70T3319S166DD [IDT]

Dual-Port SRAM, 256KX18, 12ns, CMOS, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, TQFP-144;
70T3319S166DD
型号: 70T3319S166DD
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Dual-Port SRAM, 256KX18, 12ns, CMOS, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, TQFP-144

静态存储器
文件: 总28页 (文件大小:304K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED 2.5V  
512/256/128K X 18  
SYNCHRONOUS  
IDT70T3339/19/99S  
DUAL-PORT STATIC RAM  
Š
WITH 3.3V OR 2.5V INTERFACE  
Features:  
– Self-timedwriteallowsfastcycletime  
Separate byte controls for multiplexed bus and bus  
matching compatibility  
Dual Cycle Deselect (DCD) for Pipelined Output Mode  
2.5V (±100mV) power supply for core  
LVTTL compatible, selectable 3.3V (±150mV) or 2.5V  
(±100mV) power supply for I/Os and control signals on  
each port  
Industrial temperature range (-40°C to +85°C) is  
available at 166MHz and 133MHz  
Available in a 256-pin Ball Grid Array (BGA), a 144-pin Thin  
Quad Flatpack (TQFP) and 208-pin fine pitch Ball Grid Array  
(fpBGA)  
Supports JTAG features compliant with IEEE 1149.1  
Due to limited pin count JTAG, Collision Detection and  
Interrupt are not supported on the 144-pin TQFP package  
Green parts available, see ordering information  
True Dual-Port memory cells which allow simultaneous  
access of the same memory location  
High-speed data access  
– Commercial: 3.4 (200MHz)/3.6ns (166MHz)/  
4.2ns (133MHz)(max.)  
Industrial: 3.6ns (166MHz)/4.2ns (133MHz) (max.)  
Selectable Pipelined or Flow-Through output mode  
Counter enable and repeat features  
Dual chip enables allow for depth expansion without  
additional logic  
Interrupt and Collision Detection Flags  
Full synchronous operation on both ports  
– 5ns cycle time, 200MHzoperation(14Gbps bandwidth)  
– Fast 3.4ns clock to data out  
– 1.5ns setup to clock and 0.5ns hold on all control, data, and  
address inputs @ 200MHz  
Data input, address, byte enable and control registers  
FunctionalBlockDiagram  
UBL  
UBR  
LBL  
LBR  
FT/PIPE  
L
1b 0b  
b
1a 0a  
a
0a 1a  
a
0b 1b  
b
FT/PIPER  
1/0  
1/0  
R/WL  
R/W  
R
CE0L  
CE1L  
CE0R  
1
1
CE1R  
B
B
B B  
0
0
W W  
W W  
0
L
1
L
1
0
R
R
1/0  
1/0  
Dout0-8_L  
Dout9-17_L  
Dout0-8_R  
Dout9-17_R  
OEL  
OE  
R
,
0a 1a  
0b  
1b  
1b 0b 1a 0a  
ab  
0/1  
FT/PIPE  
L
0/1  
FT/PIPER  
ba  
512/256/128K x 18  
MEMORY  
ARRAY  
I/O0R - I/O17R  
Din_L  
I/O0L - I/O17L  
Din_R  
,
CLK  
R
CLK  
L
(1)  
18R  
(1)  
18L  
A
A
Counter/  
Address  
Reg.  
Counter/  
Address  
Reg.  
A
0L  
REPEAT  
ADS  
CNTEN  
A
0R  
REPEAT  
ADS  
CNTEN  
ADDR_R  
ADDR_L  
L
R
R
L
R
L
TDI  
TCK  
TMS  
TRST  
INTERRUPT  
CE  
CE1  
0
R
R
CE  
0
JTAG  
L
COLLISION  
DETECTION  
LOGIC  
TDO  
CE1  
L
R/W  
R
R/  
W
L
COL L  
INTL  
COLR  
INT  
R
5652 drw 01  
(2)  
(2)  
ZZR  
ZZ  
ZZ  
L
CONTROL  
LOGIC  
NOTES:  
1. Address A18 is a NC for the IDT70T3319. Also, Addresses A18 and A17 are NC's for the IDT70T3399.  
2. The sleep mode pin shuts off all dynamic inputs, except JTAG inputs, when asserted. All static inputs, i.e., PL/FTx and  
JANUARY 2009  
OPTx and the sleep mode pins themselves (ZZx) are not affected during sleep mode.  
1
DSC-5652/6  
©2009IntegratedDeviceTechnology,Inc.  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Description:  
The IDT70T3339/19/99 is a high-speed 512/256/128k x 18 bit tionalorbidirectionaldataflowinbursts.Anautomaticpowerdownfeature,  
synchronous Dual-Port RAM. The memory array utilizes Dual-Port controlledbyCE0andCE1, permits the on-chipcircuitryofeachportto  
memorycellstoallowsimultaneousaccessofanyaddressfrombothports. enter a very low standby power mode.  
Registersoncontrol,data,andaddressinputsprovideminimalsetupand  
The IDT70T3339/19/99 cansupportanoperatingvoltage ofeither  
holdtimes.Thetiminglatitudeprovidedbythisapproachallowssystems 3.3Vor2.5Vononeorbothports,controllablebytheOPTpins.Thepower  
tobedesignedwithveryshortcycletimes.Withaninputdataregister,the supply for the core of the device (VDD) is at 2.5V.  
IDT70T3339/19/99hasbeenoptimizedforapplicationshavingunidirec-  
6.422  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Pin Configuration (3,4,5,6,9)  
70T3339/19/99BC  
BC-256(8)  
256-Pin BGA  
Top View(9)  
01/13/03  
A1  
A2  
A3  
A6  
A7  
A8  
A9  
A11  
A12  
A13  
A14  
A4  
A5  
A10  
A15  
A16  
NC  
TDI  
NC  
A
11L  
A
8L  
9L  
7L  
NC CE1L  
CNTEN  
L
A
5L  
4L  
A
2L  
A
0L  
A
17L(2)  
A
14L  
OE  
L
NC  
NC  
B1  
B2  
B3  
B6  
B7  
B9  
CE0L  
B11  
B12  
B13  
B4  
B5  
B8  
B10  
B14  
B15  
B16  
A
18L(1)  
A
15L  
UB  
L
R/W  
L
V
DD  
NC  
NC  
INT  
L
NC TDO  
A
12L  
10L  
A
REPEAT  
L
A
A
1L  
C1  
C5  
C6  
C2  
C3  
C4  
C7  
C8  
C9  
C10  
C11  
C12  
C13  
C16  
C14  
C15  
COL  
L
A
13L  
A
I/O9L  
VSS  
A
16L  
A
NC  
LB  
L
CLK  
L
ADS  
L
A
6L  
A
3L  
I/O8L  
OPT  
L
NC  
D1  
D2  
D6  
D9  
D11  
D3  
D4  
D5  
D7  
D8  
DDQR  
D10  
D12  
D13  
D14  
D15  
D16  
NC I/O9R  
DDQL VDDQL  
VDDQL  
VDDQR  
DDQL  
NC PIPE/FT  
L
V
V
DDQR  
V
V
V
DDQR  
VDD  
NC  
NC I/O8R  
E5  
E6  
E7  
E8  
E9  
E10  
E11  
E12  
E13  
E1  
E2  
E3  
E4  
E14  
E16  
E15  
V
DD  
V
DD  
NC  
V
SS  
VSS  
V
SS  
V
DD  
V
DD  
V
DDQR  
I/O10R I/O10L NC  
V
DDQL  
NC  
I/O7R  
I/O7L  
F7  
F1  
F2  
F3  
F5  
F6  
F9  
F10  
F14  
F15  
F16  
F11  
F13  
F4  
F8  
F12  
NC  
I/O11R  
V
DD  
NC  
V
SS  
V
SS  
I/O11L NC  
I/O6R NC I/O6L  
DDQR  
V
SS  
SS  
SS  
V
SS  
V
DD  
V
V
DDQL  
G1  
G5  
G2  
G4  
G6  
G8  
G9  
G3  
G7  
G10  
G12  
G13  
G14  
G15  
G16  
G11  
NC  
V
SS  
NC  
V
DDQR  
V
SS  
V
V
SS  
I/O12L  
I/O5L NC  
DDQL  
NC  
V
SS  
V
SS  
V
SS  
V
V
SS  
H11  
H12  
H16  
H13  
H6  
H7  
H8  
H9  
H10  
H14  
H15  
H3  
H4  
H5  
H1  
H2  
V
SS  
V
SS  
VDDQL  
I/O5R  
V
SS  
VSS  
V
V
SS  
V
SS  
NC  
NC  
V
SS  
NC  
V
DDQR  
NC I/O12R  
J1  
J5  
J2  
J3  
J4  
J6  
J7  
J8  
J9  
J13  
J10  
J11  
J12  
J14  
J15  
J16  
I/O13L  
I/O14R I/O13R  
V
DDQL ZZ  
R
V
SS  
SS  
V
SS  
V
SS  
SS  
V
SS  
V
DDQR  
I/O4R  
V
SS  
V
SS  
ZZ  
L
I/O3R I/O4L  
K6  
K8  
K10  
K12  
K13  
K5  
K7  
K9  
K11  
K2  
K4  
K15  
K16  
K1  
K3  
K14  
V
V
V
SS  
V
SS  
V
DDQR  
VSS  
V
SS  
VSS  
V
SS  
NC  
V
DDQL  
NC I/O3L  
NC  
I/O14L  
NC  
L7  
L8  
L11  
L12  
L13  
L3  
L4  
L5  
L6  
L9  
L10  
L15  
L16  
L1  
L2  
L14  
NC  
V
SS  
VSS  
V
DD  
VDDQL  
I/O15R  
V
DDQR  
VDD  
NC  
VSS  
V
SS  
NC I/O2R  
I/O15L NC  
I/O2L  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M1  
M2  
M3  
M4  
M16  
M14  
M15  
V
DD  
V
DD  
NC  
V
SS  
VSS  
V
SS  
VDD  
V
DD  
VDDQL  
I/O16R I/O16L NC  
V
DDQR  
NC  
I/O1R I/O1L  
N8  
N12  
N16  
N13  
N4  
N5  
N6  
DDQR  
N7  
DDQL  
N9  
N10  
N11  
N15  
N1  
N2  
N3  
N14  
V
DDQL  
V
DDQL  
VDD  
NC  
VDDQR  
V
V
V
DDQR  
V
DDQR  
V
DDQL  
PIPE/FT  
R
I/O0R  
NC I/O17R NC  
NC  
P1  
P2  
P3  
P4  
P5  
P7  
P8  
P9  
P10  
P11  
P12  
P14  
P15  
P16  
P6  
P13  
COL  
R
I/O17L TMS  
A
16R  
A
13R  
A
7R  
NC  
LB  
R
CLK  
R
ADS  
R
A
6R  
4R  
NC  
NC I/O0L  
A
10R  
A
3R  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R16  
R1  
R2  
R3  
R4  
R12  
R13  
R14  
R15  
,
NC TRST A18R(1)  
A
A
1R OPTR  
A
15R  
A
12R  
A9R  
UB  
R
CE0R R/W  
R
REPEAT  
R
NC  
INT  
R
NC  
T2  
T3  
T1  
T4  
17R(2)  
T5  
T8  
T9  
T15  
T16  
T6  
T7  
T10  
T11  
T12  
T13  
T14  
TCK NC  
NC  
A
A
14R  
NC CE1R  
NC  
NC  
A
11R  
A
8R  
OE  
R
CNTEN  
R
A
5R  
A2R  
A
0R  
5652 drw 02d  
NOTES:  
,
1. Pin is a NC for IDT70T3319 and IDT70T3399.  
2. Pin is a NC for IDT70T3399.  
3. All VDD pins must be connected to 2.5V power supply.  
4. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VDD (2.5V), and 2.5V if OPT pin for that port is  
set to VSS (0V).  
5. All VSS pins must be connected to ground supply.  
6. Package body is approximately 17mm x 17mm x 1.4mm, with 1.0mm ball-pitch.  
7. This package code is used to reference the package diagram.  
8. This text does not indicate orientation of the actual part-marking.  
9. Pins A15 and T15 will be VREFL and VREFR respectively for future HSTL device.  
6.42  
3
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
PinConfiguration(con't)(3,4,5,6,9,10)  
01/07/03  
1
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
V
SS  
DDQR  
SS  
OPTL  
2
V
DDQR  
V
3
V
I/O9L  
I/O9R  
I/O10L  
I/O10R  
I/O11L  
I/O11R  
DDQL  
V
I/O12L  
VSS  
4
I/O8L  
I/O8R  
I/O7L  
I/O7R  
I/O6L  
I/O6R  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
SS  
V
98  
SS  
97  
I/O5L  
I/O5R  
96  
I/O12R  
DDQR  
ZZ  
95  
V
V
V
V
V
V
V
SS  
70T3339/19/99DD  
DD-144(7)  
94  
R
DDQR  
DD  
93  
V
V
DD  
92  
DD  
DD  
91  
V
V
DDQL  
V
I/O13R  
I/O13L  
I/O14R  
I/O14L  
DDQR  
V
I/O15R  
I/O15L  
I/O16R  
I/O16L  
I/O17R  
I/O17L  
V
DDQL  
NC  
SS  
SS  
SS  
144-Pin TQFP  
Top View(8)  
90  
SS  
89  
ZZ  
L
V
88  
SS  
VDDQL  
87  
I/O4R  
I/O4L  
I/O3R  
I/O3L  
86  
85  
84  
83  
SS  
V
82  
SS  
81  
I/O2R  
I/O2L  
I/O1R  
I/O1L  
I/O0R  
I/O0L  
80  
79  
78  
77  
76  
75  
SS  
V
V
OPT  
SS  
74  
V
DDQL  
73  
R
,
5652 drw 02a  
NOTES:  
1. Pin is a NC for IDT70T3319 and IDT70T3399.  
2. Pin is a NC for IDT70T3399.  
3. All VDD pins must be connected to 2.5V power supply.  
4. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VDD (2.5V), and 2.5V if OPT pin for that port is set to VSS (0V).  
5. All VSS pins must be connected to ground supply.  
6. Package body is approximately 20mm x 20mm x 1.4mm.  
7. This package code is used to reference the package diagram.  
8. This text does not indicate orientation of the actual part-marking.  
9. Due to limited pin count, JTAG, Collison Detection and Interrupt are not supported in the DD-144 package.  
10. Pins 109 and 72 will be VREFL and VREFR respectively for future HSTL device.  
6.442  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Pin Configurations(con't)(3,4,5,6,9)  
01/13/03  
1
2
3
4
5
6
7
8
9
11 12 13 14  
10  
16 17  
15  
I/O9L  
VSS  
A
16L  
A
12L  
INT  
L
A
B
C
D
E
F
V
SS  
NC  
A
8L  
NC  
V
DD  
A
0L  
OPT  
L
NC  
TDO  
CLK  
L
CNTEN  
L
A
A
A
4L  
1L  
2L  
(2)  
NC  
COLL  
VSS  
A
9L  
V
SS  
SS  
TDI  
A
A
17L  
18L  
NC  
CE0L  
VDDQR I/O8L  
NC  
A
13L  
ADSL  
NC  
A5L  
(1)  
VDDQL I/O9R  
VDDQR PIPE/FT  
L
A14L  
A10L  
I/O8R  
UB  
L
VDD  
CE1L  
V
A6L  
NC  
VSS  
R/W  
L
NC  
VSS  
NC  
I/O10L  
VDDQL  
VDD  
A
15L  
A11L  
LB  
L
V
DD  
I/O7R  
NC  
A
7L  
OE  
L
A3L  
I/O7L  
REPEAT  
L
I/O11L  
NC  
V
DDQR I/O10R  
NC  
I/O6L  
NC  
NC  
VSS  
I/O11R  
VSS  
I/O6R  
NC  
VDDQL  
V
DDQR  
V
SS  
NC  
V
SS  
I/O12L  
NC  
NC  
I/O5L  
V
DDQL  
NC  
G
H
J
VDD  
V
SS  
SS  
I/O5R  
NC  
I/O12R  
NC  
V
DDQR  
VDD  
70T3339/19/99BF  
BF-208(7)  
ZZL  
VDDQL  
VSS  
ZZ  
R
V
DD  
V
VDDQR  
VDD  
208-Pin fpBGA  
Top View(8)  
I/O3R  
I/O4R  
I/O14R  
NC  
V
SS  
VDDQL  
V
SS  
K
L
I/O13R  
V
SS  
I/O14L  
NC  
VDDQR  
I/O13L  
I/O4L  
NC  
I/O3L  
NC  
VSS  
VDDQL  
I/O15R  
NC  
V
SS  
VSS  
I/O2R  
NC  
V
DDQR  
I/O2L  
NC  
M
N
P
R
T
NC  
V
SS  
VDDQL  
I/O15L  
I/O1R  
I/O16L  
I/O16R  
V
DDQR  
TRST  
A
16R  
A8R  
COL  
R
A
12R  
9R  
NC  
I/O1L  
VSS  
V
DD  
SS  
CLK  
R
NC  
NC  
A
4R  
CNTEN  
R
(2)  
(1)  
A
17R  
18R  
A
1R  
TCK  
A
13R  
A5R  
V
SS  
I/O17R  
CE0R  
CE1R  
VDDQR  
NC  
A
NC  
I/O0R  
ADS  
R
V
VDDQL  
VSS  
I/O17L  
A
UBR  
NC  
NC  
VDDQL TMS  
A
14R  
A10R  
VSS  
A6R  
V
SS  
NC  
R/W  
R
A2R  
VSS  
PIPE/FT  
R
VDD  
I/O0L  
INTR  
LBR  
A7R  
OE  
R
A3R  
VDD  
NC  
A15R  
A11R  
OPT  
R
NC  
REPEAT  
R
A0R  
U
5652 drw 02c  
NOTES:  
1. Pin is a NC for IDT70T3319 and IDT70T3399.  
2. Pin is a NC for IDT70T3399.  
3. All VDD pins must be connected to 2.5V power supply.  
4. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VDD (2.5V), and 2.5V if OPT pin for that port is  
set to VSS (0V).  
5. All VSS pins must be connected to ground supply.  
6. Package body is approximately 15mm x 15mm x 1.4mm with 0.8mm ball pitch.  
7. This package code is used to reference the package diagram.  
8. This text does not indicate orientation of the actual part-marking.  
9. Pins B14 and R14 will be VREFL and VREFR respectively for future HSTL device.  
6.42  
5
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
PinNames  
Left Port  
Right Port  
CE0R CE1R  
R/W  
OE  
Names  
(7)  
Chip Enables (Input)  
CE0L  
R/W  
OE  
,
CE1L  
,
L
R
Read/Write Enable (Input)  
Output Enable (Input)  
Address (Input)  
L
R
(6)  
(6)  
A
0L - A18L  
A
0R - A18R  
I/O0R - I/O17R  
CLK  
PL/FT  
ADS  
CNTEN  
REPEAT  
UB  
LB  
I/O0L - I/O17L  
CLK  
PL/FT  
ADS  
CNTEN  
REPEAT  
UB  
LB  
Data Input/Output  
L
R
Clock (Input)  
L
R
Pipeline/Flow-Through (Input)  
Address Strobe Enable (Input)  
Counter Enable (Input)  
Counter Repeat(3)  
L
R
L
R
L
R
(7)  
Upper Byte Enable (I/O  
9 - I/O17)  
L
R
(7)  
Lower Byte Enable (I/O  
0
- I/O8)  
L
R
V
DDQL  
V
DDQR  
Power (I/O Bus) (3.3V or 2.5V)(1) (Input)  
Option for selecting VDDQX(1,2) (Input)  
Sleep Mode pin(4) (Input)  
Power (2.5V)(1) (Input)  
OPT  
L
OPT  
R
ZZ  
L
ZZ  
R
NOTES:  
VDD  
1. VDD, OPTX, and VDDQX must be set to appropriate operating levels prior to  
applying inputs on the I/Os and controls for that port.  
VSS  
Ground (0V) (Input)  
2. OPTX selects the operating voltage levels for the I/Os and controls on that port.  
If OPTX is set to VDD (2.5V), then that port's I/Os and controls will operate at 3.3V  
levels and VDDQX must be supplied at 3.3V. If OPTX is set to VSS (0V), then that  
port's I/Os and address controls will operate at 2.5V levels and VDDQX must be  
supplied at 2.5V. The OPT pins are independent of one anotherboth ports can  
operate at 3.3V levels, both can operate at 2.5V levels, or either can operate  
at 3.3V with the other at 2.5V.  
3. When REPEATX is asserted, the counter will reset to the last valid address loaded  
via ADSX.  
4. The sleep mode pin shuts off all dynamic inputs, except JTAG inputs, when  
asserted. All static inputs, i.e., PL/FTx and OPTx and the sleep mode pins  
themselves (ZZx) are not affected during sleep mode. It is recommended that  
boundry scan not be operated during sleep mode.  
(5)  
TDI  
Test Data Input  
(5)  
TDO  
Test Data Output  
(5)  
TCK  
Test Logic Clock (10MHz) (Input)  
Test Mode Select (Input)  
Reset (Initialize TAP Controller) (Input)  
Interrupt Flag (Output)  
TMS(5)  
(5)  
TRST  
(5)  
(5)  
INT  
R
INT  
L
(5)  
(5)  
COL  
R
COL  
L
Collision Alert (Output)  
5652 tbl 01  
5. Due to limited pin count, JTAG, Collision Detection and Interrupt are not supported  
in the DD-144 package.  
6. Address A18x is a NC for the IDT70T3319. Also, Addresses A18x and A17x are  
NC's for the IDT70T3399.  
7. Chip Enables and Byte Enables are double buffered when PL/FT = VIH, i.e., the  
signals take two cycles to deselect.  
6.462  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
(1,2,3,4)  
Truth Table I—Read/Write and Enable Control  
Upper Byte  
Lower Byte  
CLK  
CE  
1
R/W  
X
X
X
L
ZZ  
L
L
L
L
L
L
L
L
L
L
H
I/O9-17  
High-Z  
High-Z  
High-Z  
High-Z  
I/O0-8  
High-Z  
High-Z  
High-Z  
MODE  
Deselected–Power Down  
Deselected–Power Down  
Both Bytes Deselected  
Write to Lower Byte Only  
Write to Upper Byte Only  
Write to Both Bytes  
OE  
X
X
X
X
X
X
L
CE  
0
UB  
X
X
H
H
L
LB  
X
X
H
L
H
X
L
L
L
L
L
L
L
L
X
X
L
H
H
H
H
H
H
H
H
X
DIN  
H
L
L
DIN  
High-Z  
L
L
DIN  
DIN  
H
L
L
H
H
H
X
X
High-Z  
DOUT  
Read Lower Byte Only  
Read Upper Byte Only  
Read Both Bytes  
L
H
L
DOUT  
High-Z  
L
L
DOUT  
DOUT  
H
X
L
L
High-Z  
High-Z  
High-Z  
High-Z  
Outputs Disabled  
X
X
X
Sleep Mode  
5652 tbl 02  
NOTES:  
1. "H" = VIH, "L" = VIL, "X" = Don't Care.  
2. ADS, CNTEN, REPEAT = X.  
3. OE and ZZ are asynchronous input signals.  
4. It is possible to read or write any combination of bytes during a given access. A few representative samples have been illustrated here.  
(1,2)  
Truth Table II—Address Counter Control  
Previous  
Internal  
Address  
Internal  
Address  
Used  
MODE  
(3)  
ADS CNTEN REPEAT(6)  
Address  
CLK  
I/O  
I/O (n) External Address Used  
I/O(n+1) Counter EnabledInternal Address generation  
I/O(n+1) External Address BlockedCounter disabled (An + 1 reused)  
DI/O(n) Counter Set to last valid ADS load  
(4)  
An  
X
X
An  
An  
L
H
H
X
X
H
H
D
(5)  
An + 1  
An + 1  
An  
L
H
X
D
X
An + 1  
X
H
D
(4)  
X
L
5652 tbl 03  
NOTES:  
1. "H" = VIH, "L" = VIL, "X" = Don't Care.  
2. Read and write operations are controlled by the appropriate setting of R/W, CE0, CE1, UB, LB and OE.  
3. Outputs configured in flow-through output mode: if outputs are in pipelined mode the data out will be delayed by one cycle.  
4. ADS and REPEAT are independent of all other memory control signals including CE0, CE1, UB and LB.  
5. The address counter advances if CNTEN = VIL on the rising edge of CLK, regardless of all other memory control signals including CE0, CE1, UB and LB.  
6. When REPEAT is asserted, the counter will reset to the last valid address loaded via ADS. This value is not set at power-up: a known location should be loaded  
via ADS during initialization if desired. Any subsequent ADS access during operations will update the REPEAT address location.  
6.42  
7
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
MaximumOperating  
TemperatureandSupplyVoltage(1)  
Ambient  
Grade  
Commercial  
Temperature  
0OC to +70OC  
-40OC to +85OC  
GND  
0V  
VDD  
2.5V  
2.5V  
+
+
100mV  
100mV  
Industrial  
0V  
5652 tbl 04  
NOTES:  
1. This is the parameter TA. This is the "instant on" case temperature.  
RecommendedDCOperating  
Conditions with VDDQ at 2.5V  
Symbol  
Parameter  
Core Supply Voltage  
I/O Supply Voltage(3)  
Ground  
Min.  
2.4  
2.4  
0
Typ.  
2.5  
2.5  
0
Max.  
2.6  
2.6  
0
Unit  
V
V
DD  
DDQ  
SS  
V
V
V
V
Input High Volltage  
(Address, Control &  
(3)  
Data I/O Inputs)  
(2)  
____  
V
DDQ + 100mV  
1.7  
1.7  
V
V
V
IH  
Input High Voltage _  
JTAG  
(2)  
____  
VIH  
VDD + 100mV  
Input High Voltage -  
ZZ, OPT, PIPE/FT  
(2)  
____  
____  
____  
V
IH  
V
DD - 0.2V  
V
DD + 100mV  
V
V
VIL  
Input Low Voltage  
-0.3(1)  
0.7  
0.2  
Input Low Voltage -  
ZZ, OPT, PIPE/FT  
VIL  
-0.3(1)  
V
5652 tbl 05a  
NOTES:  
1. VIL (min.) = -1.0V for pulse width less than tCYC/2 or 5ns, whichever is less.  
2. VIH (max.) = VDDQ + 1.0V for pulse width less than tCYC/2 or 5ns, whichever is less.  
3. To select operation at 2.5V levels on the I/Os and controls of a given port, the OPT  
pin for that port must be set to Vss(0V), and VDDQX for that port must be supplied as  
indicated above.  
RecommendedDCOperating  
Conditions with VDDQ at 3.3V  
Symbol  
Parameter  
Core Supply Voltage  
I/O Supply Voltage(3)  
Ground  
Min.  
2.4  
3.15  
0
Typ.  
2.5  
3.3  
0
Max.  
2.6  
3.45  
0
Unit  
V
V
DD  
DDQ  
SS  
V
V
V
V
Input High Voltage  
(Address, Control  
&Data I/O Inputs)(3)  
(2)  
____  
2.0  
1.7  
V
DDQ + 150mV  
V
V
V
IH  
_
Input High Voltage  
JTAG  
(2)  
____  
VIH  
VDD + 100mV  
Input High Voltage -  
ZZ, OPT, PIPE/FT  
(2)  
____  
____  
____  
V
IH  
IL  
IL  
V
DD - 0.2V  
V
DD + 100mV  
V
V
V
Input Low Voltage  
-0.3(1)  
0.8  
0.2  
Input Low Voltage -  
ZZ, OPT, PIPE/FT  
V
-0.3(1)  
V
5652 tbl 05b  
NOTES:  
1. VIL (min.) = -1.0V for pulse width less than tCYC/2, or 5ns, whichever is less.  
2. VIH (max.) = VDDQ + 1.0V for pulse width less than tCYC/2 or 5ns, whichever is less.  
3. To select operation at 3.3V levels on the I/Os and controls of a given port, the OPT  
pin for that port must be set to VDD (2.5V), and VDDQX for that port must be supplied  
as indicated above.  
6.482  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AbsoluteMaximumRatings(1)  
Symbol  
Rating  
Commercial  
& Industrial  
Unit  
V
V
TERM  
VDD Terminal Voltage  
-0.5 to 3.6  
(VDD  
)
with Respect to GND  
(2)  
TERM  
V
V
DDQ Terminal Voltage  
-0.3 to VDDQ + 0.3  
-0.3 to VDDQ + 0.3  
V
(VDDQ  
)
with Respect to GND  
(2)  
TERM  
V
Input and I/O Terminal  
V
(INPUTS and I/O's)  
Voltage with Respect to GND  
(3)  
T
BIAS  
STG  
JN  
Temperature Under Bias  
Storage Temperature  
Junction Temperature  
-55 to +125  
-65 to +150  
+150  
oC  
oC  
T
T
oC  
IOUT(For VDDQ = 3.3V) DC Output Current  
50  
mA  
IOUT(For VDDQ = 2.5V) DC Output Current  
40  
mA  
5652 tbl 06  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause  
permanent damage to the device. This is a stress rating only and functional operation of the  
device at these or any other conditions above those indicated in the operational sections  
of this specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect reliability.  
2. This is a steady-state DC parameter that applies after the power supply has reached its  
nominal operating value. Power sequencing is not necessary; however, the voltage on  
any Input or I/O pin cannot exceed VDDQ during power supply ramp up.  
3. Ambient Temperature under DC Bias. No AC Conditions. Chip Deselected.  
Capacitance(1)  
(TA = +25°C, f = 1.0MHz) PQFP ONLY  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions(2)  
IN = 3dV  
OUT = 3dV  
Max. Unit  
CIN  
V
8
pF  
(3)  
OUT  
C
V
10.5  
pF  
5652 tbl 07  
NOTES:  
1. These parameters are determined by device characterization, but are not  
production tested.  
2. 3dV references the interpolated capacitance when the input and output switch  
from 0V to 3V or from 3V to 0V.  
3. COUT also references CI/O.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(VDD = 2.5V ± 100mV)  
70T3339/19/99S  
Symbol  
|ILI  
|ILI  
|ILO  
Parameter  
Test Conditions  
DDQ = Max., VIN = 0V to VDDQ  
DD = Max. IN = 0V to VDD  
CE = VIH or CE = VIL, VOUT = 0V to VDDQ  
OL = +4mA, VDDQ = Min.  
OH = -4mA, VDDQ = Min.  
OL = +2mA, VDDQ = Min.  
OH = -2mA, VDDQ = Min.  
Min.  
Max.  
Unit  
µA  
µA  
µA  
V
(1)  
___  
|
Input Leakage Current  
V
10  
±30  
10  
___  
___  
___  
|
JTAG & ZZ Input Leakage Current(1,2)  
Output Leakage Current(1,3)  
V
, V  
|
0
1
V
OL (3.3V) Output Low Voltage(1)  
OH (3.3V) Output High Voltage(1)  
OL (2.5V) Output Low Voltage(1)  
OH (2.5V) Output High Voltage(1)  
I
0.4  
___  
V
I
2.4  
V
___  
V
I
0.4  
V
___  
V
I
2.0  
V
5652 tbl 08  
NOTES:  
1. VDDQ is selectable (3.3V/2.5V) via OPT pins. Refer to p.6 for details.  
2. Applicable only for TMS, TDI and TRST inputs.  
3. Outputs tested in tri-state mode.  
6.42  
9
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (3)(VDD = 2.5V ± 100mV)  
70T3339/19/99  
S200  
70T3339/19/99  
70T3339/19/99  
S133  
S166  
Com'l  
& Ind(7)  
Com'l Only(8)  
Com'l  
& Ind  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(4)  
Max.  
Typ.(4)  
Max.  
450  
510  
230  
275  
325  
365  
15  
Typ.(4)  
260  
260  
140  
140  
200  
200  
5
Max. Unit  
IDD  
Dynamic Operating  
Current (Both  
Ports Active)  
CE  
L
and CER= VIL,  
S
S
S
S
S
S
S
S
S
S
S
S
375  
525  
320  
320  
175  
175  
250  
250  
5
370  
450  
190  
235  
250  
310  
15  
mA  
mA  
mA  
mA  
mA  
Outputs Disabled,  
___  
___  
(1)  
IND  
f = fMAX  
(6)  
I
SB1  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
CE  
f = fMAX  
L = CER = VIH  
(1)  
COM'L  
IND  
205  
270  
___  
___  
(6)  
(5)  
I
SB2  
Standby Current  
(One Port - TTL  
Level Inputs)  
CE"A" = VIL and CE"B" = VIH  
COM'L  
IND  
300  
375  
Active Port Outputs Disabled,  
___  
___  
(1)  
f=fMAX  
ISB3  
Full Standby Current  
(Both Ports - CMOS  
Level Inputs)  
Both Ports CE  
CE > VDDQ - 0.2V, VIN > VDDQ - 0.2V  
or VIN < 0.2V, f = 0(2)  
L and  
COM'L  
IND  
5
15  
R
___  
___  
5
20  
5
20  
(6)  
(5)  
I
SB4  
Full Standby Current  
(One Port - CMOS  
Level Inputs)  
CE"A" < 0.2V and CE"B" > VDDQ - 0.2V  
IN > VDDQ - 0.2V or VIN < 0.2V  
Active Port, Outputs Disabled, f = fMAX  
COM'L  
IND  
300  
375  
250  
250  
5
325  
365  
15  
200  
200  
5
250  
310  
15  
V
___  
___  
(1)  
Izz  
Sleep Mode Current  
(Both Ports - TTL  
Level Inputs)  
ZZL = ZZR =  
f=fMAX  
VIH  
COM'L  
IND  
5
15  
(1)  
mA  
___  
___  
5
20  
5
20  
5652 tbl 09  
NOTES:  
1. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency clock cycle of 1/tCYC, using "AC TEST CONDITIONS".  
2. f = 0 means no address, clock, or control lines change. Applies only to input at CMOS level standby.  
3. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
4. VDD = 2.5V, TA = 25°C for Typ, and are not production tested. IDD DC(f=0) = 15mA (Typ).  
5. CEX = VIL means CE0X = VIL and CE1X = VIH  
CEX = VIH means CE0X = VIH or CE1X = VIL  
CEX < 0.2V means CE0X < 0.2V and CE1X > VDDQ - 0.2V  
CEX > VDDQ - 0.2V means CE0X > VDDQ - 0.2V or CE1X - 0.2V  
"X" represents "L" for left port or "R" for right port.  
6. ISB1, ISB2 and ISB4 will all reach full standby levels (ISB3) on the appropriate port(s) if ZZL and/or ZZR = VIH.  
7. 166MHz I-Temp is not available in the BF-208 package.  
8. 200Mhz is not available in the BF-208 and DD-144 packages.  
6.1402  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Test Conditions (VDDQ - 3.3V/2.5V)  
Input Pulse Levels (Address & Controls)  
Input Pulse Levels (I/Os)  
Input Rise/Fall Times  
GND to 3.0V/GND to 2.4V  
GND to 3.0V/GND to 2.4V  
2ns  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
1.5V/1.25V  
1.5V/1.25V  
Figures 1 and 2  
5652 tbl 10  
50
 
50Ω  
,
DATAOUT  
1.5V/1.25  
10pF  
(Tester)  
5652 drw 03  
Figure 1. AC Output Test load.  
tCD  
(Typical, ns)  
5652 drw 04  
Capacitance (pF) from AC Test Load  
6.42  
11  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the Operating Temperature Range  
(Read and Write Cycle Timing) (2,3) (VDD = 2.5V ± 100mV, TA = 0°C to +70°C)  
70T3339/19/99  
S200  
70T3339/19/99  
S166  
Com'l  
70T3339/19/99  
S133  
Com'l  
Com'l Only(5)  
& Ind(4)  
& Ind  
Symbol  
Parameter  
Min.  
15  
5
Max.  
Min.  
20  
Max.  
Min.  
25  
Max.  
Unit  
ns  
t
CYC1  
CYC2  
CH1  
CL1  
CH2  
CL2  
SA  
HA  
SC  
HC  
SB  
HB  
SW  
HW  
SD  
HD  
SAD  
HAD  
SCN  
HCN  
SRPT  
HRPT  
OE  
Clock Cycle Time (Flow-Through)(1)  
____  
____  
____  
(1)  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
Clock Cycle Time (Pipelined)  
6
7.5  
10  
ns  
(1)  
t
Clock High Time (Flow-Through)  
6
8
ns  
(1)  
t
Clock Low Time (Flow-Through)  
6
8
10  
ns  
t
Clock High Time (Pipelined)(2)  
Clock Low Time (Pipelined)(1)  
Address Setup Time  
2
2.4  
2.4  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
3
ns  
t
2
3
ns  
t
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
ns  
t
Address Hold Time  
ns  
t
Chip Enable Setup Time  
Chip Enable Hold Time  
Byte Enable Setup Time  
Byte Enable Hold Time  
R/W Setup Time  
ns  
t
ns  
t
ns  
t
ns  
t
ns  
t
R/W Hold Time  
ns  
t
Input Data Setup Time  
Input Data Hold Time  
ns  
t
ns  
t
ns  
ADS Setup Time  
t
ns  
ADS Hold Time  
t
ns  
CNTEN Setup Time  
t
ns  
CNTEN Hold Time  
t
ns  
REPEAT Setup Time  
t
0.5  
0.5  
0.5  
ns  
REPEAT Hold Time  
____  
____  
____  
t
Output Enable to Data Valid  
Output Enable to Output Low-Z  
Output Enable to Output High-Z  
Clock to Data Valid (Flow-Through)(1)  
4.4  
4.4  
4.6  
ns  
(6)  
____  
____  
____  
t
OLZ  
1
1
1
ns  
(6)  
OHZ  
t
1
3.4  
10  
1
3.6  
12  
1
4.2  
15  
ns  
____  
____  
____  
t
CD1  
CD2  
DC  
ns  
(1)  
____  
____  
____  
t
Clock to Data Valid (Pipelined)  
3.4  
3.6  
4.2  
ns  
____  
____  
____  
t
Data Output Hold After Clock High  
Clock High to Output High-Z  
Clock High to Output Low-Z  
Interrupt Flag Set Time  
1
1
1
1
1
1
ns  
(6)  
CKHZ  
t
3.4  
3.6  
4.2  
ns  
(6)  
CKLZ  
____  
____  
____  
t
1
1
1
ns  
____  
____  
____  
t
INS  
INR  
COLS  
COLR  
ZZSC  
ZZRC  
7
7
7
7
7
7
ns  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
Interrupt Flag Reset Time  
Collision Flag Set Time  
ns  
t
3.4  
3.6  
4.2  
ns  
t
Collision Flag Reset Time  
Sleep Mode Set Cycles  
3.4  
3.6  
4.2  
ns  
____  
____  
____  
t
2
3
2
3
2
3
cycles  
cycles  
____  
____  
____  
t
Sleep Mode Recovery Cycles  
Port-to-Port Delay  
Clock-to-Clock Offset  
Clock-to-Clock Offset for Collision Detection  
____  
____  
____  
t
CO  
4
5
6
ns  
tOFS  
Please refer to Collision Detection Timing Table on Page 21  
5652 tbl 11  
NOTES:  
1. The Pipelined output parameters (tCYC2, tCD2) apply to either or both left and right ports when FT/PIPEX = VDD (2.5V). Flow-through parameters (tCYC1, tCD1)  
apply when FT/PIPE = Vss (0V) for that port.  
2. All input signals are synchronous with respect to the clock except for the asynchronous Output Enable (OE), FT/PIPE and OPT. FT/PIPE and OPT should be  
treated as DC signals, i.e. steady state during operation.  
3. These values are valid for either level of VDDQ (3.3V/2.5V). See page 6 for details on selecting the desired operating voltage levels for each port.  
4. 166MHz I-Temp is not available in the BF-208 package.  
5. 200Mhz is not available in the BF-208 and DD-144 packages.  
6. Guaranteed by design (not production tested).  
6.1422  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Read Cycle for Pipelined Operation  
(FT/PIPE'X' = VIH)(2)  
t
CYC2  
t
CH2  
tCL2  
CLK  
CE0  
t
SC  
tHC  
t
SC  
SB  
t
HC  
HB  
(3)  
CE1  
t
SB  
tHB  
t
t
(5)  
UB, LB  
R/W  
t
HW  
t
SW  
SA  
t
t
HA  
ADDRESS(4)  
DATAOUT  
An  
An + 1  
An + 2  
Qn  
An + 3  
(1 Latency)  
tDC  
tCD2  
Qn + 1  
Qn + 2(5)  
(1)  
tCKLZ  
t
OHZ  
tOLZ  
OE(1)  
,
t
OE  
5652 drw 05  
Timing Waveform of Read Cycle for Flow-through Output  
(FT/PIPE"X" = VIL)(2,6)  
t
CYC1  
t
CH1  
t
CL1  
CLK  
CE  
0
t
SC  
tHC  
t
SC  
SB  
t
HC  
HB  
(3)  
CE1  
t
t
t
HB  
UB, LB  
t
SB  
R/  
W
t
SW  
SA  
t
HW  
HA  
t
t
ADDRESS(4)  
DATAOUT  
An  
An + 1  
An + 2  
An + 3  
tDC  
tCD1  
t
CKHZ  
Qn  
Qn + 1  
Qn + 2(5)  
t
CKLZ  
tDC  
t
OHZ  
t
OLZ  
OE(1)  
,
t
OE  
5652 drw 06  
NOTES:  
1. OE is asynchronously controlled; all other inputs depicted in the above waveforms are synchronous to the rising clock edge.  
2. ADS = VIL, CNTEN and REPEAT = VIH.  
3. The output is disabled (High-Impedance state) by CE0 = VIH, CE1 = VIL, UB, LB = VIH following the next rising edge of the clock. Refer to  
Truth Table 1.  
4. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers  
are for reference use only.  
5. If UB, LB was HIGH, then the appropriate Byte of DATAOUT for Qn + 2 would be disabled (High-Impedance state).  
6. "x" denotes Left or Right port. The diagram is with respect to that port.  
6.42  
13  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of a Multi-Device Pipelined Read(1,2)  
tCYC2  
tCH2  
tCL2  
CLK  
ADDRESS(B1)  
CE0(B1)  
t
SA  
tHA  
A6  
A5  
A4  
A
3
A2  
A
0
A1  
tSC  
tHC  
t
SC  
tHC  
tCD2  
tCD2  
tCKHZ  
tCD2  
Q
0
Q3  
Q1  
DATAOUT(B1)  
ADDRESS(B2)  
tDC  
tCKLZ  
tDC  
tCKHZ  
tSA tHA  
A6  
A
5
A4  
A
3
A
2
A0  
A1  
tSC tHC  
CE0(B2)  
tSC  
tHC  
tCD2  
tCKHZ  
tCD2  
,
DATAOUT(B2)  
Q4  
Q2  
tCKLZ  
tCKLZ  
5652 drw 07  
Timing Waveform of a Multi-Device Flow-Through Read(1,2)  
t
CYC1  
tCH1  
tCL1  
CLK  
tSA  
tH  
A
A6  
A5  
A4  
A3  
A2  
A0  
A1  
ADDRESS(B1)  
t
SC  
t
HC  
CE0(B1)  
tSC  
tHC  
(1)  
tCD1  
tCD1  
tCKHZ  
tCD1  
tCD1  
D
0
D
3
D5  
D
1
DATAOUT(B1)  
ADDRESS(B2)  
(1)  
(1)  
(1)  
tDC  
tCKLZ  
tCKLZ  
t
DC  
tCKHZ  
tSA  
tHA  
A6  
A
5
A4  
A3  
A2  
A
0
A1  
tSC  
tHC  
CE0(B2)  
t
SC  
t
HC  
(1)  
(1)  
tCD1  
tCKHZ  
tCD1  
t
CKHZ  
D4  
DATAOUT(B2)  
D2  
(1)  
(1)  
,
tCKLZ  
tCKLZ  
5652 drw 08  
NOTES:  
1. B1 Represents Device #1; B2 Represents Device #2. Each Device consists of one IDT70T3339/19/99 for this waveform,  
and are setup for depth expansion in this example. ADDRESS(B1) = ADDRESS(B2) in this situation.  
2. UB, LB, OE, and ADS = VIL; CE1(B1), CE1(B2), R/W, CNTEN, and REPEAT = VIH.  
6.1442  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Left Port Write to Pipelined Right Port Read(1,2,4)  
CLK"A"  
tSW  
tHW  
R/W"A  
"
tSA  
tHA  
NO  
MATC  
H
ADDRESS"A"  
DATAIN"A"  
MATC  
H
t
SD  
tHD  
VALID  
(3)  
CO  
t
CLK"B"  
t
CD2  
R/W"B"  
tSW  
tHW  
tSA  
t
HA  
NO  
ADDRESS"B"  
DATAOUT"B"  
MATC  
H
MATCH  
VALID  
,
t
DC  
5652 drw 09  
NOTES:  
1. CE0, UB, LB, and ADS = VIL; CE1, CNTEN, and REPEAT = VIH.  
2. OE = VIL for Port "B", which is being read from. OE = VIH for Port "A", which is being written to.  
3. If tCO < minimum specified, then data from Port "B" read is not valid until following Port "B" clock cycle (ie, time from write to valid read on opposite port will be  
tCO + 2 tCYC2 + tCD2). If tCO > minimum, then data from Port "B" read is available on first Port "B" clock cycle (ie, time from write to valid read on opposite port  
will be tCO + tCYC2 + tCD2).  
4. All timing is the same for Left and Right ports. Port "A" may be either Left or Right port. Port "B" is the opposite of Port "A"  
Timing Waveform with Port-to-Port Flow-Through Read(1,2,4)  
CLK "A"  
tSW  
tHW  
R/W "A"  
t
SA  
MATCH  
SD HD  
VALID  
tHA  
NO  
MATCH  
ADDRESS "A"  
DATAIN "A"  
t
t
(3)  
t
CO  
CLK "B"  
R/W "B"  
t
CD1  
tHW  
tSW  
t
HA  
tSA  
NO  
MATCH  
ADDRESS "B"  
DATAOUT "B"  
MATCH  
tCD1  
VALID  
VALID  
,
t
DC  
t
DC  
5652 drw 10  
NOTES:  
1. CE0, UB, LB, and ADS = VIL; CE1, CNTEN, and REPEAT = VIH.  
2. OE = VIL for the Right Port, which is being read from. OE = VIH for the Left Port, which is being written to.  
3. If tCO < minimum specified, then data from Port "B" read is not valid until following Port "B" clock cycle (i.e., time from write to valid read on opposite port will be  
tCO + tCYC + tCD1). If tCO > minimum, then data from Port "B" read is available on first Port "B" clock cycle (i.e., time from write to valid read on opposite port will  
be tCO + tCD1).  
4. All timing is the same for both left and right ports. Port "A" may be either left or right port. Port "B" is the opposite of Port "A".  
6.42  
15  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Pipelined Read-to-Write-to-Read  
(OE = VIL)(2)  
tCYC2  
tCH2  
tCL2  
CLK  
CE0  
t
SC  
tHC  
CE1  
tSB  
tHB  
UB, LB  
tSW tHW  
R/W  
tSW tHW  
(3)  
An + 3  
An + 4  
An  
An +1  
An + 2  
An + 2  
ADDRESS  
t
SA  
tHA  
t
SD  
t
HD  
DATAIN  
Dn + 2  
tCD2  
tCD2  
(1)  
tCKHZ  
tCKLZ  
Qn + 3  
Qn  
DATAOUT  
(4)  
READ  
NOP  
WRITE  
READ  
,
5652 drw 11  
NOTES:  
1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.  
2. CE0, UB, LB, and ADS = VIL; CE1, CNTEN, and REPEAT = VIH. "NOP" is "No Operation".  
3. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers  
are for reference use only.  
4. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity.  
Timing Waveform of Pipelined Read-to-Write-to-Read (OE Controlled)(2)  
t
CYC2  
tCH2  
tCL2  
CLK  
CE  
0
1
tSC  
tHC  
CE  
tSB  
tHB  
UB, LB  
tSW tHW  
R/W  
t
SW tHW  
(3)  
An + 4  
An  
An +1  
An + 2  
An + 3  
Dn + 3  
An + 5  
ADDRESS  
t
SA  
tHA  
t
SD  
tHD  
DATAIN  
Dn + 2  
t
CD2  
tCD2  
t
CKLZ  
(1)  
Qn  
Qn + 4  
DATAOUT  
(4)  
tOHZ  
OE  
READ  
WRITE  
READ  
,
NOTES:  
5652 drw 12  
1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.  
2. CE0, UB, LB, and ADS = VIL; CE1, CNTEN, and REPEAT = VIH.  
3. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference  
use only.  
4. This timing does not meet requirements for fastest speed grade. This waveform indicates how logically it could be done if timing so allows.  
6.1462  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Flow-Through Read-to-Write-to-Read (OE = VIL)(2)  
t
CYC1  
t
CH1  
tCL1  
CLK  
CE  
0
1
t
SC  
tHC  
CE  
t
SB  
tHB  
UB, LB  
t
SW tHW  
R/  
W
t
SW tHW  
(3)  
An + 4  
An  
An + 3  
An +1  
An + 2  
An + 2  
ADDRESS  
t
SA  
tHA  
t
SD tHD  
DATAIN  
Dn + 2  
t
CD1  
t
CD1  
tCD1  
tCD1  
(1)  
Qn + 3  
Qn  
READ  
Qn + 1  
DATAOUT  
t
DC  
t
CKLZ  
t
DC  
t
CKHZ  
NOP(4)  
,
READ  
WRITE  
5652 drw 13  
TimingWaveformof Flow-ThroughRead-to-Write-to-Read(OEControlled)(2)  
t
CYC1  
t
CH1  
tCL1  
CLK  
CE  
0
1
t
SC  
tHC  
CE  
t
SB  
tHB  
UB, LB  
t
SW tHW  
t
SW tHW  
R/  
W
(3)  
An + 5  
An  
An + 4  
An +1  
An + 2  
An + 3  
Dn + 3  
ADDRESS  
DATAIN  
t
SA  
tHA  
t
SD tHD  
Dn + 2  
t
OE  
t
DC  
t
CD1  
t
CD1  
t
CD1  
(1)  
Qn + 4  
Qn  
DATAOUT  
t
CKLZ  
t
DC  
t
OHZ  
OE  
,
READ  
WRITE  
READ  
5652 drw 14  
NOTES:  
1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.  
2. CE0, UB, LB, and ADS = VIL; CE1, CNTEN, and REPEAT = VIH.  
3. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for  
reference use only.  
4. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity.  
6.42  
17  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Pipelined Read with Address Counter Advance(1)  
t
CYC2  
tCH2  
tCL2  
CLK  
t
SA  
tHA  
An  
ADDRESS  
tSAD tHAD  
ADS  
t
SAD tHAD  
CNTEN  
tSCN tHCN  
tCD2  
,
Qn + 2(2)  
Qn + 3  
Qx - 1(2)  
Qn + 1  
Qn  
Qx  
DATAOUT  
tDC  
READ  
EXTERNAL  
ADDRESS  
READ  
WITH  
COUNTER  
COUNTER  
HOLD  
READ WITH COUNTER  
5652 drw 15  
TimingWaveformof Flow-ThroughReadwithAddressCounterAdvance(1)  
t
CYC1  
t
CH1  
tCL1  
CLK  
t
SA  
tHA  
An  
ADDRESS  
t
SAD tHAD  
t
SAD  
t
HAD  
ADS  
t
SCN  
t
HCN  
CNTEN  
t
CD1  
,
Qn + 3(2)  
Qx(2)  
Qn + 4  
Qn + 1  
Qn + 2  
Qn  
DATAOUT  
t
DC  
READ  
READ  
EXTERNAL  
ADDRESS  
READ WITH COUNTER  
COUNTER  
HOLD  
WITH  
COUNTER  
5652 drw 16  
NOTES:  
1. CE0, OE, UB, LB = VIL; CE1, R/W, and REPEAT = VIH.  
2. If there is no address change via ADS = VIL (loading a new address) or CNTEN = VIL (advancing the address), i.e. ADS = VIH and CNTEN = VIH, then  
the data output remains constant for subsequent clocks.  
6.1482  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write with Address Counter Advance  
(Flow-through or Pipelined Inputs)(1)  
t
CYC2  
tCH2  
tCL2  
CLK  
tSA  
tHA  
An  
ADDRESS  
INTERNAL(3)  
ADDRESS  
An(7)  
An + 4  
An + 2  
An + 1  
An + 3  
t
SAD tHAD  
ADS  
tSCN  
t
HC  
N
CNTEN  
tSD tHD  
Dn + 4  
Dn + 1  
Dn + 3  
Dn  
Dn + 1  
Dn + 2  
DATAIN  
WRITE  
EXTERNAL  
ADDRESS  
WRITE  
WITH COUNTER  
WRITE  
COUNTER HOLD  
WRITE WITH COUNTER  
,
5652 drw 17  
Timing Waveform of Counter Repeat(2)  
t
CYC2  
tCH2  
tCL2  
CLK  
tSA tHA  
(4)  
An + 2  
An  
An + 1  
ADDRESS  
INTERNAL(3)  
ADDRESS  
LAST ADS LOAD  
Ax  
LAST ADS +1  
An  
An + 1  
tSW  
tHW  
R/  
W
tSAD tHAD  
ADS  
CNTEN  
tSCN tHCN  
tSRPT  
tHRPT  
REPEAT  
tSD  
tHD  
D0  
DATAIN  
(5)  
Q
LAST+1  
Qn  
Q
LAST  
DATAOUT  
,
EXECUTE(6)  
REPEAT  
READ  
LAST ADS  
ADDRESS  
READ  
READ  
WRITE  
READ  
LAST ADS  
ADDRESS + 1  
ADDRESS n ADDRESS n+1  
LAST ADS  
ADDRESS  
NOTES:  
5652 drw 18  
1. CE0, UB, LB, and R/W = VIL; CE1 and REPEAT = VIH.  
CE0, UB, LB = VIL; CE1 = VIH.  
2.  
3. The "Internal Address" is equal to the "External Address" when ADS = VIL and equals the counter output when ADS = VIH.  
4. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference  
use only.  
5. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.  
6. No dead cycle exists during REPEAT operation. A READ or WRITE cycle may be coincidental with the counter REPEAT cycle: Address loaded by last valid  
ADS load will be accessed. Extra cycles are shown here simply for clarification. For more information on REPEAT function refer to Truth Table II.  
7. CNTEN = VIL advances Internal Address from An’ to An +1. The transition shown indicates the time required for the counter to advance. The An +1Address is  
written to during this cycle.  
6.42  
19  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing (2)  
CLK  
L
t
SW  
tHW  
R/W  
L
t
SA  
7FFFF  
SC HC  
t
HA  
ADDRESSL(3)  
CEL(1)  
t
t
t
INS  
INT  
R
tINR  
CLKR  
t
SC  
tHC  
CER(1)  
R/WR  
t
SW  
SA  
7FFFF  
t
HW  
t
t
HA  
ADDRESSR(3)  
5652 drw 19  
NOTES:  
1. CE0 = VIL and CE1 = VIH  
2. All timing is the same for Left and Right ports.  
3. Address is for internal register, not the external bus, i.e., address needs to be qualified by one of the Address counter control signals.  
Truth Table III — Interrupt Flag (1)  
Left Port  
Right Port  
(2)  
(2)  
(3,4,5)  
(2)  
(2)  
(3,4,5)  
CLK  
L
R/W  
L
CE  
L
A
18L-A0L  
CLK  
R
R/W  
R
CE  
R
A
18R-A0R  
Function  
Set Right INT Flag  
Reset Right INT Flag  
Set Left INT Flag  
Reset Left INT Flag  
INT  
X
L
INTR  
L
X
X
H
L
7FFFF  
X
X
H
L
X
L
L
X
X
L
R
X
X
L
X
7FFFF  
7FFFE  
X
H
X
X
R
X
L
L
7FFFE  
H
X
L
5652 tbl 12  
NOTES:  
1. INTL and INTR must be initialized at power-up by Resetting the flags.  
2. CE0 = VIL and CE1 = VIH. R/W and CE are synchronous with respect to the clock and need valid set-up and hold times.  
3. A18X is a NC for IDT70T3319, therefore Interrupt Addresses are 3FFFF and 3FFFE.  
4. A18X and A17X are NC's for IDT70T3399, therefore Interrupt Addresses are 1FFFF and 1FFFE.  
5. Address is for internal register, not the external bus, i.e., address needs to be qualified by one of the Address counter control signals.  
6.2402  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Collision Timing (1,2)  
Both Ports Writing with Left Port Clock Leading  
CLK  
L
t
OFS  
tSA tHA  
ADDRESS (4)  
L
A
2
A3  
A1  
A0  
t
COLR  
tCOLS  
COL  
L
(3)  
tOFS  
CLK  
R
tSA tHA  
(4)  
ADDRESS  
R
A3  
A2  
A
0
A1  
tCOLR  
t
COLS  
COL  
R
5652 drw 20  
NOTES:  
1. CE0 = VIL, CE1 = VIH.  
2. For reading port, OE is a Don't care on the Collision Detection Logic. Please refer to Truth Table IV for specific cases.  
3. Leading Port Output flag might output 3tCYC2 + tCOLS after Address match.  
4. Address is for internal register, not the external bus, i.e., address needs to be qualified by one of the Address counter control signals.  
Collision Detection Timing(3,4)  
Cycle Time  
tOFS (ns)  
NOTES:  
1. Region 1  
Region 1 (ns) (1)  
Region 2 (ns) (2)  
Both ports show collision after 2nd cycle for Addresses 0, 2, 4 etc.  
2. Region 2  
Leading port shows collision after 3rd cycle for addresses 0, 3, 6, etc.  
while trailing port shows collision after 2nd cycle for addresses 0, 2, 4 etc.  
3. All the production units are tested to midpoint of each region.  
5ns  
6ns  
0 - 2.8  
2.81 - 4.6  
0 - 3.8  
0 - 5.3  
3.81 - 5.6  
5.31 - 7.1  
7.5ns  
4. These ranges are based on characterization of a typical device.  
5652 tbl 13  
Truth Table IV — Collision Detection Flag  
Left Port  
Right Port  
(1)  
(1)  
(2)  
(1)  
(1)  
(2)  
CLK  
L
R/W  
L
CE  
L
A
18L-A0L  
CLK  
R
R/W  
R
CE  
R
A
18R-A0R  
Function  
COL  
H
L
COL  
H
R
Both ports reading. Not a valid collision.  
No flag output on either port.  
H
H
L
L
L
L
L
L
MATCH  
MATCH  
MATCH  
MATCH  
H
L
MATCH  
MATCH  
MATCH  
MATCH  
Left port reading, Right port writing.  
Valid collision, flag output on Left port.  
L
L
H
L
L
L
L
H
Right port reading, Left port writing.  
Valid collision, flag output on Right port.  
H
L
Both ports writing. Valid collision. Flag  
output on both ports.  
L
L
5652 tbl 14  
NOTES:  
1. CE0 = VIL and CE1 = VIH. R/W and CE are synchronous with respect to the clock and need valid set-up and hold times.  
2. Address is for internal register, not the external bus, i.e., address needs to be qualified by one of the Address counter control signals.  
6.42  
21  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform - Entering Sleep Mode (1,2)  
R/W  
(3)  
Timing Waveform - Exiting Sleep Mode (1,2)  
An  
An+1  
(5)  
R/W  
OE  
(5)  
Dn  
Dn+1  
DATAOUT  
(4)  
NOTES:  
1. CE1 = VIH.  
2. All timing is same for Left and Right ports.  
3. CE0 has to be deactivated (CE0 = VIH) three cycles prior to asserting ZZ (ZZx = VIH) and held for two cycles after asserting ZZ (ZZx = VIH).  
4. CE0 has to be deactivated (CE0 = VIH) one cycle prior to de-asserting ZZ (ZZx = VIL) and held for three cycles after de-asserting ZZ (ZZx = VIL).  
5. The device must be in Read Mode (R/W High) when exiting sleep mode. Outputs are active but data is not valid until the following cycle.  
6.2422  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
FunctionalDescription  
flag.Athirdcollisionwillgeneratethealertflagasappropriate.Inthe  
eventthatauserinitiatesaburstaccessonbothportswiththesame  
startingaddress onbothports andone orbothports writingduring  
eachaccess(i.e.,imposesalongstringofcollisionsoncontiguous  
clockcycles), the alertflagwillbe assertedandclearedeveryother  
cycle.PleaserefertotheCollisionDetectiontimingwaveformonpage  
21.  
Collision detection on the IDT70T3339/19/99 represents a  
significantadvanceinfunctionalityovercurrentsyncmulti-ports,which  
havenosuchcapability. Inadditiontothisfunctionalitythe  
IDT70T3339/19/99sustainsthekeyfeaturesofbandwidthand  
flexibility. Thecollisiondetectionfunctionisveryusefulinthecaseof  
burstingdata,orastringofaccessesmadetosequentialaddresses,in  
thatitindicatesaproblemwithintheburst,givingtheusertheoptionof  
eitherrepeatingtheburstorcontinuingtowatchthealertflagtosee  
whetherthenumberofcollisionsincreasesaboveanacceptable  
thresholdvalue.Offeringthisfunctiononchipalsoallowsusersto  
reducetheirneedforarbitrationcircuits,typicallydoneinCPLD’s or  
FPGAs. This reduces boardspace anddesigncomplexity, andgives  
theusermoreflexibilityindevelopingasolution.  
TheIDT70T3339/19/99providesatruesynchronousDual-PortStatic  
RAM interface.Registeredinputsprovideminimalset-upandholdtimes  
onaddress,data,andallcriticalcontrolinputs.Allinternalregistersare  
clocked on the rising edge of the clock signal, however, the self-timed  
internalwritepulsewidthisindependentofthecycletime.  
An asynchronous output enable is provided to ease asyn-  
chronousbusinterfacing.Counterenableinputsarealsoprovidedtostall  
the operation of the address counters for fast interleaved  
memoryapplications.  
AHIGHonCE0oraLOWonCE1foroneclockcyclewillpowerdown  
the internal circuitry to reduce static power consumption. Multiple chip  
enablesalloweasierbankingofmultipleIDT70T3339/19/99sfordepth  
expansionconfigurations. Twocycles arerequiredwithCE0 LOWand  
CE1 HIGHtore-activatetheoutputs.  
Interrupts  
If the user chooses the interrupt function, a memory location (mail  
boxormessagecenter)isassignedtoeachport. Theleftportinterrupt  
flag (INTL) is asserted when the right port writes to memory location  
7FFFE (HEX), where a write is defined as CER = R/WR = VIL per the  
Truth Table. The left port clears the interrupt through access of  
addresslocation7FFFEwhenCEL= VIL andR/WL=VIH.Likewise,the  
right port interrupt flag (INTR) is asserted when the left  
port writes to memory location 7FFFF (HEX) and to clear the interrupt  
flag(INTR),therightportmustreadthememorylocation7FFFF(3FFFF  
or3FFFEforIDT70T3319and1FFFFor1FFFEforIDT70T3399).The  
message(18bits)at7FFFEor7FFFF(3FFFFor3FFFEforIDT70T3319  
and 1FFFF or 1FFFE for IDT70T3399) is user-defined since it is an  
addressableSRAMlocation.Iftheinterruptfunctionisnotused,address  
locations 7FFFE and 7FFFF (3FFFF or 3FFFE for IDT70T3319 and  
1FFFF or 1FFFE for IDT70T3399) are not used as mail boxes, but as  
partoftherandomaccessmemory.RefertoTruthTableIII fortheinterrupt  
operation.  
SleepMode  
The IDT70T3339/19/99 is equipped with an optional sleep or low  
power mode on both ports. The sleep mode pin on both ports is  
asynchronous and active high. During normal operation, the ZZ pin is  
pulledlow.WhenZZispulledhigh,theportwillentersleepmodewhere  
it will meet lowest possible power conditions. The sleep mode timing  
diagramshowsthemodes ofoperation:NormalOperation,NoRead/Write  
Allowed and Sleep Mode.  
Fornormaloperationallinputsmustmeetsetupandholdtimesprior  
tosleepand afterrecoveringfromsleep.Clocksmustalsomeetcyclehigh  
and low times during these periods. Three cycles prior to asserting ZZ  
(ZZx=VIH)andthreecyclesafterde-assertingZZ(ZZx=VIL),thedevice  
mustbedisabledviathechipenablepins.Ifawriteorreadoperationoccurs  
duringtheseperiods,thememoryarraymaybecorrupted.Validityofdata  
outfromtheRAMcannotbeguaranteedimmediatelyafterZZisasserted  
CollisionDetection  
Collision is defined as an overlap in access between the two ports (priortobeinginsleep).Whenexitingsleepmode,thedevicemustbein  
resultinginthepotentialforeitherreadingorwritingincorrectdatatoa  
specificaddress. Forthe specificcases:(a)Bothports reading-no  
Read mode (R/Wx = VIH)when chip enable is asserted, and the chip  
enablemustbevalidforonefullcyclebeforeareadwillresultintheoutput  
dataiscorrupted,lost,orincorrectlyoutput,sonocollisionflagisoutput ofvaliddata.  
on either port. (b) One port writing, the other port reading - the end  
resultofthe write willstillbe valid. However, the readingportmight  
capturedatathatisinastateoftransitionandhencethereadingports  
DuringsleepmodetheRAMautomaticallydeselectsitself.TheRAM  
disconnectsitsinternalclockbuffer.Theexternalclockmaycontinuetorun  
withoutimpactingtheRAMssleepcurrent(IZZ).Alloutputswillremainin  
collisionflagis output.(c)Bothports writing-thereis ariskthatthetwo high-Zstatewhileinsleepmode.Allinputsareallowedtotoggle.TheRAM  
ports willinterferewitheachother,andthedatastoredinmemorywill  
notbe a validwrite fromeitherport(itmayessentiallybe a random  
combinationofthetwo). Therefore,thecollisionflagisoutputonboth  
will not be selected and will not perform any reads or writes.  
ports. Please refer to Truth Table IV for all of the above cases.  
The alert flag (COLX) is asserted on the 2nd or 3rd rising clock  
edgeoftheaffectedportfollowingthecollision,andremainslowfor  
onecycle. PleaserefertoCollisionDetectionTimingtableonPage21.  
Duringthatnextcycle,theinternalarbitrationisengagedinresetting  
thealertflag(thisavoidsaspecificrequirementonthepartoftheuser  
toresetthealertflag). Iftwocollisionsoccuronsubsequentclock  
cycles,thesecondcollisionmaynotgeneratetheappropriatealert  
6.42  
23  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Depth andWidth Expansion  
The IDT70T3339/19/99 features dual chip enables (refer to Truth  
Table I) in order to facilitate rapid and simple depth expansion with no  
requirements for external logic. Figure 4 illustrates how to control the  
various chip enables in order to expand two devices in depth.  
The IDT70T3339/19/99 can also be used in applications requiring  
expandedwidth,asindicatedinFigure4.Throughcombiningthecontrol  
signals, the devices can be grouped as necessary to accommodate  
applicationsneeding36-bitsorwider.  
(1)  
17  
A
19/A18/A  
IDT70T3339/19/99  
IDT70T3339/19/99  
CE  
0
CE  
0
1
CE1  
CE  
V
DD  
VDD  
Control Inputs  
Control Inputs  
IDT70T3339/19/99  
IDT70T3339/19/99  
CE  
1
0
CE  
1
CE  
CE0  
UB, LB,  
R/W,  
Control Inputs  
Control Inputs  
OE,  
CLK,  
Figure 4. Depth and Width Expansion with IDT70T3339/19/99  
ADS,  
5652 drw 23  
REPEAT,  
CNTEN  
NOTE:  
1. A19 is for IDT70T3339, A18 is for IDT70T3319, A17 is for IDT70T3399.  
6.2442  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
JTAGTimingSpecifications  
t
JCYC  
tJR  
t
JF  
tJCL  
tJCH  
TCK  
Device Inputs(1)/  
TDI/TMS  
tJDC  
t
JS  
tJH  
Device Outputs(2)/  
TDO  
t
JRSR  
tJCD  
TRST  
,
5652 drw 23  
t
JRST  
NOTES:  
1. Device inputs = All device inputs except TDI, TMS, and TRST.  
2. Device outputs = All device outputs except TDO.  
JTAG AC Electrical  
Characteristics(1,2,3,4)  
70T3339/19/99  
Symbol  
Parameter  
JTAG Clock Input Period  
JTAG Clock HIGH  
JTAG Clock Low  
JTAG Clock Rise Time  
JTAG Clock Fall Time  
JTAG Reset  
Min.  
100  
40  
Max.  
Units  
ns  
____  
t
JCYC  
JCH  
JCL  
JR  
JF  
JRST  
JRSR  
JCD  
JDC  
JS  
JH  
____  
____  
t
ns  
t
40  
ns  
(1)  
____  
t
3
ns  
(1)  
____  
t
3
ns  
____  
____  
t
50  
ns  
t
JTAG Reset Recovery  
JTAG Data Output  
JTAG Data Output Hold  
JTAG Setup  
50  
ns  
____  
t
25  
ns  
____  
t
0
ns  
____  
____  
t
15  
15  
ns  
t
JTAG Hold  
ns  
5652 tbl 15  
NOTES:  
1. Guaranteed by design.  
2. 30pF loading on external output signals.  
3. Refer to AC Electrical Test Conditions stated earlier in this document.  
4. JTAG operations occur at one speed (10MHz). The base device may run at  
any speed specified in this datasheet.  
6.42  
25  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Identification Register Definitions  
Instruction Field  
Value  
Description  
Revision Number (31:28)  
0x0  
Reserved for version number  
0x333(1)  
0x33  
1
IDT Device ID (27:12)  
Defines IDT part number  
IDT JEDEC ID (11:1)  
Allows unique identification of device vendor as IDT  
Indicates the presence of an ID register  
ID Register Indicator Bit (Bit 0)  
5652 tbl 16  
NOTE:  
1. Device ID for IDT70T3319 is 0x334. Device ID for IDT70T3399 is 0x335.  
ScanRegisterSizes  
Register Name  
Bit Size  
Instruction (IR)  
Bypass (BYR)  
4
1
Identification (IDR)  
32  
Boundary Scan (BSR)  
Note (3)  
5652 tbl 17  
SystemInterfaceParameters  
Instruction  
Code  
Description  
EXTEST  
0000  
Forces contents of the boundary scan cells onto the device outputs(1).  
Places the boundary scan register (BSR) between TDI and TDO.  
BYPASS  
IDCODE  
1111  
Places the bypass register (BYR) between TDI and TDO.  
0010  
Loads the ID register (IDR) with the vendor ID code and places the  
register between TDI and TDO.  
0100  
Places the bypass register (BYR) between TDI and TDO. Forces all  
device output drivers to a High-Z state except COLx & INTx outputs.  
HIGHZ  
CLAMP  
Uses BYR. Forces contents of the boundary scan cells onto the device  
outputs. Places the bypass register (BYR) between TDI and TDO.  
0011  
0001  
SAMPLE/PRELOAD  
Places the boundary scan register (BSR) between TDI and TDO.  
SAMPLE allows data from device inputs(2) to be captured in the  
boundary scan cells and shifted serially through TDO. PRELOAD allows  
data to be input serially into the boundary scan cells via the TDI.  
RESERVED  
PRIVATE  
0101, 0111, 1000, 1001,  
1010, 1011, 1100  
Several combinations are reserved. Do not use codes other than those  
identified above.  
0110,1110,1101  
For internal use only.  
5652 tbl 18  
NOTES:  
1. Device outputs = All device outputs except TDO.  
2. Device inputs = All device inputs except TDI, TMS, and TRST.  
3. The Boundary Scan Descriptive Language (BSDL) file for this device is available on the IDT website (www.idt.com), or by contacting your local  
IDT sales representative.  
6.2462  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
OrderingInformation  
XXXXX  
A
999  
A
A
A
Device  
Type  
Power Speed  
Package  
Process/  
Temperature  
Range  
Blank  
I
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
(3)  
G
Green  
256-pin BGA (BC-256)  
144-pin TQFP (DD-144)  
208-pin fpBGA (BF-208)  
BC  
DD  
BF  
Commercial Only(2)  
200  
166  
133  
Commercial & Industrial(1)  
Commercial & Industrial  
Speed in Megahertz  
Standard Power  
S
70T3339 9Mbit (512K x 18-Bit) Synchronous Dual-Port RAM  
70T3319 4Mbit (256K x 18-Bit) Synchronous Dual-Port RAM  
70T3399 2Mbit (128K x 18-Bit) Synchronous Dual-Port RAM  
5652 drw 25  
NOTES:  
1. 166MHz I-Temp is not available in the BF-208 package.  
2. 200Mhz is not available in the BF-208 and DD-144 packages.  
3. Green parts available. For specific speeds, packages and powers contact your local sales office.  
IDT Clock Solution for IDT70T3339/19/99 Dual-Port  
Dual-Port I/O Specitications  
Clock Specifications  
Input Duty  
IDT  
PLL  
Clock Device  
IDT  
Non-PLL  
Clock Device  
IDT Dual-Port  
Part Number  
Input  
Capacitance  
Maximum  
Jitter  
Voltage  
2.5  
I/O  
Cycle  
Requirement  
Frequency Tolerance  
5T9010  
5T905, 5T9050  
5T907, 5T9070  
70T3339/19/99  
LVTTL  
8pF  
40%  
200  
75ps  
5T2010  
5652 tbl 19  
6.42  
27  
IDT70T3339/19/99S  
High-Speed 2.5V 512/256/128K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
DatasheetDocumentHistory:  
01/20/03:  
04/25/03:  
InitialDatasheet  
Page 11 AddedCapacitanceDeratingdrawing  
Page 12 ChangedtINS andtINR specsinACElectricalCharacteristicstable  
Page 10 UpdatedpowernumbersinDCElectricalCharacteristicstable  
Page 12 AddedtOFS symbolandparametertoACElectricalCharacteristicstable  
Page 21 UpdatedCollisionTimingwaveform  
11/11/03:  
Page 22 AddedCollisionDetectionTimingtableandfootnotes  
Page 26 UpdatedHIGHZfunctioninSystemInterfaceParameterstable  
Page 27 AddedIDTClockSolutiontable  
04/08/04:  
02/07/06:  
Page 22 & 23 Clarified Sleep Mode Text and Waveforms  
Page 1 & 28 Removed Preliminary status  
Page 6 Addedanothersentencetofootnote4torecommendthatboundaryscannotbeoperatedduringsleepmode  
Page 1 Addedgreenavailabilitytofeatures  
Page 7 Changed footnote 2 for Truth Table I from ADS, CNTEN, REPEAT = VIH to ADS, CNTEN, REPEAT = X  
Page 27 Addedgreenindicatortoorderinginformation  
07/28/08:  
01/19/09:  
Page 10 Correcteda typointhe DCChars table footnotes  
Page 28 Removed "IDT" from orderable part number  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
408-284-2794  
DualPortHelp@idt.com  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
Š
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
6.2482  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY