe  
simultaneous writing of, or a simultaneous READ/WRITE of, a non-  
semaphorelocation.Semaphoresareprotectedagainstsuchambiguous  
situationsandmaybeusedbythesystemprogramtoavoidanyconflicts  
inthenon-semaphoreportionoftheDual-PortRAM.Thesedeviceshave  
anautomaticpower-downfeaturecontrolledbyCE,theDual-PortRAM  
enable,andSEM,thesemaphoreenable.TheCEandSEMpinscontrol  
on-chip power down circuitry that permits the respective port to go into  
standbymodewhennotselected. Thisistheconditionwhichisshownin  
Truth Table I where CE and SEM are both HIGH.  
SystemswhichcanbestusetheIDT70T16/5containmultipleproces-  
sorsorcontrollersandaretypicallyveryhigh-speedsystemswhichare  
softwarecontrolledorsoftwareintensive.Thesesystemscanbenefitfrom  
a performance increase offered by the IDT70T16/5's hardware sema-  
phores,whichprovidealockoutmechanismwithoutrequiringcomplex  
programming.  
Softwarehandshakingbetweenprocessorsoffersthemaximumin  
systemflexibilitybypermittingsharedresourcestobeallocatedinvarying  
configurations. The IDT70T16/5 does not use its semaphore flags to  
control any resources through hardware, thus allowing the system  
designertotalflexibilityinsystemarchitecture.  
An advantage of using semaphores rather than the more common  
methodsofhardwarearbitrationisthatwaitstatesareneverincurredin  
either processor. This can prove to be a major advantage in very high-  
speedsystems.  
How the Semaphore Flags Work  
Thesemaphorelogicisasetofeightlatcheswhichareindependent  
oftheDual-PortRAM.Theselatchescanbeusedtopassaflag,ortoken,  
fromoneporttotheothertoindicatethatasharedresourceisinuse.The  
semaphores provide a hardware assist for a use assignment method  
calledTokenPassingAllocation.Inthismethod,thestateofasemaphore  
latchisusedasatokenindicatingthatsharedresourceisinuse.Iftheleft  
processorwantstousethisresource,itrequeststhetokenbysettingthe  
latch.Thisprocessorthenverifiesitssuccessinsettingthelatchbyreading  
it. If it was successful, it proceeds to assume control over the shared  
resource.Ifitwasnotsuccessfulinsettingthelatch,itdeterminesthatthe  
rightsideprocessorhassetthelatchfirst, hasthetokenandisusingthe  
sharedresource.Theleftprocessorcantheneitherrepeatedlyrequest  
that semaphore’s status or remove its request for that semaphore to  
performanothertaskandoccasionallyattemptagaintogaincontrolofthe  
tokenviathesetandtestsequence.Oncetherightsidehasrelinquished  
thetoken,theleftsideshouldsucceedingainingcontrol.  
ThesemaphoreflagsareactiveLOW.Atokenisrequestedbywriting  
azerointoasemaphorelatchandisreleasedwhenthesamesidewrites  
aonetothatlatch.  
TheeightsemaphoreflagsresidewithintheIDT70T16/5inaseparate  
memoryspacefromtheDual-PortRAM.This addressspaceisaccessed  
byplacingaLOWinputontheSEMpin(whichactsasachipselectforthe  
semaphore flags) and using the other control pins (Address, OE, and  
R/W) as they would be used in accessing a standard static RAM. Each  
oftheflagshasauniqueaddresswhichcanbeaccessedbyeitherside  
throughaddresspinsA0A2.Whenaccessingthesemaphores,noneof  
theotheraddresspinshasanyeffect.  
The critical case of semaphore timing is when both sides request a  
single token by attempting to write a zero into it at the same time. The  
semaphorelogicisspeciallydesignedtoresolvethisproblem.Ifsimulta-  
neousrequestsaremade,thelogicguaranteesthatonlyonesidereceives  
thetoken.Ifonesideisearlierthantheotherinmakingtherequest,thefirst  
Whenwritingtoasemaphore,onlydatapinD0 isused.Ifalowlevel  
16  
6.42  
IDT70T16/5L  
High-Speed 2.5V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
sidetomaketherequestwillreceivethetoken.Ifbothrequestsarriveat  
Once the left side was finished with its task, it would write a one to  
thesametime,theassignmentwillbearbitrarilymadetooneportorthe Semaphore 0 and may then try to gain access to Semaphore 1. If  
other. Semaphore1wasstilloccupiedbytherightside,theleftsidecouldundo  
One caution that should be noted when using semaphores is that itssemaphorerequestandperformothertasksuntilitwasabletowrite,then  
semaphoresalonedonotguaranteethataccesstoaresourceissecure. readazerointoSemaphore1.Iftherightprocessorperformsasimilartask  
Aswithanypowerfulprogrammingtechnique,ifsemaphoresaremisused withSemaphore0,thisprotocolwouldallowthetwoprocessorstoswap  
or misinterpreted, a software error can easily happen.  
8K blocks of Dual-Port RAM with each other.  
Initializationofthesemaphoresisnotautomaticandmustbehandled  
The blocks do not have to be any particular size and can even be  
viatheinitializationprogramatpower-up.Sinceanysemaphorerequest variable, depending upon the complexity of the software using the  
flagwhichcontainsazeromustberesettoaone,allsemaphoresonboth semaphoreflags.AlleightsemaphorescouldbeusedtodividetheDual-  
sidesshouldhaveaonewrittenintothematinitializationfrombothsides Port RAM or other shared resources into eight parts. Semaphores can  
to assure that they will be free when needed.  
evenbeassigneddifferentmeaningsondifferentsidesratherthanbeing  
given a common meaning as was shown in the example above.  
Semaphores are a useful form of arbitration in systems like disk  
interfaceswheretheCPUmustbelockedoutofasectionofmemoryduring  
atransferandtheI/Odevicecannottolerateanywaitstates.Withtheuse  
ofsemaphores,oncethetwodeviceshasdeterminedwhichmemoryarea  
wasoff-limitstotheCPU,boththeCPUandtheI/Odevicescouldaccess  
theirassignedportionsofmemorycontinuouslywithoutanywaitstates.  
SemaphoresarealsousefulinapplicationswherenomemoryWAIT”  
stateisavailableononeorbothsides.Onceasemaphorehandshakehas  
been performed, both processors can access their assigned RAM  
segmentsatfullspeed.  
Anotherapplicationisintheareaofcomplexdatastructures.Inthis  
case,blockarbitrationisveryimportant.Forthisapplicationoneprocessor  
mayberesponsibleforbuildingandupdatingadatastructure.Theother  
processorthenreadsandinterpretsthatdatastructure.Iftheinterpreting  
processorreadsanincompletedatastructure,amajorerrorconditionmay  
exist.Therefore,somesortofarbitrationmustbeusedbetweenthetwo  
differentprocessors.Thebuildingprocessorarbitratesfortheblock,locks  
itandthenisabletogoinandupdatethedatastructure.Whentheupdate  
is completed, the data structure block is released. This allows the  
interpretingprocessortocomebackandreadthecompletedatastructure,  
therebyguaranteeingaconsistentdatastructure.  
UsingSemaphores—SomeExamples  
Perhapsthesimplestapplicationofsemaphoresistheirapplicationas  
resource markers for the IDT70T16/5’s Dual-Port RAM. Say the 16K x  
9RAMwastobedividedintotwo8Kx9blockswhichweretobededicated  
atanyonetimetoservicingeithertheleftorrightport.Semaphore0could  
be used to indicate the side which would control the lower section of  
memory,andSemaphore1couldbedefinedastheindicatorfortheupper  
sectionofmemory.  
Totakearesource, inthisexamplethelower8KofDual-PortRAM,  
the processor on the left port could write and then read a zero in to  
Semaphore0.Ifthistaskweresuccessfullycompleted(azerowasread  
back rather than a one), the left processor would assume control of the  
lower8K.Meanwhiletherightprocessorwasattemptingtogaincontrolof  
theresourceaftertheleftprocessor,itwouldreadbackaoneinresponse  
tothezeroithadattemptedtowriteintoSemaphore0. Atthispoint, the  
softwarecouldchoosetotryandgaincontrolofthesecond8Ksectionby  
writing,thenreadingazerointoSemaphore1.Ifitsucceededingaining  
control,itwouldlockouttheleftside.  
L PORT  
R PORT  
SEMAPHORE  
REQUEST FLIP FLOP  
SEMAPHORE  
REQUEST FLIP FLOP  
0
D
0
D
D
D
Q
Q
WRITE  
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
READ  
,
5663 drw 18  
Figure 4. IDT70T16/5 Semaphore Logic  
6.1472  
IDT70T16/5L  
High-Speed 2.5V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
OrderingInformation  
IDT XXXXX  
A
999  
A
A
Device  
Type  
Power  
Speed  
Package  
Process/  
Temperature  
Range  
Blank  
I
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
(1)  
PF  
BF  
80-pin TQFP (PN80-1)  
100-pin fpBGA (BF100)  
Commercial Only  
Commercial & Industrial  
,
20  
25  
Speed in Nanoseconds  
L
Low Power  
70T16 144K (16K x 9) 2.5V Dual-Port RAM  
70T15  
72K (4K x 9) 2.5V Dual-Port RAM  
5663 drw 19  
NOTE:  
1. Contact your local sales office for industrial temp range for other speeds, packages and powers.  
DatasheetDocumentHistory  
08/15/02:  
08/23/04:  
InitialPublicRelease  
Removed"Preliminary"status  
Page5 UpdatedCapacitancetable  
Page 9 Updated Timing Waveform of Write Cycle No. 1, R/W Controlled Timing drawing  
CORPORATE HEADQUARTERS  
2975StenderWay  
Santa Clara, CA 95054  
for SALES:  
for Tech Support:  
831-754-4613  
DualPortHelp@idt.com  
800-345-7015 or 408-727-6116  
fax: 408-492-8674  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
18  
6.42  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY