70T3319S166BFGI [IDT]

HIGH-SPEED SYNCHRONOUS DUAL-PORT STATIC RAM;
70T3319S166BFGI
型号: 70T3319S166BFGI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

HIGH-SPEED SYNCHRONOUS DUAL-PORT STATIC RAM

文件: 总27页 (文件大小:342K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED 2.5V  
512/256/128K X 18  
SYNCHRONOUS  
IDT70T3339/19/99S  
DUAL-PORT STATIC RAM  
WITH 3.3V OR 2.5V INTERFACE  
LEAD FINISH (SnPb) ARE IN EOL PROCESS - LAST TIME BUY EXPIRES JUNE 15, 2018  
– 1.5ns setup to clock and 0.5ns hold on all control, data,  
and address inputs @ 200MHz  
– Self-timedwriteallowsfastcycletime  
Separate byte controls for multiplexed bus and bus  
matching compatibility  
Dual Cycle Deselect (DCD) for Pipelined Output Mode  
2.5V ( 100mV) power supply for core  
LVTTL compatible, selectable 3.3V ( 150mV) or 2.5V  
( 100mV) power supply for I/Os and control signals on  
each port  
Industrial temperature range (-40°C to +85°C) is  
available at 166MHz and 133MHz  
Available in a 256-pin Ball Grid Array (BGA) and 208-pin fine  
pitch Ball Grid Array (fpBGA)  
Supports JTAG features compliant with IEEE 1149.1  
Green parts available, see ordering information  
Features:  
True Dual-Port memory cells which allow simultaneous  
access of the same memory location  
High-speed data access  
– Commercial: 3.4 (200MHz)/3.6ns (166MHz)/  
4.2ns (133MHz)(max.)  
– Industrial: 3.6ns (166MHz)/4.2ns (133MHz) (max.)  
Selectable Pipelined or Flow-Through output mode  
Counter enable and repeat features  
Dual chip enables allow for depth expansion without  
additional logic  
Interrupt and Collision Detection Flags  
Full synchronous operation on both ports  
– 5ns cycle time, 200MHz operation (14Gbps bandwidth)  
– Fast 3.4ns clock to data out  
– Data input, address, byte enable and control registers  
Functional Block Diagram  
UBL  
UBR  
LBL  
LBR  
FT/PIPE  
L
0a 1a  
a
0b 1b  
b
1b 0b  
b
1a 0a  
a
FT/PIPER  
1/0  
1/0  
R/WL  
R/W  
R
CE0L  
CE0R  
1
1
CE1R  
CE1L  
B
B
B B  
0
W W  
W W  
0
0
L
1
L
1
0
R
R
1/0  
1/0  
Dout0-8_L  
Dout9-17_L  
Dout0-8_R  
Dout9-17_R  
OE  
L
OER  
,
0a 1a  
1b 0b 1a 0a  
ab  
0b  
1b  
0/1  
FT/PIPE  
L
0/1  
FT/PIPER  
ba  
512/256/128K x 18  
MEMORY  
ARRAY  
Din_L  
I/O0R - I/O17R  
I/O0L - I/O17L  
Din_R  
,
CLK  
R
CLK  
L
(1)  
18R  
(1)  
18L  
A
A
Counter/  
Address  
Reg.  
Counter/  
Address  
Reg.  
A
0L  
REPEAT  
ADS  
CNTEN  
A
0R  
REPEAT  
ADS  
CNTEN  
ADDR_R  
ADDR_L  
L
R
R
L
R
L
TDI  
TCK  
TMS  
INTERRUPT  
CE  
0
R
R
CE  
0
JTAG  
L
COLLISION  
DETECTION  
LOGIC  
CE1  
TRST  
TDO  
CE1  
L
R/W  
R
R/W  
L
COL  
L
COL  
R
INT  
L
INTR  
5652 drw 01  
(2)  
(2)  
ZZR  
ZZ  
ZZ  
L
CONTROL  
LOGIC  
NOTES:  
1. Address A18 is a NC for the IDT70T3319. Also, Addresses A18 and A17 are NC's for the IDT70T3399.  
2. The sleep mode pin shuts off all dynamic inputs, except JTAG inputs, when asserted. All static inputs, i.e., PL/FTx and  
OPTx and the sleep mode pins themselves (ZZx) are not affected during sleep mode.  
FEBRUARY 2018  
1
DSC-5652/9  
©2018 Integrated Device Technology, Inc.  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Description:  
The IDT70T3339/19/99 is a high-speed 512/256/128k x 18 bit tionalorbidirectionaldataflowinbursts.Anautomaticpowerdownfeature,  
synchronous Dual-Port RAM. The memory array utilizes Dual-Port controlled by CE0 and CE1, permits the on-chip circuitry of each port to  
memorycellstoallowsimultaneousaccessofanyaddressfrombothports. enter a very low standby power mode.  
Registersoncontrol,data,andaddressinputsprovideminimalsetupand  
The IDT70T3339/19/99 can support an operating voltage of either  
holdtimes.Thetiminglatitudeprovidedbythisapproachallowssystems 3.3Vor2.5Vononeorbothports,controllablebytheOPTpins.Thepower  
tobedesignedwithveryshortcycletimes.Withaninputdataregister,the supply for the core of the device (VDD) is at 2.5V.  
IDT70T3339/19/99hasbeenoptimizedforapplicationshavingunidirec-  
6.422  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Pin Configuration (3,4,5,6,9)  
70T3339/19/99BC  
BC-256(8)  
256-Pin BGA  
Top View(9)  
A1  
A2  
A3  
A6  
A7  
A8  
A9  
A11  
A12  
A13  
A14  
A4  
A5  
A10  
A15  
A16  
NC  
TDI  
NC  
A
11L  
A
8L  
9L  
7L  
NC CE1L  
CNTEN  
L
A
5L  
4L  
A
2L  
A
0L  
A
17L(2)  
A
14L  
OE  
L
NC  
NC  
B1  
B2  
B3  
B6  
B7  
B9  
CE0L  
B11  
B12  
B13  
B4  
B5  
B8  
B10  
B14  
B15  
B16  
A
18L(1)  
A
15L  
UB  
L
R/W  
L
VDD  
NC  
NC  
INT  
L
NC TDO  
A
12L  
A
REPEAT  
L
A
A
1L  
C1  
C5  
C6  
C2  
C3  
C4  
C7  
C8  
C9  
C10  
C11  
C12  
C13  
C16  
C14  
C15  
COL  
L
A
13L  
A
10L  
I/O9L  
V
SS  
A
16L  
A
NC  
LBL  
CLK  
L
ADS  
L
A6L  
A
3L  
I/O8L  
OPT  
L
NC  
D1  
D2  
D6  
D9  
D11  
D3  
D4  
D5  
D7  
D8  
DDQR  
D10  
D12  
D13  
D14  
D15  
D16  
NC I/O9R  
DDQL VDDQL  
V
DDQL  
V
DDQR  
NC PIPE/FT  
L
V
V
DDQR  
V
VDDQL  
VDDQR  
VDD  
NC  
NC I/O8R  
E5  
E6  
E7  
E8  
E9  
E10  
E11  
E12  
E13  
E1  
E2  
E3  
E4  
E14  
E16  
E15  
V
DD  
V
DD  
NC  
V
SS  
SS  
SS  
SS  
V
SS  
SS  
SS  
V
SS  
V
DD  
V
DD  
V
DDQR  
I/O10R I/O10L NC  
V
DDQL  
NC  
I/O7R  
I/O7L  
F7  
F3  
F5  
F6  
F9  
F10  
F1  
F2  
F11  
F13  
F14  
F15  
F16  
F8  
F12  
F4  
NC  
I/O11L NC I/O11R  
VDD  
NC  
V
V
SS  
I/O6R NC I/O6L  
DDQR  
VSS  
V
V
DDQL  
V
VDD  
G1  
G2  
G3  
G5  
H5  
G4  
G6  
G8  
G9  
G14  
G15  
G16  
G7  
G10  
G12  
G13  
G11  
NC  
V
SS  
NC  
V
DDQR  
VSS  
V
V
I/O12L  
I/O5L NC  
DDQL  
NC  
VSS  
V
SS  
VSS  
V
VSS  
H11  
H12  
H16  
H13  
H6  
H7  
H8  
H9  
H10  
H14  
H15  
H3  
H4  
H1  
H2  
V
SS  
VSS  
I/O5R  
V
DDQL  
V
SS  
VSS  
V
VSS  
V
SS  
SS  
NC  
NC  
NC  
V
DDQR  
V
SS  
NC I/O12R  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
J13  
J10  
J11  
J12  
J14  
J15  
J16  
I/O13L  
ZZ  
R
I/O14R I/O13R  
V
DDQL  
V
SS  
VSS  
V
SS  
SS  
V
SS  
V
DDQR  
I/O4R  
V
VSS  
ZZL  
I/O3R I/O4L  
K6  
K8  
K10  
K12  
K13  
K2  
K4  
K5  
K7  
K9  
K11  
K15  
K16  
K1  
K3  
K14  
V
SS  
V
V
SS  
SS  
VSS  
V
DDQR  
NC  
V
DDQL  
V
SS  
VSS  
V
SS  
VSS  
NC I/O3L  
NC  
I/O14L  
NC  
L7  
L8  
L11  
L12  
L13  
L5  
L6  
L9  
L10  
L3  
L4  
L15  
L16  
L1  
L2  
L14  
NC  
V
SS  
VSS  
VDD  
V
DDQL  
I/O15R  
V
DDQR  
V
DD  
NC  
V
SS  
V
NC I/O2R  
I/O15L NC  
I/O2L  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M1  
M2  
M3  
M4  
M16  
M14  
M15  
V
DD  
V
DD  
NC  
V
SS  
V
SS  
V
SS  
VDD  
VDD  
V
DDQL  
I/O16R I/O16L NC  
V
DDQR  
NC  
I/O1R I/O1L  
N8  
N12  
N13  
N16  
N5  
N6  
DDQR  
N7  
DDQL  
N9  
N10  
N11  
N4  
N15  
N1  
N2  
N3  
N14  
V
DDQL  
VDDQL  
NC  
VDD  
PIPE/FT  
R
V
DDQR  
V
V
V
DDQR  
V
DDQR  
V
DDQL  
I/O0R  
NC I/O17R NC  
NC  
P1  
P2  
P3  
P4  
P5  
P7  
P8  
P9  
P10  
P11  
P12  
P14  
P15  
P16  
P6  
P13  
COL  
R
I/O17L TMS  
A16R  
A13R  
A7R  
NC  
LBR  
CLKR  
ADS  
R
A6R  
NC  
NC I/O0L  
A10R  
A3R  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R16  
R1  
R2  
R3  
R4  
R12  
R13  
R14  
R15  
NC TRST A18R(1)  
A4R  
A1R OPTR  
A15R  
A
12R  
A9R  
UBR  
CE0R R/W  
R
REPEAT  
R
NC  
INTR  
NC  
T2  
T3  
T1  
T4  
17R(2)  
T5  
T8  
T9  
T15  
T16  
T6  
T7  
T10  
T11  
T12  
T13  
2R  
T14  
TCK  
NC  
NC  
A
A
14R  
NC CE1R  
NC  
NC  
A
11R  
A
8R  
OE  
R
CNTEN  
R
A
5R  
A
A
0R  
5652 drw 02d  
NOTES:  
1. Pin is a NC for IDT70T3319 and IDT70T3399.  
2. Pin is a NC for IDT70T3399.  
3. All VDD pins must be connected to 2.5V power supply.  
4. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VDD (2.5V), and 2.5V if OPT pin for that port is  
set to VSS (0V).  
5. All VSS pins must be connected to ground supply.  
6. Package body is approximately 17mm x 17mm x 1.4mm, with 1.0mm ball-pitch.  
7. This package code is used to reference the package diagram.  
8. This text does not indicate orientation of the actual part-marking.  
9. Pins A15 and T15 will be VREFL and VREFR respectively for future HSTL device.  
6.42  
3
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Pin Configurations(con't)(3,4,5,6,9)  
1
2
3
4
5
6
7
8
9
11 12 13 14  
10  
16 17  
15  
I/O9L  
VSS  
INT  
L
A
16L  
A
12L  
A
B
C
D
E
F
V
SS  
NC  
A
8L  
NC  
V
DD  
A
0L  
OPT  
L
NC  
TDO  
CLK  
L
CNTEN  
L
A4L  
(2)  
(1)  
NC  
COLL  
VSS  
A9L  
TDI  
A
17L  
NC  
CE0L  
V
SS  
V
DDQR I/O8L  
NC  
ADS  
L
A
13L  
NC  
A5L  
A1L  
A18L  
VDDQL I/O9R  
VDDQR PIPE/FT  
L
A14L  
A10L  
UB  
L
VDD  
I/O8R  
CE1L  
V
SS  
A6L  
A2L  
NC  
VSS  
R/W  
L
NC  
VSS  
I/O10L  
NC  
VDDQL  
A15L  
A11L  
LB  
L
VDD  
VDD  
I/O7R  
NC  
A7L  
OE  
L
A3L  
I/O7L  
REPEAT  
L
I/O11L  
NC  
VDDQR I/O10R  
I/O6L  
NC  
VSS  
NC  
VSS  
I/O6R  
VDDQL I/O11R  
NC  
VDDQR  
NC  
VSS  
NC  
V
SS  
I/O12L  
NC  
NC  
I/O5L  
V
DDQL  
NC  
G
H
J
VDD  
VSS  
I/O5R  
NC  
V
DDQR I/O12R  
NC  
VDD  
70T3339/19/99BF  
BF-208(7)  
ZZL  
VDDQL  
VSS  
ZZR  
V
DD  
VSS  
VDDQR  
VDD  
208-Pin fpBGA  
Top View(8)  
I/O3R  
I/O4R  
I/O14R  
NC  
V
SS  
V
DDQL  
V
SS  
K
L
I/O13R  
V
SS  
I/O14L  
NC  
VDDQR I/O13L  
I/O4L  
NC  
I/O3L  
NC  
VSS  
VDDQL  
I/O15R  
NC  
VSS  
VSS  
I/O2R  
NC  
V
DDQR  
I/O2L  
NC  
M
N
P
R
T
NC  
VSS  
VDDQL  
I/O15L  
I/O1R  
I/O16L  
I/O16R  
VDDQR  
TRST  
A
16R  
A8R  
COL  
R
A
12R  
NC  
I/O1L  
VSS  
VDD  
CLK  
R
NC  
NC  
A
4R  
CNTEN  
R
(2)  
A17R  
A1R  
VSS  
I/O17R TCK  
A
13R  
CE0R  
CE1R  
A5R  
VDDQR  
NC  
A9R  
NC  
ADS  
R
I/O0R  
V
SS  
VDDQL  
(1)  
VSS  
I/O17L  
A18R  
UBR  
NC  
NC  
VDDQL TMS  
A14R  
A10R  
VSS  
A6R  
VSS  
NC  
R/WR  
A2R  
VSS  
INTR  
PIPE/FT  
R
LBR  
VDD  
I/O0L  
A7R  
OER  
A3R  
VDD  
NC  
A15R  
A11R  
REPEAT  
R
OPT  
R
NC  
A0R  
U
5652 drw 02c  
NOTES:  
1. Pin is a NC for IDT70T3319 and IDT70T3399.  
2. Pin is a NC for IDT70T3399.  
3. All VDD pins must be connected to 2.5V power supply.  
4. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VDD (2.5V), and 2.5V if OPT pin for that port is  
set to VSS (0V).  
5. All VSS pins must be connected to ground supply.  
6. Package body is approximately 15mm x 15mm x 1.4mm with 0.8mm ball pitch.  
7. This package code is used to reference the package diagram.  
8. This text does not indicate orientation of the actual part-marking.  
9. Pins B14 and R14 will be VREFL and VREFR respectively for future HSTL device.  
6.442  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Pin Names  
Left Port  
Right Port  
CE0R CE1R  
R/W  
OE  
Names  
Chip Enables (Input)(6)  
Read/Write Enable (Input)  
Output Enable (Input)  
Address (Input)  
CE0L  
R/W  
OE  
,
CE1L  
,
L
R
L
R
(5)  
(5)  
A
0L - A18L  
A
0R - A18R  
I/O0R - I/O17R  
CLK  
I/O0L - I/O17L  
CLK  
Data Input/Output  
L
R
Clock (Input)  
PL/FT  
L
PL/FT  
ADS  
R
Pipeline/Flow-Through (Input)  
Address Strobe Enable (Input)  
Counter Enable (Input)  
Counter Repeat(3)  
ADS  
L
R
CNTEN  
REPEAT  
UB  
LB  
L
CNTEN  
REPEAT  
UB  
LB  
R
L
R
(6)  
Upper Byte Enable (I/O  
Lower Byte Enable (I/O  
9 - I/O17)  
L
R
(6)  
0
- I/O8)  
L
R
V
DDQL  
V
DDQR  
Power (I/O Bus) (3.3V or 2.5V)(1) (Input)  
Option for selecting VDDQX(1,2) (Input)  
Sleep Mode pin(4) (Input)  
Power (2.5V)(1) (Input)  
OPT  
L
OPT  
R
ZZ  
L
ZZ  
R
V
V
DD  
SS  
NOTES:  
1. VDD, OPTX, and VDDQX must be set to appropriate operating levels prior to  
applying inputs on the I/Os and controls for that port.  
2. OPTX selects the operating voltage levels for the I/Os and controls on that port.  
If OPTX is set to VDD (2.5V), then that port's I/Os and controls will operate at 3.3V  
levels and VDDQX must be supplied at 3.3V. If OPTX is set to VSS (0V), then that  
port's I/Os and address controls will operate at 2.5V levels and VDDQX must be  
supplied at 2.5V. The OPT pins are independent of one another—both ports can  
operate at 3.3V levels, both can operate at 2.5V levels, or either can operate  
at 3.3V with the other at 2.5V.  
Ground (0V) (Input)  
TDI  
TDI  
Test Data Input  
Test Data Output  
TCK  
TMS  
TRST  
Test Logic Clock (10MHz) (Input)  
Test Mode Select (Input)  
Reset (Initialize TAP Controller) (Input)  
Interrupt Flag (Output)  
3. When REPEATX is asserted, the counter will reset to the last valid address loaded  
via ADSX.  
INTR  
INT  
L
COL  
R
COL  
L
Collision Alert (Output)  
4. The sleep mode pin shuts off all dynamic inputs, except JTAG inputs, when  
asserted. All static inputs, i.e., PL/FTx and OPTx and the sleep mode pins  
themselves (ZZx) are not affected during sleep mode. It is recommended that  
boundry scan not be operated during sleep mode.  
5652 tbl 01  
5. Address A18x is a NC for the IDT70T3319. Also, Addresses A18x and A17x are  
NC's for the IDT70T3399.  
6. Chip Enables and Byte Enables are double buffered when PL/FT = VIH, i.e., the  
signals take two cycles to deselect.  
6.42  
5
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
(1,2,3,4)  
Truth Table I—Read/Write and Enable Control  
Upper Byte  
Lower Byte  
CLK  
CE  
X
1
R/W  
X
ZZ  
L
I/O9-17  
High-Z  
High-Z  
High-Z  
High-Z  
I/O0-8  
High-Z  
High-Z  
High-Z  
MODE  
Deselected–Power Down  
Deselected–Power Down  
Both Bytes Deselected  
Write to Lower Byte Only  
Write to Upper Byte Only  
Write to Both Bytes  
OE  
X
X
X
X
X
X
L
CE  
H
X
L
0
UB  
X
X
H
H
L
LB  
X
X
H
L
L
X
L
H
H
H
H
H
H
H
H
X
X
L
L
L
L
DIN  
L
H
L
L
L
DIN  
High-Z  
L
L
L
L
DIN  
DIN  
L
H
L
L
H
H
H
X
L
High-Z  
DOUT  
Read Lower Byte Only  
Read Upper Byte Only  
Read Both Bytes  
L
L
H
L
L
DOUT  
High-Z  
L
L
L
L
DOUT  
DOUT  
H
X
L
L
L
L
High-Z  
High-Z  
High-Z  
High-Z  
Outputs Disabled  
X
X
X
X
X
H
Sleep Mode  
5652 tbl 02  
NOTES:  
1. "H" = VIH, "L" = VIL, "X" = Don't Care.  
2. ADS, CNTEN, REPEAT = X.  
3. OE and ZZ are asynchronous input signals.  
4. It is possible to read or write any combination of bytes during a given access. A few representative samples have been illustrated here.  
(1,2)  
Truth Table II—Address Counter Control  
Previous  
Internal  
Address  
Internal  
Address  
Used  
MODE  
I/O(3)  
ADS  
L(4)  
H
CNTEN REPEAT(6)  
Address  
CLK  
An  
X
X
An  
An  
X
H
H
DI/O (n)  
External Address Used  
An + 1  
An + 1  
An  
L(5)  
H
DI/O(n+1) Counter Enabled—Internal Address generation  
DI/O(n+1) External Address Blocked—Counter disabled (An + 1 reused)  
DI/O(n) Counter Set to last valid ADS load  
X
An + 1  
X
H
H
X
X
X
L(4)  
5652 tbl 03  
NOTES:  
1. "H" = VIH, "L" = VIL, "X" = Don't Care.  
2. Read and write operations are controlled by the appropriate setting of R/W, CE0, CE1, UB, LB and OE.  
3. Outputs configured in flow-through output mode: if outputs are in pipelined mode the data out will be delayed by one cycle.  
4. ADS and REPEAT are independent of all other memory control signals including CE0, CE1, UB and LB.  
5. The address counter advances if CNTEN = VIL on the rising edge of CLK, regardless of all other memory control signals including CE0, CE1, UB and LB.  
6. When REPEAT is asserted, the counter will reset to the last valid address loaded via ADS. This value is not set at power-up: a known location should be loaded  
via ADS during initialization if desired. Any subsequent ADS access during operations will update the REPEAT address location.  
6.462  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Maximum Operating  
Temperature and Supply Voltage(1)  
Ambient  
Grade  
Commercial  
Temperature  
0OC to +70OC  
-40OC to +85OC  
GND  
0V  
V
+
+
DD  
2.5V  
2.5V  
100mV  
100mV  
Industrial  
0V  
5652 tbl 04  
NOTE:  
1. This is the parameter TA. This is the "instant on" case temperature.  
Recommended DC Operating  
Conditions with VDDQ at 2.5V  
Symbol  
Parameter  
Core Supply Voltage  
I/O Supply Voltage(3)  
Ground  
Min.  
2.4  
2.4  
0
Typ.  
2.5  
2.5  
0
Max.  
2.6  
2.6  
0
Unit  
V
V
DD  
DDQ  
SS  
V
V
V
V
Input High Volltage  
(Address, Control &  
Data I/O Inputs)(3)  
____  
V
DDQ + 100mV(2)  
1.7  
1.7  
V
V
V
IH  
IH  
Input High Voltage _  
JTAG  
____  
V
V
DD + 100mV(2)  
Input High Voltage -  
ZZ, OPT, PIPE/FT  
____  
____  
____  
VIH  
VIL  
VIL  
V
DD - 0.2V  
-0.3(1)  
V
DD + 100mV(2)  
V
V
Input Low Voltage  
0.7  
0.2  
Input Low Voltage -  
ZZ, OPT, PIPE/FT  
-0.3(1)  
V
5652 tbl 05a  
NOTES:  
1. VIL (min.) = -1.0V for pulse width less than tCYC/2 or 5ns, whichever is less.  
2. VIH (max.) = VDDQ + 1.0V for pulse width less than tCYC/2 or 5ns, whichever is less.  
3. To select operation at 2.5V levels on the I/Os and controls of a given port, the OPT  
pin for that port must be set to Vss(0V), and VDDQX for that port must be supplied as  
indicated above.  
Recommended DC Operating  
Conditions with VDDQ at 3.3V  
Symbol  
Parameter  
Core Supply Voltage  
I/O Supply Voltage(3)  
Ground  
Min.  
2.4  
3.15  
0
Typ.  
2.5  
3.3  
0
Max.  
2.6  
3.45  
0
Unit  
V
V
DD  
DDQ  
SS  
V
V
V
V
Input High Voltage  
(Address, Control  
&Data I/O Inputs)(3)  
____  
2.0  
1.7  
V
DDQ + 150mV(2)  
V
V
V
IH  
IH  
_
Input High Voltage  
JTAG  
DD + 100mV(2)  
____  
V
V
Input High Voltage -  
ZZ, OPT, PIPE/FT  
____  
____  
____  
VIH  
VIL  
VIL  
V
DD - 0.2V  
-0.3(1)  
V
DD + 100mV(2)  
V
V
Input Low Voltage  
0.8  
0.2  
Input Low Voltage -  
ZZ, OPT, PIPE/FT  
-0.3(1)  
V
5652 tbl 05b  
NOTES:  
1. VIL (min.) = -1.0V for pulse width less than tCYC/2, or 5ns, whichever is less.  
2. VIH (max.) = VDDQ + 1.0V for pulse width less than tCYC/2 or 5ns, whichever is less.  
3. To select operation at 3.3V levels on the I/Os and controls of a given port, the OPT  
pin for that port must be set to VDD (2.5V), and VDDQX for that port must be supplied  
as indicated above.  
6.42  
7
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Absolute Maximum Ratings(1)  
Symbol  
Rating  
Commercial  
& Industrial  
Unit  
V
V
TERM  
VDD Terminal Voltage  
with Respect to GND  
-0.5 to 3.6  
(VDD  
)
(2)  
V
(VDDQ  
TERM  
V
DDQ Terminal Voltage  
with Respect to GND  
-0.3 to VDDQ + 0.3  
-0.3 to VDDQ + 0.3  
V
)
(2)  
VTERM  
(INPUTS and I/O's)  
Input and I/O Terminal  
Voltage with Respect to GND  
V
(3)  
T
BIAS  
STG  
JN  
Temperature Under Bias  
Storage Temperature  
Junction Temperature  
-55 to +125  
-65 to +150  
+150  
oC  
oC  
T
T
oC  
IOUT(For VDDQ = 3.3V) DC Output Current  
50  
mA  
IOUT(For VDDQ = 2.5V) DC Output Current  
40  
mA  
5652 tbl 06  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause  
permanent damage to the device. This is a stress rating only and functional operation of the  
device at these or any other conditions above those indicated in the operational sections  
of this specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect reliability.  
2. This is a steady-state DC parameter that applies after the power supply has reached its  
nominal operating value. Power sequencing is not necessary; however, the voltage on  
any Input or I/O pin cannot exceed VDDQ during power supply ramp up.  
3. Ambient Temperature under DC Bias. No AC Conditions. Chip Deselected.  
Capacitance(1)  
(TA = +25°C, f = 1.0MHz) PQFP ONLY  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions(2)  
IN = 3dV  
OUT = 3dV  
Max. Unit  
CIN  
V
8
pF  
(3)  
OUT  
C
V
10.5  
pF  
5652 tbl 07  
NOTES:  
1. These parameters are determined by device characterization, but are not  
production tested.  
2. 3dV references the interpolated capacitance when the input and output switch  
from 0V to 3V or from 3V to 0V.  
3. COUT also references CI/O.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VDD = 2.5V ± 100mV)  
70T3339/19/99S  
Symbol  
|ILI  
|ILI  
|ILO  
Parameter  
Test Conditions  
DDQ = Max., VIN = 0V to VDDQ  
DD = Max. IN = 0V to VDD  
Min.  
Max.  
10  
30  
Unit  
µA  
µA  
µA  
V
___  
|
Input Leakage Current(1)  
V
V
___  
___  
___  
|
JTAG & ZZ Input Leakage Current(1,2)  
Output Leakage Current(1,3)  
, V  
|
10  
CE  
OL = +4mA, VDDQ = Min.  
OH = -4mA, VDDQ = Min.  
OL = +2mA, VDDQ = Min.  
OH = -2mA, VDDQ = Min.  
0 = VIH or CE1 = VIL, VOUT = 0V to VDDQ  
V
V
V
V
OL (3.3V) Output Low Voltage(1)  
OH (3.3V) Output High Voltage(1)  
OL (2.5V) Output Low Voltage(1)  
OH (2.5V) Output High Voltage(1)  
I
0.4  
___  
I
2.4  
V
___  
I
0.4  
V
___  
I
2.0  
V
5652 tbl 08  
NOTES:  
1. VDDQ is selectable (3.3V/2.5V) via OPT pins. Refer to p.6 for details.  
2. Applicable only for TMS, TDI and TRST inputs.  
3. Outputs tested in tri-state mode.  
6.482  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
(3)  
Temperature and Supply Voltage Range (VDD = 2.5V ± 100mV)  
70T3339/19/99  
70T3339/19/99  
70T3339/19/99  
S133  
S200  
Com'l Only(8)  
S166  
Com'l  
& Ind(7)  
Com'l  
& Ind  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(4)  
Max.  
Typ.(4)  
Max.  
450  
510  
230  
275  
325  
365  
15  
Typ.(4)  
260  
260  
140  
140  
200  
200  
5
Max. Unit  
IDD  
Dynamic Operating  
Current (Both  
Ports Active)  
CEL and CER= VIL,  
S
S
S
S
S
S
S
S
S
S
S
S
375  
525  
320  
320  
175  
175  
250  
250  
5
370  
450  
190  
235  
250  
310  
15  
mA  
mA  
mA  
mA  
mA  
Outputs Disabled,  
___  
___  
(1)  
IND  
f = fMAX  
I
SB1(6)  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
CE  
L
= CE  
R
= VIH  
COM'L  
IND  
205  
270  
(1)  
f = fMAX  
___  
___  
SB2(6)  
Standby Current  
(One Port - TTL  
Level Inputs)  
(5)  
I
CE"A" = VIL and CE"B" = VIH  
COM'L  
IND  
300  
375  
Active Port Outputs Disabled,  
___  
___  
(1)  
f=fMAX  
ISB3  
Full Standby Current  
(Both Ports - CMOS  
Level Inputs)  
Both Ports CE  
CE  
L and  
COM'L  
IND  
5
15  
R
> VDDQ - 0.2V, VIN > VDDQ - 0.2V  
or VIN < 0.2V, f = 0(2)  
___  
___  
5
20  
5
20  
SB4(6)  
Full Standby Current  
(One Port - CMOS  
Level Inputs)  
CE"A" < 0.2V and CE"B" > VDDQ - 0.2V(5)  
IN > VDDQ - 0.2V or VIN < 0.2V  
I
COM'L  
IND  
300  
375  
250  
250  
5
325  
365  
15  
200  
200  
5
250  
310  
15  
V
___  
___  
(1)  
Active Port, Outputs Disabled, f = fMAX  
Izz  
Sleep Mode Current  
(Both Ports - TTL  
Level Inputs)  
ZZL = ZZR =  
f=fMAX  
V
IH  
COM'L  
IND  
5
15  
(1)  
mA  
___  
___  
5
20  
5
20  
5652 tbl 09  
NOTES:  
1. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency clock cycle of 1/tCYC, using "AC TEST CONDITIONS".  
2. f = 0 means no address, clock, or control lines change. Applies only to input at CMOS level standby.  
3. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
4. VDD = 2.5V, TA = 25°C for Typ, and are not production tested. IDD DC(f=0) = 15mA (Typ).  
5. CEX = VIL means CE0X = VIL and CE1X = VIH  
CEX = VIH means CE0X = VIH or CE1X = VIL  
CEX < 0.2V means CE0X < 0.2V and CE1X > VDDQ - 0.2V  
CEX > VDDQ - 0.2V means CE0X > VDDQ - 0.2V or CE1X - 0.2V  
"X" represents "L" for left port or "R" for right port.  
6. ISB1, ISB2 and ISB4 will all reach full standby levels (ISB3) on the appropriate port(s) if ZZL and/or ZZR = VIH.  
7. 166MHz I-Temp is not available in the BF-208 package.  
8. 200Mhz is not available in the BF-208 package.  
6.42  
9
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Test Conditions (VDDQ - 3.3V/2.5V)  
Input Pulse Levels (Address & Controls)  
Input Pulse Levels (I/Os)  
Input Rise/Fall Times  
GND to 3.0V/GND to 2.4V  
GND to 3.0V/GND to 2.4V  
2ns  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
1.5V/1.25V  
1.5V/1.25V  
Figures 1 and 2  
5652 tbl 10  
50  
50Ω  
,
DATAOUT  
1.5V/1.25  
10pF  
(Tester)  
5652 drw 03  
Figure 1. AC Output Test load.  
tCD  
(Typical, ns)  
5652 drw 04  
Capacitance (pF) from AC Test Load  
6.1402  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the Operating Temperature Range  
(2,3)  
(Read and Write Cycle Timing)  
(VDD = 2.5V ± 100mV, TA = 0°C to +70°C)  
70T3339/19/99  
S200  
70T3339/19/99  
S166  
Com'l  
70T3339/19/99  
S133  
Com'l  
Com'l Only(5)  
& Ind(4)  
& Ind  
Symbol  
Parameter  
Min.  
15  
Max.  
Min.  
20  
Max.  
Min.  
25  
Max.  
Unit  
ns  
t
CYC1  
CYC2  
CH1  
CL1  
CH2  
CL2  
SA  
HA  
SC  
HC  
SB  
HB  
SW  
HW  
SD  
HD  
SAD  
HAD  
SCN  
HCN  
SRPT  
HRPT  
OE  
Clock Cycle Time (Flow-Through)(1)  
Clock Cycle Time (Pipelined)(1)  
Clock High Time (Flow-Through)(1)  
Clock Low Time (Flow-Through)(1)  
Clock High Time (Pipelined)(2)  
Clock Low Time (Pipelined)(1)  
Address Setup Time  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
5
6
7.5  
10  
ns  
t
6
8
ns  
t
6
8
10  
ns  
t
2
2.4  
2.4  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
3
ns  
t
2
3
ns  
t
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
ns  
t
Address Hold Time  
ns  
t
Chip Enable Setup Time  
Chip Enable Hold Time  
Byte Enable Setup Time  
Byte Enable Hold Time  
R/W Setup Time  
ns  
t
ns  
t
ns  
t
ns  
t
ns  
t
R/W Hold Time  
ns  
t
Input Data Setup Time  
ns  
t
Input Data Hold Time  
ns  
t
ns  
ADS Setup Time  
t
ns  
ADS Hold Time  
t
ns  
CNTEN Setup Time  
t
ns  
CNTEN Hold Time  
t
ns  
REPEAT Setup Time  
t
0.5  
0.5  
0.5  
ns  
REPEAT Hold Time  
____  
____  
____  
t
Output Enable to Data Valid  
Output Enable to Output Low-Z  
Output Enable to Output High-Z  
Clock to Data Valid (Flow-Through)(1)  
Clock to Data Valid (Pipelined)(1)  
Data Output Hold After Clock High  
Clock High to Output High-Z  
Clock High to Output Low-Z  
Interrupt Flag Set Time  
4.4  
4.4  
4.6  
ns  
(6)  
____  
____  
____  
t
OLZ  
1
1
1
ns  
(6)  
OHZ  
t
1
3.4  
10  
1
3.6  
12  
1
4.2  
15  
ns  
____  
____  
____  
t
CD1  
CD2  
DC  
ns  
____  
____  
____  
t
3.4  
3.6  
4.2  
ns  
____  
____  
____  
t
1
1
1
1
1
1
ns  
(6)  
CKHZ  
t
3.4  
3.6  
4.2  
ns  
(6)  
CKLZ  
____  
____  
____  
t
1
1
1
ns  
____  
____  
____  
t
INS  
INR  
COLS  
COLR  
ZZSC  
ZZRC  
7
7
7
7
7
7
ns  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
Interrupt Flag Reset Time  
Collision Flag Set Time  
Collision Flag Reset Time  
Sleep Mode Set Cycles  
Sleep Mode Recovery Cycles  
ns  
t
3.4  
3.6  
4.2  
ns  
t
3.4  
3.6  
4.2  
ns  
____  
____  
____  
t
2
3
2
3
2
3
cycles  
cycles  
____  
____  
____  
t
Port-to-Port Delay  
Clock-to-Clock Offset  
Clock-to-Clock Offset for Collision Detection  
____  
____  
____  
t
CO  
4
5
6
ns  
tOFS  
Please refer to Collision Detection Timing Table on Page 20  
5652 tbl 11  
NOTES:  
1. The Pipelined output parameters (tCYC2, tCD2) apply to either or both left and right ports when FT/PIPEX = VDD (2.5V). Flow-through parameters (tCYC1, tCD1)  
apply when FT/PIPE = Vss (0V) for that port.  
2. All input signals are synchronous with respect to the clock except for the asynchronous Output Enable (OE), FT/PIPE and OPT. FT/PIPE and OPT should be  
treated as DC signals, i.e. steady state during operation.  
3. These values are valid for either level of VDDQ (3.3V/2.5V). See page 5 for details on selecting the desired operating voltage levels for each port.  
4. 166MHz I-Temp is not available in the BF-208 package.  
5. 200Mhz is not available in the BF-208 package.  
6. Guaranteed by design (not production tested).  
6.42  
11  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Read Cycle for Pipelined Operation  
(FT/PIPE'X' = VIH)(2)  
t
CYC2  
t
CH2  
t
CL2  
CLK  
CE  
0
t
SC  
(3)  
tHC  
tSC  
tHC  
CE1  
t
SB  
tHB  
tSB  
tHB  
(5)  
UB, LB  
R/  
W
tHW  
tSW  
t
SA  
tHA  
ADDRESS(4)  
DATAOUT  
An  
An + 1  
An + 2  
Qn  
An + 3  
(1 Latency)  
t
DC  
t
CD2  
Qn + 1  
Qn + 2(5)  
(1)  
tCKLZ  
t
OHZ  
tOLZ  
(1)  
OE  
,
t
OE  
5652 drw 05  
Timing Waveform of Read Cycle for Flow-through Output  
(FT/PIPE"X" = VIL)(2,6)  
tCYC1  
tCH1  
tCL1  
CLK  
CE  
0
tSC  
(3)  
tHC  
tSC tHC  
CE1  
tSB  
tHB  
tHB  
UB, LB  
tSB  
R/  
W
tSW tHW  
tSA tHA  
ADDRESS(4)  
DATAOUT  
An  
An + 1  
An + 2  
An + 3  
tDC  
tCD1  
tCKHZ  
Qn  
Qn + 1  
Qn + 2(5)  
tCKLZ  
tDC  
tOHZ  
tOLZ  
tOE  
(1)  
OE  
,
5652 drw 06  
NOTES:  
1. OE is asynchronously controlled; all other inputs depicted in the above waveforms are synchronous to the rising clock edge.  
2. ADS = VIL, CNTEN and REPEAT = VIH.  
3. The output is disabled (High-Impedance state) by CE0 = VIH, CE1 = VIL, UB, LB = VIH following the next rising edge of the clock. Refer to  
Truth Table 1.  
4. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers  
are for reference use only.  
5. If UB, LB was HIGH, then the appropriate Byte of DATAOUT for Qn + 2 would be disabled (High-Impedance state).  
6. "x" denotes Left or Right port. The diagram is with respect to that port.  
6.1422  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of a Multi-Device Pipelined Read(1,2)  
t
CYC2  
t
CH2  
t
CL2  
CLK  
ADDRESS(B1)  
CE0(B1)  
t
SA  
t
HA  
A
6
A
5
A4  
A
3
A
2
A
0
A1  
t
SC  
t
HC  
t
SC  
t
HC  
t
CD2  
t
CD2  
t
CKHZ  
t
CD2  
Q
0
Q3  
Q
1
DATAOUT(B1)  
ADDRESS(B2)  
t
DC  
t
CKLZ  
t
DC  
t
CKHZ  
t
SA  
t
HA  
A
6
A
5
A
4
A
3
A
2
A
0
A
1
t
SC  
t
HC  
CE0(B2)  
t
SC  
t
HC  
t
CD2  
t
CKHZ  
t
CD2  
,
DATAOUT(B2)  
Q
4
Q
2
t
CKLZ  
t
CKLZ  
5652 drw 07  
Timing Waveform of a Multi-Device Flow-Through Read(1,2)  
t
CYC1  
tCH1  
tCL1  
CLK  
t
SA  
tH  
A
A6  
A5  
A4  
A3  
A2  
A0  
A1  
ADDRESS(B1)  
t
SC  
tHC  
CE0(B1)  
t
SC  
tHC  
(1)  
tCD1  
tCD1  
t
CKHZ  
t
CD1  
(1)  
tCD1  
D0  
D3  
D5  
D1  
DATAOUT(B1)  
ADDRESS(B2)  
(1)  
(1)  
tDC  
t
CKLZ  
tCKLZ  
t
DC  
t
CKHZ  
t
SA  
tHA  
A6  
A5  
A4  
A3  
A2  
A
0
A1  
t
SC  
tHC  
CE0(B2)  
t
SC  
t
HC  
(1)  
(1)  
t
CD1  
t
CKHZ  
t
CD1  
(1)  
t
CKHZ  
D4  
DATAOUT(B2)  
D2  
(1)  
,
t
CKLZ  
tCKLZ  
5652 drw 08  
NOTES:  
1. B1 Represents Device #1; B2 Represents Device #2. Each Device consists of one IDT70T3339/19/99 for this waveform,  
and are setup for depth expansion in this example. ADDRESS(B1) = ADDRESS(B2) in this situation.  
2. UB, LB, OE, and ADS = VIL; CE1(B1), CE1(B2), R/W, CNTEN, and REPEAT = VIH.  
6.42  
13  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Left Port Write to Pipelined Right Port Read(1,2,4)  
CLK"A"  
t
SW  
tHW  
R/W"A  
"
tSA  
t
HA  
NO  
MATC  
H
ADDRESS"A"  
DATAIN"A"  
MATC  
H
t
SD  
t
HD  
VALID  
(3)  
CO  
t
CLK"B"  
t
CD2  
R/W"B"  
t
SW  
t
HW  
HA  
t
SA  
t
NO  
ADDRESS"B"  
DATAOUT"B"  
MATC  
H
MATCH  
VALID  
,
tDC  
5652 drw 09  
NOTES:  
1. CE0, UB, LB, and ADS = VIL; CE1, CNTEN, and REPEAT = VIH.  
2. OE = VIL for Port "B", which is being read from. OE = VIH for Port "A", which is being written to.  
3. If tCO < minimum specified, then data from Port "B" read is not valid until following Port "B" clock cycle (ie, time from write to valid read on opposite port will be  
tCO + 2 tCYC2 + tCD2). If tCO > minimum, then data from Port "B" read is available on first Port "B" clock cycle (ie, time from write to valid read on opposite port  
will be tCO + tCYC2 + tCD2).  
4. All timing is the same for Left and Right ports. Port "A" may be either Left or Right port. Port "B" is the opposite of Port "A"  
Timing Waveform with Port-to-Port Flow-Through Read(1,2,4)  
CLK "A"  
tSW tHW  
R/W "A"  
tSA tHA  
NO  
ADDRESS "A"  
DATAIN "A"  
CLK "B"  
MATCH  
MATCH  
tSD tHD  
VALID  
(3)  
tCO  
tCD1  
R/W "B"  
tHW  
tHA  
tSW  
tSA  
NO  
MATCH  
ADDRESS "B"  
DATAOUT "B"  
MATCH  
tCD1  
VALID  
VALID  
,
tDC  
tDC  
5652 drw 10  
NOTES:  
1. CE0, UB, LB, and ADS = VIL; CE1, CNTEN, and REPEAT = VIH.  
2. OE = VIL for the Right Port, which is being read from. OE = VIH for the Left Port, which is being written to.  
3. If tCO < minimum specified, then data from Port "B" read is not valid until following Port "B" clock cycle (i.e., time from write to valid read on opposite port will be  
tCO + tCYC + tCD1). If tCO > minimum, then data from Port "B" read is available on first Port "B" clock cycle (i.e., time from write to valid read on opposite port will  
be tCO + tCD1).  
4. All timing is the same for both left and right ports. Port "A" may be either left or right port. Port "B" is the opposite of Port "A".  
6.1442  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Pipelined Read-to-Write-to-Read  
(OE = VIL)(2)  
tCYC2  
tCH2  
tCL2  
CLK  
CE  
0
1
tSC  
tHC  
CE  
tSB  
tHB  
UB, LB  
t
SW tHW  
R/W  
tSW tHW  
(3)  
An + 3  
An + 4  
An  
An +1  
An + 2  
An + 2  
ADDRESS  
t
SA  
tHA  
t
SD  
t
HD  
DATAIN  
Dn + 2  
tCD2  
t
CD2  
(1)  
t
CKHZ  
(4)  
tCKLZ  
Qn + 3  
Qn  
DATAOUT  
READ  
NOP  
WRITE  
READ  
,
5652 drw 11  
NOTES:  
1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.  
2. CE0, UB, LB, and ADS = VIL; CE1, CNTEN, and REPEAT = VIH. "NOP" is "No Operation".  
3. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers  
are for reference use only.  
4. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity.  
Timing Waveform of Pipelined Read-to-Write-to-Read ( OE Controlled)(2)  
t
CYC2  
tCH2  
tCL2  
CLK  
CE  
0
1
t
SC  
tHC  
CE  
tSB  
tHB  
UB, LB  
t
SW tHW  
R/  
W
t
SW tHW  
(3)  
An + 4  
An  
An +1  
An + 2  
An + 3  
Dn + 3  
An + 5  
ADDRESS  
t
SA  
tHA  
t
SD  
tHD  
DATAIN  
Dn + 2  
t
CD2  
t
CD2  
t
CKLZ  
(1)  
Qn  
Qn + 4  
DATAOUT  
(4)  
tOHZ  
OE  
READ  
WRITE  
READ  
,
NOTES:  
1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.  
5652 drw 12  
2. CE0, UB, LB, and ADS = VIL; CE1, CNTEN, and REPEAT = VIH.  
3. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference  
use only.  
4. This timing does not meet requirements for fastest speed grade. This waveform indicates how logically it could be done if timing so allows.  
6.42  
15  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Flow-Through Read-to-Write-to-Read (OE = VIL)(2)  
t
CYC1  
tCH1  
tCL1  
CLK  
CE  
0
1
t
SC  
tHC  
CE  
t
SB  
tHB  
UB, LB  
t
SW tHW  
R/W  
tSW tHW  
(3)  
An + 4  
An  
An + 3  
An +1  
An + 2  
An + 2  
ADDRESS  
t
SA  
tHA  
t
SD  
tHD  
DATAIN  
Dn + 2  
t
CD1  
tCD1  
t
CD1  
tCD1  
(1)  
Qn + 3  
Qn  
READ  
Qn + 1  
DATAOUT  
tDC  
t
CKLZ  
t
DC  
tCKHZ  
NOP(4)  
,
READ  
WRITE  
5652 drw 13  
Timing Waveform of Flow-Through Read-to-Write-to-Read (OE Controlled)(2)  
t
CYC1  
t
CH1  
tCL1  
CLK  
CE  
0
1
tSC  
tHC  
CE  
tSB  
tHB  
UB, LB  
tSW tHW  
t
SW tHW  
R/  
W
(3)  
An + 5  
An  
An + 4  
An +1  
An + 2  
An + 3  
Dn + 3  
ADDRESS  
t
SA  
tHA  
t
SD tHD  
DATAIN  
Dn + 2  
t
OE  
t
DC  
t
CD1  
t
CD1  
t
CD1  
(1)  
Qn + 4  
Qn  
DATAOUT  
tCKLZ  
t
DC  
tOHZ  
OE  
,
READ  
WRITE  
READ  
5652 drw 14  
NOTES:  
1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.  
2. CE0, UB, LB, and ADS = VIL; CE1, CNTEN, and REPEAT = VIH.  
3. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for  
reference use only.  
4. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity.  
6.1462  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Pipelined Read with Address Counter Advance(1)  
t
CYC2  
tCH2  
t
CL2  
CLK  
tSA  
tHA  
An  
ADDRESS  
tSAD tHAD  
ADS  
tSAD tHAD  
CNTEN  
tSCN tHCN  
tCD2  
,
Qn + 2(2)  
Qx - 1(2)  
Qx  
Qn + 3  
Qn + 1  
Qn  
DATAOUT  
tDC  
READ  
EXTERNAL  
ADDRESS  
READ  
WITH  
COUNTER  
COUNTER  
HOLD  
READ WITH COUNTER  
5652 drw 15  
Timing Waveform of Flow-Through Read with Address Counter Advance(1)  
t
CYC1  
tCH1  
tCL1  
CLK  
tSA  
tHA  
An  
ADDRESS  
t
SAD tHAD  
t
SAD  
t
HAD  
ADS  
t
SCN  
tHCN  
CNTEN  
t
CD1  
,
Qn + 3(2)  
Qx(2)  
Qn + 4  
Qn + 1  
Qn + 2  
Qn  
DATAOUT  
tDC  
READ  
WITH  
COUNTER  
5652 drw 16  
READ  
EXTERNAL  
ADDRESS  
READ WITH COUNTER  
COUNTER  
HOLD  
NOTES:  
1. CE0, OE, UB, LB = VIL; CE1, R/W, and REPEAT = VIH.  
2. If there is no address change via ADS = VIL (loading a new address) or CNTEN = VIL (advancing the address), i.e. ADS = VIH and CNTEN = VIH, then  
the data output remains constant for subsequent clocks.  
6.42  
17  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write with Address Counter Advance  
(Flow-through or Pipelined Inputs)(1)  
t
CYC2  
tCH2  
tCL2  
CLK  
tSA  
tHA  
An  
ADDRESS  
INTERNAL(3)  
ADDRESS  
An(7)  
An + 1  
An + 3  
An + 4  
An + 2  
t
SAD tHAD  
ADS  
tSCN  
t
HC  
N
CNTEN  
t
SD tHD  
Dn + 4  
Dn + 1  
Dn + 3  
Dn  
Dn + 1  
Dn + 2  
DATAIN  
WRITE  
EXTERNAL  
ADDRESS  
WRITE  
WITH COUNTER  
WRITE  
COUNTER HOLD  
WRITE WITH COUNTER  
,
5652 drw 17  
Timing Waveform of Counter Repeat(2)  
t
CYC2  
tCH2  
tCL2  
CLK  
t
SA tHA  
(4)  
An + 2  
An  
An + 1  
ADDRESS  
INTERNAL(3)  
ADDRESS  
LAST ADS LOAD  
Ax  
LAST ADS +1  
An  
An + 1  
tSW  
tHW  
R/W  
ADS  
tSAD  
tHAD  
CNTEN  
t
SCN tHCN  
tSRPT  
tHRPT  
REPEAT  
t
SD  
tHD  
D0  
DATAIN  
(5)  
QLAST+1  
Qn  
QLAST  
DATAOUT  
,
EXECUTE(6)  
REPEAT  
READ  
READ  
READ  
READ  
WRITE  
LAST ADS  
ADDRESS  
ADDRESS n ADDRESS n+1  
LAST ADS  
LAST ADS  
ADDRESS  
ADDRESS + 1  
NOTES:  
1. CE0, UB, LB, and R/W = VIL; CE1 and REPEAT = VIH.  
CE0, UB, LB = VIL; CE1 = VIH.  
5652 drw 18  
2.  
3. The "Internal Address" is equal to the "External Address" when ADS = VIL and equals the counter output when ADS = VIH.  
4. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference  
use only.  
5. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.  
6. No dead cycle exists during REPEAT operation. A READ or WRITE cycle may be coincidental with the counter REPEAT cycle: Address loaded by last valid  
ADS load will be accessed. Extra cycles are shown here simply for clarification. For more information on REPEAT function refer to Truth Table II.  
7. CNTEN = VIL advances Internal Address from ‘An’ to ‘An +1’. The transition shown indicates the time required for the counter to advance. The ‘An +1’Address is  
written to during this cycle.  
6.1482  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
(2)  
Waveform of Interrupt Timing  
CLK  
L
tSW  
tHW  
R/W  
L
t
SA  
7FFFF  
SC  
t
HA  
ADDRESSL(3)  
CEL(1)  
t
t
HC  
tINS  
INTR  
t
INR  
CLKR  
tSC  
tHC  
CER(1)  
R/WR  
t
SW  
SA  
7FFFF  
t
HW  
t
HA  
t
ADDRESSR(3)  
5652 drw 19  
NOTES:  
1. CE0 = VIL and CE1 = VIH  
2. All timing is the same for Left and Right ports.  
3. Address is for internal register, not the external bus, i.e., address needs to be qualified by one of the Address counter control signals.  
(1)  
Truth Table III — Interrupt Flag  
Left Port  
Right Port  
(2)  
(2)  
(3,4,5)  
(2)  
(2)  
(3,4,5)  
CLK  
L
R/W  
L
L
CE  
L
A
18L-A0L  
CLK  
R
R/W  
R
CE  
R
A
18R-A0R  
Function  
Set Right INT Flag  
Reset Right INT Flag  
Set Left INT Flag  
Reset Left INT Flag  
INT  
X
L
INT  
R
L
7FFFF  
X
X
X
X
L
R
X
X
X
L
X
H
L
L
L
7FFFF  
7FFFE  
X
H
R
X
X
L
X
L
H
7FFFE  
H
X
X
X
L
5652 tbl 12  
NOTES:  
1. INTL and INTR must be initialized at power-up by Resetting the flags.  
2. CE0 = VIL and CE1 = VIH. R/W and CE are synchronous with respect to the clock and need valid set-up and hold times.  
3. A18X is a NC for IDT70T3319, therefore Interrupt Addresses are 3FFFF and 3FFFE.  
4. A18X and A17X are NC's for IDT70T3399, therefore Interrupt Addresses are 1FFFF and 1FFFE.  
5. Address is for internal register, not the external bus, i.e., address needs to be qualified by one of the Address counter control signals.  
6.42  
19  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
(1,2)  
Waveform of Collision Timing  
Both Ports Writing with Left Port Clock Leading  
CLK  
L
t
OFS  
t
SA  
t
HA  
ADDRESS (4)  
L
A
3
A1  
A2  
A
0
tCOLR  
tCOLS  
COL  
L
(3)  
t
OFS  
CLK  
R
t
SA  
t
HA  
(4)  
ADDRESS  
R
A
3
A
2
A
0
A1  
tCOLS  
tCOLR  
COL  
R
5652 drw 20  
NOTES:  
1. CE0 = VIL, CE1 = VIH.  
2. For reading port, OE is a Don't care on the Collision Detection Logic. Please refer to Truth Table IV for specific cases.  
3. Leading Port Output flag might output 3tCYC2 + tCOLS after Address match.  
4. Address is for internal register, not the external bus, i.e., address needs to be qualified by one of the Address counter control signals.  
Collision Detection Timing(3,4)  
tOFS (ns)  
Cycle Time  
NOTES:  
1. Region 1  
(1)  
(2)  
Region 1 (ns)  
Region 2 (ns)  
Both ports show collision after 2nd cycle for Addresses 0, 2, 4 etc.  
2. Region 2  
Leading port shows collision after 3rd cycle for addresses 0, 3, 6, etc.  
while trailing port shows collision after 2nd cycle for addresses 0, 2, 4 etc.  
3. All the production units are tested to midpoint of each region.  
5ns  
6ns  
0 - 2.8  
2.81 - 4.6  
0 - 3.8  
0 - 5.3  
3.81 - 5.6  
5.31 - 7.1  
7.5ns  
4. These ranges are based on characterization of a typical device.  
5652 tbl 13  
Truth Table IV — Collision Detection Flag  
Left Port  
Right Port  
(1)  
(1)  
(2)  
(1)  
(1)  
(2)  
CLK  
L
R/W  
L
CE  
L
A
18L-A0L  
CLK  
R
R/W  
R
CE  
R
A
18R-A0R  
Function  
COL  
H
L
COL  
R
Both ports reading. Not a valid collision.  
No flag output on either port.  
H
H
L
L
MATCH  
MATCH  
MATCH  
MATCH  
H
L
L
MATCH  
MATCH  
MATCH  
MATCH  
H
Left port reading, Right port writing.  
Valid collision, flag output on Left port.  
L
L
L
L
L
L
L
H
Right port reading, Left port writing.  
Valid collision, flag output on Right port.  
H
H
L
L
Both ports writing. Valid collision. Flag  
output on both ports.  
L
L
L
5652 tbl 14  
NOTES:  
1. CE0 = VIL and CE1 = VIH. R/W and CE are synchronous with respect to the clock and need valid set-up and hold times.  
2. Address is for internal register, not the external bus, i.e., address needs to be qualified by one of the Address counter control signals.  
6.2402  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
(1,2)  
Timing Waveform - Entering Sleep Mode  
R/W  
(3)  
(1,2)  
Timing Waveform - Exiting Sleep Mode  
An  
An+1  
(5)  
R/W  
OE  
(5)  
Dn  
Dn+1  
DATAOUT  
(4)  
NOTES:  
1. CE1 = VIH.  
2. All timing is same for Left and Right ports.  
3. CE0 has to be deactivated (CE0 = VIH) three cycles prior to asserting ZZ (ZZx = VIH) and held for two cycles after asserting ZZ (ZZx = VIH).  
4. CE0 has to be deactivated (CE0 = VIH) one cycle prior to de-asserting ZZ (ZZx = VIL) and held for three cycles after de-asserting ZZ (ZZx = VIL).  
5. The device must be in Read Mode (R/W High) when exiting sleep mode. Outputs are active but data is not valid until the following cycle.  
6.42  
21  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
alertflagasappropriate.Intheeventthatauserinitiatesaburstaccess  
onbothportswiththesamestartingaddressonbothportsandoneorboth  
portswritingduringeachaccess(i.e.,imposesalongstringofcollisions  
on contiguous clock cycles), the alert flag will be asserted and cleared  
everyothercycle.PleaserefertotheCollisionDetectionTimingwaveform  
on page 20.  
Functional Description  
TheIDT70T3339/19/99providesatruesynchronousDual-PortStatic  
RAM interface.Registeredinputsprovideminimalset-upandholdtimes  
onaddress, data, andallcriticalcontrolinputs. Allinternalregistersare  
clocked on the rising edge of the clock signal, however, the self-timed  
internalwritepulsewidthisindependentofthecycletime.  
CollisiondetectionontheIDT70T3339/19/99representsasignificant  
advanceinfunctionalityovercurrentsyncmulti-ports,whichhavenosuch  
capability. InadditiontothisfunctionalitytheIDT70T3339/19/99sustains  
thekeyfeaturesofbandwidthandflexibility. Thecollisiondetectionfunction  
isveryusefulinthecaseofburstingdata,orastringofaccessesmadeto  
sequentialaddresses,inthatitindicatesaproblemwithintheburst,giving  
theusertheoptionofeitherrepeatingtheburstorcontinuingtowatchthe  
alert flag to see whether the number of collisions increases above an  
acceptablethresholdvalue.Offeringthisfunctiononchipalsoallowsusers  
to reduce their need for arbitration circuits, typically done in CPLD’s or  
FPGA’s.Thisreducesboardspaceanddesigncomplexity,andgivesthe  
usermoreflexibilityindevelopingasolution.  
An asynchronous output enable is provided to ease asyn-  
chronousbusinterfacing.Counterenableinputsarealsoprovidedtostall  
the operation of the address counters for fast interleaved  
memoryapplications.  
AHIGHonCE0oraLOWonCE1foroneclockcyclewillpowerdown  
the internal circuitry to reduce static power consumption. Multiple chip  
enablesalloweasierbankingofmultipleIDT70T3339/19/99sfordepth  
expansionconfigurations. TwocyclesarerequiredwithCE0 LOWand  
CE1 HIGHtore-activatetheoutputs.  
Interrupts  
If the user chooses the interrupt function, a memory location (mail  
boxormessagecenter)isassignedtoeachport. Theleftportinterrupt  
flag (INTL) is asserted when the right port writes to memory location  
7FFFE (HEX), where a write is defined as CER = R/WR = VIL per the  
Truth Table. The left port clears the interrupt through access of  
addresslocation7FFFEwhenCEL = VIL andR/WL=VIH.Likewise,the  
right port interrupt flag (INTR) is asserted when the left  
port writes to memory location 7FFFF (HEX) and to clear the interrupt  
flag(INTR),therightportmustreadthememorylocation7FFFF(3FFFF  
or3FFFEforIDT70T3319and1FFFFor1FFFEforIDT70T3399). The  
message(18bits)at7FFFEor7FFFF(3FFFFor3FFFEforIDT70T3319  
and 1FFFF or 1FFFE for IDT70T3399) is user-defined since it is an  
addressableSRAMlocation.Iftheinterruptfunctionisnotused,address  
locations 7FFFE and 7FFFF (3FFFF or 3FFFE for IDT70T3319 and  
1FFFF or 1FFFE for IDT70T3399) are not used as mail boxes, but as  
partoftherandomaccessmemory.RefertoTruthTableIII fortheinterrupt  
operation.  
Sleep Mode  
The IDT70T3339/19/99 is equipped with an optional sleep or low  
power mode on both ports. The sleep mode pin on both ports is  
asynchronous and active high. During normal operation, the ZZ pin is  
pulledlow.WhenZZispulledhigh,theportwillentersleepmodewhere  
it will meet lowest possible power conditions. The sleep mode timing  
diagramshowsthemodes ofoperation:NormalOperation,NoRead/Write  
Allowed and Sleep Mode.  
Fornormaloperationallinputsmustmeetsetupandholdtimesprior  
tosleepand afterrecoveringfromsleep.Clocksmustalsomeetcyclehigh  
and low times during these periods. Three cycles prior to asserting ZZ  
(ZZx=VIH)andthreecyclesafterde-assertingZZ(ZZx=VIL),thedevice  
mustbedisabledviathechipenablepins.Ifawriteorreadoperationoccurs  
duringtheseperiods,thememoryarraymaybecorrupted.Validityofdata  
outfromtheRAMcannotbeguaranteedimmediatelyafterZZisasserted  
(priortobeinginsleep).Whenexitingsleepmode,thedevicemustbein  
Read mode (R/Wx = VIH)when chip enable is asserted, and the chip  
enablemustbevalidforonefullcyclebeforeareadwillresultintheoutput  
ofvaliddata.  
DuringsleepmodetheRAMautomaticallydeselectsitself.TheRAM  
disconnectsitsinternalclockbuffer.Theexternalclockmaycontinuetorun  
withoutimpactingtheRAMssleepcurrent(IZZ).Alloutputswillremainin  
high-Zstatewhileinsleepmode.Allinputsareallowedtotoggle.TheRAM  
will not be selected and will not perform any reads or writes.  
Collision Detection  
Collisionisdefinedasanoverlapinaccessbetweenthetwoports  
resulting in the potential for either reading or writing incorrect data to a  
specificaddress. Forthespecificcases:(a)Bothportsreading-nodata  
iscorrupted,lost,orincorrectlyoutput,sonocollisionflagisoutputoneither  
port.(b)Oneportwriting,theotherportreading-theendresultofthewrite  
willstillbevalid. However, thereadingportmightcapturedatathatisin  
astateoftransitionandhencethereadingport’scollisionflagisoutput.(c)  
Bothportswriting-thereisariskthatthetwoportswillinterferewitheach  
other, andthedatastoredinmemorywillnotbeavalidwritefromeither  
port(itmayessentiallybearandomcombinationofthetwo). Therefore,  
thecollisionflagisoutputonbothports. PleaserefertoTruthTableIVfor  
all of the above cases.  
Thealertflag(COLX)isassertedonthe2ndor3rdrisingclockedge  
oftheaffectedportfollowingthecollision,andremainslowforonecycle.  
PleaserefertoCollisionDetectionTimingtableonpage20.Duringthat  
nextcycle,theinternalarbitrationisengagedinresettingthealertflag(this  
avoidsaspecificrequirementonthepartoftheusertoresetthealertflag).  
Iftwocollisionsoccuronsubsequentclockcycles,thesecondcollisionmay  
notgeneratetheappropriatealertflag.Athirdcollisionwillgeneratethe  
6.2422  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Depth and Width Expansion  
The IDT70T3339/19/99 features dual chip enables (refer to Truth  
Table I) in order to facilitate rapid and simple depth expansion with no  
requirements for external logic. Figure 4 illustrates how to control the  
various chip enables in order to expand two devices in depth.  
The IDT70T3339/19/99 can also be used in applications requiring  
expandedwidth,asindicatedinFigure4.Throughcombiningthecontrol  
signals, the devices can be grouped as necessary to accommodate  
applicationsneeding36-bitsorwider.  
(1)  
17  
A
19/A18/  
A
IDT70T3339/19/99  
IDT70T3339/19/99  
CE  
0
1
CE  
0
1
CE  
CE  
VDD  
V
DD  
Control Inputs  
Control Inputs  
IDT70T3339/19/99  
IDT70T3339/19/99  
CE  
1
CE  
1
0
CE0  
CE  
UB, LB,  
R/W,  
Control Inputs  
Control Inputs  
OE,  
CLK,  
Figure 4. Depth and Width Expansion with IDT70T3339/19/99  
ADS,  
5652 drw 23  
REPEAT,  
CNTEN  
NOTE:  
1. A19 is for IDT70T3339, A18 is for IDT70T3319, A17 is for IDT70T3399.  
6.42  
23  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
JTAG Timing Specifications  
tJCYC  
t
JR  
t
JF  
t
JCL  
tJCH  
TCK  
Device Inputs(1)/  
TDI/TMS  
tJDC  
t
JS  
tJH  
Device Outputs(2)/  
TDO  
tJRSR  
tJCD  
TRST  
,
5652 drw 24  
t
JRST  
NOTES:  
1. Device inputs = All device inputs except TDI, TMS, and TRST.  
2. Device outputs = All device outputs except TDO.  
JTAG AC Electrical  
Characteristics (1,2,3,4)  
70T3339/19/99  
Symbol  
Parameter  
JTAG Clock Input Period  
JTAG Clock HIGH  
JTAG Clock Low  
JTAG Clock Rise Time  
JTAG Clock Fall Time  
JTAG Reset  
Min.  
100  
40  
Max.  
Units  
ns  
____  
t
JCYC  
JCH  
JCL  
JR  
JF  
JRST  
JRSR  
JCD  
JDC  
JS  
JH  
____  
____  
t
ns  
t
40  
ns  
t
3(1)  
ns  
____  
t
3(1)  
ns  
____  
____  
t
50  
ns  
____  
t
JTAG Reset Recovery  
JTAG Data Output  
JTAG Data Output Hold  
JTAG Setup  
50  
ns  
____  
t
25  
ns  
____  
t
0
ns  
____  
____  
t
15  
15  
ns  
t
JTAG Hold  
ns  
5652 tbl 15  
NOTES:  
1. Guaranteed by design.  
2. 30pF loading on external output signals.  
3. Refer to AC Electrical Test Conditions stated earlier in this document.  
4. JTAG operations occur at one speed (10MHz). The base device may run at  
any speed specified in this datasheet.  
6.2442  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Identification Register Definitions  
Instruction Field  
Value  
Description  
Revision Number (31:28)  
0x0  
Reserved for version number  
0x333(1)  
0x33  
1
IDT Device ID (27:12)  
Defines IDT part number  
IDT JEDEC ID (11:1)  
Allows unique identification of device vendor as IDT  
Indicates the presence of an ID register  
ID Register Indicator Bit (Bit 0)  
5652 tbl 16  
NOTE:  
1. Device ID for IDT70T3319 is 0x334. Device ID for IDT70T3399 is 0x335.  
Scan Register Sizes  
Register Name  
Bit Size  
Instruction (IR)  
Bypass (BYR)  
4
1
Identification (IDR)  
32  
Boundary Scan (BSR)  
Note (3)  
5652 tbl 17  
System Interface Parameters  
Instruction  
Code  
Description  
EXTEST  
0000  
Forces contents of the boundary scan cells onto the device outputs(1).  
Places the boundary scan register (BSR) between TDI and TDO.  
BYPASS  
IDCODE  
1111  
Places the bypass register (BYR) between TDI and TDO.  
0010  
Loads the ID register (IDR) with the vendor ID code and places the  
register between TDI and TDO.  
0100  
Places the bypass register (BYR) between TDI and TDO. Forces all  
device output drivers to a High-Z state except COLx & INTx outputs.  
HIGHZ  
Uses BYR. Forces contents of the boundary scan cells onto the device  
outputs. Places the bypass register (BYR) between TDI and TDO.  
CLAMP  
0011  
0001  
SAMPLE/PRELOAD  
Places the boundary scan register (BSR) between TDI and TDO.  
SAMPLE allows data from device inputs(2) to be captured in the  
boundary scan cells and shifted serially through TDO. PRELOAD allows  
data to be input serially into the boundary scan cells via the TDI.  
RESERVED  
PRIVATE  
0101, 0111, 1000, 1001,  
1010, 1011, 1100  
Several combinations are reserved. Do not use codes other than those  
identified above.  
0110,1110,1101  
For internal use only.  
5652 tbl 18  
NOTES:  
1. Device outputs = All device outputs except TDO.  
2. Device inputs = All device inputs except TDI, TMS, and TRST.  
3. The Boundary Scan Descriptive Language (BSDL) file for this device is available on the IDT website (www.idt.com), or by contacting your local  
IDT sales representative.  
6.42  
25  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Ordering Information  
XXXX  
A
999  
A
A
A
A
Process/  
Temperature  
Range  
Device  
Type  
Power Speed Package  
Tube or Tray  
Tape & Reel  
Blank  
8
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
Blank  
)
I(4  
)
G(3  
Green  
256-pin BGA (BC-256)  
208-pin fpBGA (BF-208)  
BC  
BF  
)
200  
166  
133  
Commercial Only(2  
Commercial & Industrial(1  
Commercial & Industrial  
)
Speed in Megahertz  
Standard Power  
S
9Mbit (512K x 18-bit) Synchronous Dual-Port RAM  
4Mbit (256K x 18-bit) Synchronous Dual-Port RAM  
2Mbit (128K x 18-bit) Synchronous Dual-Port RAM  
70T3339  
70T3319  
70T3399  
5652 drw 25  
NOTES:  
1. 166MHz I-Temp is not available in the BF-208 package.  
2. 200Mhz is not available in the BF-208 package.  
3. Greenpartsavailable.Forspecificspeeds,packagesandpowerscontactyourlocalsalesoffice.  
4. Contactyour localsalesofficeforindustrialtemprangeforotherspeeds,packagesandpowers.  
LEADFINISH(SnPb)partsareinEOLprocess.ProductDiscontinuationNotice-PDN#SP-17-02  
IDT Clock Solution for IDT70T3339/19/99 Dual-Port  
Dual-Port I/O Specitications  
Clock Specifications  
IDT  
PLL  
Clock Device  
IDT  
Non-PLL  
Clock Device  
IDT Dual-Port  
Part Number  
Input Duty  
Cycle  
Requirement  
Input  
Capacitance  
Maximum  
Frequency Tolerance  
Jitter  
Voltage  
2.5  
I/O  
5T9010  
5T905, 5T9050  
5T907, 5T9070  
70T3339/19/99  
LVTTL  
8pF  
40%  
200  
75ps  
5T2010  
5652 tbl 19  
6.2462  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Datasheet Document History  
01/20/03:  
04/25/03:  
InitialDatasheet  
Page 11 AddedCapacitanceDeratingdrawing  
Page 12 ChangedtINS andtINR specsinACElectricalCharacteristicstable  
Page 10 UpdatedpowernumbersinDCElectricalCharacteristicstable  
Page 12 AddedtOFS symbolandparametertoACElectricalCharacteristicstable  
Page 21 UpdatedCollisionTimingwaveform  
11/11/03:  
Page 22 AddedCollisionDetectionTimingtableandfootnotes  
Page 26 UpdatedHIGHZfunctioninSystemInterfaceParameterstable  
Page 27 AddedIDTClockSolutiontable  
04/08/04:  
02/07/06:  
Page 22 & 23 Clarified Sleep Mode Text and Waveforms  
Page 1 & 28 Removed Preliminary status  
Page 6 Addedanothersentencetofootnote4torecommendthatboundaryscannotbeoperatedduringsleepmode  
Page 1 Addedgreenavailabilitytofeatures  
Page 7 Changed footnote 2 for Truth Table I from ADS, CNTEN, REPEAT = VIH to ADS, CNTEN, REPEAT = X  
Page 27 Addedgreenindicatortoorderinginformation  
07/28/08:  
01/19/09:  
04/20/10:  
06/10/15:  
Page 10 Corrected a typo in the DC Chars table footnotes  
Page 28 Removed "IDT" from orderable part number  
Removed the DD 144-pin TQFP (DD-144) Thin Quad Flatpack per PDN: F-08-01  
Page 3 & 4 Removed the date from all of the pin configurations BC256 & BF208  
Page 26 AddedT&RindicatorandindustrialtempfootnotetoOrderingInformation  
ProductDiscontinuationNotice-PDN#SP-17-02  
02/08/18:  
Last time buy expires June 15, 2018  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
408-284-2794  
DualPortHelp@idt.com  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
6.42  
27  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY