70T651S15DRGI8 [IDT]

HIGH-SPEED 2.5V 256/128K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM;
70T651S15DRGI8
型号: 70T651S15DRGI8
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

HIGH-SPEED 2.5V 256/128K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM

文件: 总28页 (文件大小:739K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IDT70T651/9S  
HIGH-SPEED 2.5V  
256/128K x 36  
ASYNCHRONOUS DUAL-PORT  
STATIC RAM  
Š
WITH 3.3V 0R 2.5V INTERFACE  
On-chip port arbitration logic  
Features  
Full on-chip hardware support of semaphore signaling  
between ports  
True Dual-Port memory cells which allow simultaneous  
access of the same memory location  
High-speed access  
Fully asynchronous operation from either port  
Separate byte controls for multiplexed bus and bus  
matching compatibility  
– Commercial:10/12/15ns(max.)  
– Industrial:10/12ns(max.)  
Sleep Mode Inputs on both ports  
RapidWrite Mode simplifies high-speed consecutive write  
cycles  
Supports JTAG features compliant to IEEE 1149.1  
Single 2.5V (±100mV) power supply for core  
LVTTL-compatible, selectable 3.3V (±150mV)/2.5V (±100mV)  
power supply for I/Os and control signals on each port  
Available in a 256-ball Ball Grid Array, 208-pin Plastic Quad  
Flatpack and 208-ball fine pitch Ball Grid Array.  
Industrial temperature range (–40°C to +85°C) is available  
for selected speeds  
Dual chip enables allow for depth expansion without  
external logic  
IDT70T651/9 easily expands data bus width to 72 bits or  
more using the Master/Slave select when cascading more  
than one device  
M/S = VIH for BUSY output flag on Master,  
M/S = VIL for BUSY input on Slave  
Busy and Interrupt Flags  
Green parts available, see ordering information  
Functional Block Diagram  
BE3L  
BE3R  
BE2R  
BE2L  
BE1L  
BE0L  
BE1R  
BE0R  
R/  
WL  
R/  
WR  
B B B B B B B B  
E E E E E E E E  
0
L
1
L
2
L
3
L
3 2 1 0  
R R R R  
CE0L  
CE1L  
CE0R  
CE1R  
OEL  
OE  
R
Dout0-8_L  
Dout0-8_R  
Dout9-17_L  
Dout9-17_R  
Dout18-26_R  
Dout27-35_R  
Dout18-26_L  
Dout27-35_L  
256/128K x 36  
MEMORY  
ARRAY  
I/O0L- I/O35L  
Di n_L  
Di n_R  
I/O0R -I/O35R  
(1)  
A
17R  
0R  
(1)  
17L  
Address  
Decoder  
A
Address  
Decoder  
ADDR_L  
ADDR_R  
A
A
0L  
CE0L  
CE1L  
ARBITRATION  
CE0R  
CE1R  
TDI  
TCK  
TMS  
TRST  
INTERRUPT  
SEMAPHORE  
LOGIC  
JTAG  
TDO  
OE  
L
OE  
R
R/W  
L
R/W  
R
(2,3)  
(3)  
(2,3)  
R
BUSY  
L
BUSY  
SEM  
M/S  
SEM  
L
R
(3)  
R
INT  
L
INT  
ZZ  
CONTROL  
LOGIC  
(4)  
(4)  
ZZR  
ZZL  
NOTES:  
1. Address A17x is a NC for IDT70T659.  
2. BUSY is an input as a Slave (M/S=VIL) and an output when it is a Master (M/S=VIH).  
3. BUSY and INT are non-tri-state totem-pole outputs (push-pull).  
4869 drw 01  
4. The sleep mode pin shuts off all dynamic inputs, except JTAG inputs, when asserted. OPTx, INTx, M/S and the sleep  
mode pins themselves (ZZx) are not affected during sleep mode.  
JULY 2015  
1
DSC-5632/8  
©2015 Integrated Device Technology, Inc.  
IDT70T651/9S  
High-Speed 2.5V 256/128K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Description  
The IDT70T651/9 is a high-speed 256/128K x 36 Asynchronous  
Dual-Port Static RAM. The IDT70T651/9 is designed to be used as a  
stand-alone9216/4608K-bitDual-PortRAMorasacombinationMAS-  
TER/SLAVEDual-PortRAMfor72-bit-or-morewordsystem.Usingthe  
IDT MASTER/SLAVE Dual-Port RAM approach in 72-bit or wider  
memory system applications results in full-speed, error-free operation  
feature controlled by the chip enables (either CE0 or CE1) permit the  
on-chip circuitry of each port to enter a very low standby power mode.  
TheIDT70T651/9hasaRapidWriteModewhichallowsthedesigner  
toperformback-to-backwriteoperationswithoutpulsingtheR/Winput  
each cycle. This is especially significant at the 10ns cycle time of the  
IDT70T651/9,easingdesignconsiderationsatthesehighperformance  
levels.  
withouttheneedforadditionaldiscretelogic.  
This device provides two independent ports with separate control,  
address,andI/Opinsthatpermitindependent,asynchronousaccessfor  
reads or writes to any location in memory. An automatic power down  
The70T651/9cansupportanoperatingvoltageofeither3.3Vor2.5V  
on one or both ports, controlled by the OPT pins. The power supply for  
the core of the device (VDD) is at 2.5V.  
2
IDT70T651/9S  
High-Speed 2.5V 256/128K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
PinConfiguration(1,2,3)  
70T651/9BC  
BC-256(5,6)  
256-Pin BGA  
Top View  
A1  
A2  
A3  
A6  
A7  
A8L  
A8  
A9  
A11  
A12  
A5L  
A13  
A2L  
A14  
A0L  
A4  
A5  
A10  
A15  
A16  
(4)  
NC  
TDI  
NC  
A11L  
BE2L CE1L  
INTL  
A17L  
A14L  
OEL  
NC  
NC  
B1  
B2  
B3  
B6  
B7  
A9L  
B9  
CE0L  
B11  
B12  
A4L  
B13  
A1L  
B4  
B5  
B8  
B10  
B14  
B15  
B16  
I/O18L NC TDO  
A12L  
NC  
NC  
A15L  
BE3L  
R/WL  
NC I/O17L NC  
C1  
C5  
C6  
C2  
C3  
C4  
A16L  
C7  
A7L  
C8  
C9  
C10  
C11  
C12  
A6L  
C13  
A3L  
C16  
C14  
C15  
I/O18R  
A13L  
A10L  
I/O19L VSS  
BE1L BE0L SEML BUSY  
L
I/O16L  
OPTL I/O17R  
D1  
D2  
D6  
D9  
D11  
D3  
D5  
D7  
D8  
D10  
D12  
D13  
D14  
D15  
D16  
D4  
I/O20R I/O19R  
VDDQL  
VDDQL  
VDDQR  
VDDQR VDD I/O15R I/O15L I/O16R  
I/O20L  
VDDQL  
VDDQR VDDQR  
VDDQL  
VDD  
E5  
E6  
E7  
VSS  
E8  
VSS  
E9  
E10  
E11  
E12  
E13  
E1  
E2  
E3  
E4  
E14  
E16  
E15  
VDD  
VDD  
VSS  
VSS  
VDD  
VDD VDDQR  
I/O21R I/O21L I/O22L VDDQL  
I/O13L  
I/O14R  
I/O14L  
F7  
VSS  
F5  
F6  
F9  
F10  
F1  
F2  
F3  
F11  
F13  
F14  
F15  
F16  
F8  
VSS  
F12  
VDD  
F4  
I/O23L I/O22R I/O23R  
VDD  
NC  
VSS  
VSS  
I/O12R I/O13R I/O12L  
VDDQR  
VSS  
VDDQL  
G1  
G2  
G3  
G5  
G4  
G6  
G8  
VSS  
G9  
G14  
G15  
G16  
G7  
VSS  
G10  
G12  
VSS  
G13  
G11  
I/O24R  
VSS  
I/O24L  
VDDQR  
VSS  
VSS  
I/O25L  
I/O10L I/O11L I/O11R  
VSS  
VDDQL  
VSS  
H13  
H11  
H12  
VSS  
H16  
H7  
VSS  
H8  
VSS  
H9  
H10  
H14  
H15  
H5  
H6  
H3  
H4  
H1  
H2  
VDDQL  
VSS  
I/O10R  
J16  
VSS  
VSS  
I/O9R IO9L  
I/O26R VDDQR VSS  
VSS  
I/O26L I/O25R  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
VSS  
J8  
VSS  
J9  
J13  
J10  
J11  
J12  
J14  
J15  
I/O27L  
ZZR  
I/O28R I/O27R VDDQL  
VSS  
VSS  
VDDQR  
VSS  
VSS  
ZZL  
I/O8R  
I/O7R I/O8L  
K6  
K8  
VSS  
K10  
K12  
VSS  
K13  
K2  
K4  
K5  
K7  
VSS  
K9  
K11  
K15  
K16  
K1  
K3  
K14  
VSS  
VSS  
VDDQR  
I/O29L  
VDDQL VSS  
VSS  
VSS  
I/O6L I/O7L  
I/O29R  
I/O28L  
I/O6R  
L7  
VSS  
L8  
VSS  
L11  
L12  
VDD  
L13  
L5  
L6  
L9  
L10  
L3  
L4  
L15  
L16  
L1  
L2  
L14  
VSS  
VDDQL  
I/O30R VDDQR VDD  
NC  
VSS  
VSS  
I/O4R I/O5R  
I/O30L I/O31R  
I/O5L  
M5  
M6  
M7  
VSS  
M8  
VSS  
M9  
M10  
M11  
M12  
VDD  
M13  
M1 M2  
M3  
M4  
M16  
M14  
M15  
VDD  
N5  
VDD  
VSS  
VSS  
VDD  
VDDQL  
I/O32R I/O32L I/O31L VDDQR  
I/O4L  
I/O3R I/O3L  
N8  
N12  
N13  
N16  
N6  
N7  
N9  
N10  
N11  
N4  
N15  
N1  
N2  
N3  
N14  
VDDQL  
VDDQL  
I/O2R  
I/O1R  
VDD  
VDD VDDQR VDDQR VDDQL  
VDDQR VDDQR VDDQL  
I/O33L I/O34R I/O33R  
I/O2L  
P1  
P2  
P3  
P4  
P5  
P7  
P8  
P9 P10 P11  
P12  
P14  
P15  
P16  
P6  
A10R  
P13  
I/O35R I/O34L TMS A16R A13R  
A7R BE1R BE0R SEMR BUSY  
R
A6R  
I/O0L I/O0R I/O1L  
A3R  
R5  
R6  
R7  
A9R  
R8  
R9  
R10  
R11  
R16  
R1  
R2  
R3  
R4  
R12  
R13  
R14  
R15  
A15R A12R  
BE3R CE0R R/WR M/S  
NC  
I/O35L NC TRST NC  
A4R  
A1R OPTR  
NC  
T2  
T3  
T4  
T1  
T5  
T8  
T9  
T15  
T16  
T6  
T7  
A8R  
T10  
T11  
T12  
T13  
A2R  
T14  
A0R  
(4)  
TCK  
NC A17R  
NC  
A14R  
BE2R CE1R  
NC  
NC  
A11R  
OER INTR  
A5R  
5632 drw 02f  
NOTES:  
1. All VDD pins must be connected to 2.5V power supply.  
2. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VDD (2.5V), and 2.5V if OPT pin for that port is  
set to VSS (0V).  
3. All VSS pins must be connected to ground supply.  
4. A17X is a NC for IDT70T659.  
5. Package body is approximately 17mm x 17mm x 1.4mm, with 1.0mm ball-pitch.  
6. This package code is used to reference the package diagram.  
3
IDT70T651/9S  
High-Speed 2.5V 256/128K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Pin Configurations(1,2,3) (con't.)  
I/O16L  
156  
1
2
3
4
5
6
I/O19L  
I/O19R  
I/O20L  
I/O20R  
I/O16R  
155  
I/O15L  
154  
I/O15R  
153  
VSS  
VDDQL  
152  
151  
150  
149  
148  
147  
146  
145  
144  
143  
142  
141  
140  
139  
138  
137  
136  
135  
134  
133  
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
VDDQL  
VSS  
I/O14L  
I/O14R  
I/O13L  
I/O13R  
7
8
9
I/O21L  
I/O21R  
I/O22L  
I/O22R  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
VSS  
VDDQR  
VDDQR  
VSS  
I/O12L  
I/O12R  
I/O11L  
I/O11R  
I/O23L  
I/O23R  
I/O24L  
I/O24R  
VSS  
VDDQL  
VDDQL  
VSS  
I/O10L  
I/O10R  
I/O9L  
I/O25L  
I/O25R  
I/O26L  
I/O26R  
70T651/9DR  
DR-208(5,6,7)  
I/O9R  
V
V
V
V
V
V
SS  
VDDQR  
DDQR  
DD  
ZZ  
R
V
V
DD  
DD  
DD  
SS  
V
V
SS  
SS  
208-Pin  
PQFP  
Top View(8)  
SS  
ZZ  
L
VDDQL  
VDDQL  
VSS  
I/O8R  
I/O8L  
I/O7R  
I/O7L  
I/O27R  
I/O27L  
I/O28R  
I/O28L  
VSS  
VDDQR  
VDDQR  
VSS  
I/O6R  
I/O6L  
I/O5R  
I/O5L  
I/O29R  
I/O29L  
I/O30R  
I/O30L  
VSS  
VDDQL  
VDDQL  
VSS  
I/O4R  
I/O4L  
I/O3R  
I/O3L  
I/O31R  
I/O31L  
I/O32R  
I/O32L  
VSS  
VDDQR  
VDDQR  
VSS  
I/O2R  
I/O2L  
I/O1R  
I/O1L  
I/O33R  
I/O33L  
I/O34R  
I/O34L  
5632 drw 02d  
NOTES:  
1. All VDD pins must be connected to 2.5V power supply.  
2. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VDD (2.5V) and 2.5V if OPT pin for that port is  
set to VSS (0V).  
3. All VSS pins must be connected to ground.  
4. A17X is a NC for IDT70T659.  
5. Package body is approximately 28mm x 28mm x 3.5mm.  
6. This package code is used to reference the package diagram.  
7. 10nsIndustrialspeedgradeisnotavailableintheDR-208package.  
8. This text does not indicate orientation of the actual part-marking.  
4
IDT70T651/9S  
High-Speed 2.5V 256/128K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
PinConfigurations(1,2,3)(con't.)  
1
2
3
4
5
6
7
8
9
11 12 13 14  
10  
16 17  
15  
I/O19L  
V
V
V
DD  
SS  
SS  
A
12L  
A
B
C
D
E
F
I/O18L  
V
SS  
A
8L  
A
0L  
I/O17L  
VSS  
A
16L  
A4  
L
OPTL  
TDO  
NC  
BE1L  
SEM  
L
INT  
L
A
B
C
D
E
F
(4)  
I/O20R  
VSS  
A
9L  
I/O18R  
I/O15R  
A5  
L
I/O16L  
TDI  
A
17L  
A
13L  
A
1L  
VDDQR  
CE0L  
V
SS  
DD  
BUSY  
L
BE2L  
BE3L  
A10L  
VSS  
I/O19R  
V
DD  
NC  
A
14L  
CE1L  
A2L  
V
I/O16R I/O15L  
A6  
L
V
DDQL  
VDDQR  
R/W  
L
I/O22L  
VSS  
I/O17R  
I/O12L  
I/O21L  
A
15L  
A
11L  
A7L  
V
DD  
VDDQL  
I/O14L I/O14R  
I/O13L  
NC  
I/O20L  
VDD  
BE0L  
A
3L  
OE  
L
I/O23L I/O22R  
VDDQR I/O21R  
I/O13R  
I/O12R  
V
SS  
V
DDQL I/O23R  
VSS  
VDDQR  
I/O24L  
I/O25L  
VSS  
I/O11L  
I/O10L  
I/O26L  
V
SS  
I/O9L  
VDDQL  
I/O24R  
I/O25R  
I/O11R  
I/O10R  
G
H
J
G
H
J
70T651/9BF  
BF-208(5,6)  
V
DD  
I/O26R  
V
DDQR  
VDD  
I/O9R  
VSS  
VDDQL  
VDD  
V
SS  
ZZ  
L
VDDQR  
VDD  
V
SS  
ZZR  
208-Ball  
fpBGA  
VDDQL  
I/O7R  
I/O6R  
VSS  
I/O8R  
I/O28R  
VSS  
I/O27R  
K
L
V
SS  
K
L
Top View(7)  
I/O29R I/O28L  
VDDQR  
I/O27L  
I/O7L  
I/O6L  
V
SS  
I/O8L  
V
DDQL  
I/O30R  
VSS  
I/O29L  
VSS  
I/O5R  
I/O4R  
VDDQR  
M
N
P
R
T
M
N
P
R
T
I/O31L  
I/O32R  
VSS  
I/O3R  
I/O2L  
V
DDQL  
I/O31R I/O30L  
I/O5L  
I/O4L  
I/O3L  
I/O32L  
I/O33L  
VDDQR  
V
DD  
INT  
R
A4R  
V
SS  
TRST  
A
16R  
A
12R  
A8R  
I/O35R  
BE1R  
SEM  
R
(4)  
V
SS  
VDDQL  
I/O1R  
VDDQR  
A
17R  
V
SS  
SS  
A5R  
A1R  
A
13R  
A9R  
TCK  
TMS  
NC  
VSS  
I/O34R  
BE2R  
BE3R  
CE0R  
BUSY  
R
I/O0R  
V
SS  
VSS  
V
A2R  
I/O2R  
I/O1L  
A6R  
A
14R  
A10R  
NC  
CE1R  
I/O33R I/O34L  
VDDQL  
R/WR  
VDD  
OPT  
R
I/O0L  
V
DD  
A
3R  
A0R  
A
11R  
A7R  
VSS  
V
DD  
M/S  
I/O35L  
A15R  
BE0R  
OE  
R
U
U
5632 drw 02e  
NOTES:  
1. All VDD pins must be connected to 2.5V power supply.  
2. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VDD (2.5V) and 2.5V if OPT pin for that port is  
set to VSS (0V).  
3. All VSS pins must be connected to ground.  
4. A17X is a NC for IDT70T659.  
5. Package body is approximately 15mm x 15mm x 1.4mm with 0.8mm ball pitch.  
6. This package code is used to reference the package diagram.  
7. This text does not indicate orientation of the actual part-marking.  
5
IDT70T651/9S  
High-Speed 2.5V 256/128K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
PinNames  
Left Port  
Right Port  
CE0R CE1R  
R/W  
OE  
Names  
Chip Enables (Input)  
CE0L  
R/W  
OE  
,
CE1L  
,
L
R
Read/Write Enable (Input)  
Output Enable (Input)  
L
R
(1)  
(1)  
A
0L - A17L  
I/O0L - I/O35L  
SEM  
INT  
BUSY  
BE0L - BE3L  
A
0R - A17R  
I/O0R - I/O35R  
SEM  
INT  
BUSY  
BE0R - BE3R  
Address (Input)  
Data Input/Output  
Semaphore Enable (Input)  
Interrupt Flag (Output)  
L
R
L
R
Busy Flag (Output)  
L
R
Byte Enables (9-bit bytes) (Input)  
Power (I/O Bus) (3.3V or 2.5V)(2) (Input)  
Option for selecting VDDQX(2,3) (Input)  
Sleep Mode Pin(4) (Input)  
Master or Slave Select (Input)(5)  
Power (2.5V)(2) (Input)  
V
DDQL  
V
DDQR  
OPT  
L
OPTR  
ZZL  
ZZR  
M/S  
NOTES:  
V
V
DD  
1. Address A17x is a NC for IDT70T659.  
SS  
Ground (0V) (Input)  
2. VDD, OPTX, and VDDQX must be set to appropriate operating levels prior to  
applying inputs on I/OX.  
TDI  
TDO  
TCK  
Test Data Input  
3. OPTX selects the operating voltage levels for the I/Os and controls on that port.  
If OPTX is set to VDD (2.5V), then that port's I/Os and controls will operate at 3.3V  
levels and VDDQX must be supplied at 3.3V. If OPTX is set to VSS (0V), then that  
port's I/Os and controls will operate at 2.5V levels and VDDQX must be supplied  
at 2.5V. The OPT pins are independent of one another—both ports can operate  
at 3.3V levels, both can operate at 2.5V levels, or either can operate at 3.3V  
with the other at 2.5V.  
Test Data Output  
Test Logic Clock (10MHz) (Input)  
Test Mode Select (Input)  
TMS  
TRST  
Reset (Initialize TAP Controller) (Input)  
4. The sleep mode pin shuts off all dynamic inputs, except JTAG inputs, when  
asserted. OPTx, INTx, M/S and the sleep mode pins themselves (ZZx) are  
not affected during sleep mode. It is recommended that boundry scan not be  
operated during sleep mode.  
5632 tbl 01  
5. BUSY is an input as a Slave (M/S=VIL) and an output when it is a Master  
(M/S=VIH).  
6
IDT70T651/9S  
High-Speed 2.5V 256/128K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table I—Read/Write and Enable Control(1,2)  
Byte 3  
I/O27-35  
Byte 2  
I/O18-26  
Byte 1  
I/O9-17  
Byte 0  
I/O0-8  
CE  
X
1
R/W  
X
X
X
L
ZZ  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
MODE  
OE  
X
X
X
X
X
X
X
X
X
X
L
SEM CE  
0
BE  
3
BE  
2
BE  
1
BE0  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
X
H
X
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
X
X
H
H
H
H
L
X
X
H
H
H
L
X
X
H
H
L
X
X
H
L
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z Deselected–Power Down  
High-Z Deselected–Power Down  
High-Z All Bytes Deselected  
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
X
DIN  
Write to Byte 0 Only  
H
H
H
L
L
D
IN  
High-Z Write to Byte 1 Only  
High-Z Write to Byte 2 Only  
High-Z Write to Byte 3 Only  
H
H
L
L
D
IN  
High-Z  
High-Z  
H
H
L
L
D
IN  
High-Z  
High-Z  
H
L
L
High-Z  
DIN  
DIN  
Write to Lower 2 Bytes Only  
H
L
H
L
L
DIN  
DIN  
High-Z  
High-Z Write to Upper 2 bytes Only  
L
L
L
DIN  
DIN  
DIN  
DIN  
Write to All Bytes  
Read Byte 0 Only  
H
H
H
L
H
H
L
H
L
L
H
H
H
H
H
H
H
X
X
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
DOUT  
L
H
H
H
L
DOUT  
High-Z Read Byte 1 Only  
High-Z Read Byte 2 Only  
High-Z Read Byte 3 Only  
L
H
H
L
DOUT  
High-Z  
High-Z  
L
H
H
L
DOUT  
High-Z  
High-Z  
L
H
L
High-Z  
DOUT  
DOUT  
Read Lower 2 Bytes Only  
High-Z Read Upper 2 Bytes Only  
Read All Bytes  
L
H
L
H
L
DOUT  
DOUT  
High-Z  
L
L
L
DOUT  
DOUT  
DOUT  
DOUT  
H
X
L
L
L
L
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z Outputs Disabled  
High-Z High-Z Sleep Mode  
X
X
X
X
5632 tbl 02  
NOTES:  
1. "H" = VIH, "L" = VIL, "X" = Don't Care.  
2. It is possible to read or write any combination of bytes during a given access. A few representative samples have been illustrated here.  
Truth Table II – Semaphore Read/Write Control(1)  
Inputs(1)  
BE  
Outputs  
(2)  
R/W  
H
I/O1-35  
I/O  
0
Mode  
CE  
OE  
L
BE  
3
2
BE  
1
BE  
0
SEM  
H
H
L
L
X
X
L
X
X
L
X
X
L
L
L
L
L
DATAOUT  
DATAOUT Read Data in Semaphore Flag(3)  
X
X
______  
DATAIN  
Write I/O  
0
into Semaphore Flag  
______  
X
X
X
Not Allowed  
5632 tbl 03  
NOTES:  
1. There are eight semaphore flags written to I/O0 and read from all the I/Os (I/O0-I/O35). These eight semaphore flags are addressed by A0-A2.  
2. CE = L occurs when CE0 = VIL and CE1 = VIH. CE = H when CE0 = VIH and/or CE1 = VIL.  
3. Each byte is controlled by the respective BEn. To read data BEn = VIL.  
7
IDT70T651/9S  
High-Speed 2.5V 256/128K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
RecommendedOperating  
TemperatureandSupplyVoltage(1)  
Ambient  
RecommendedDCOperating  
Conditions with VDDQ at 2.5V  
Symbol  
Parameter  
Core Supply Voltage  
I/O Supply Voltage(3)  
Ground  
Min.  
2.4  
2.4  
0
Typ.  
2.5  
2.5  
0
Max.  
2.6  
2.6  
0
Unit  
V
V
DD  
DDQ  
SS  
Grade  
Commercial  
Temperature  
0OC to +70OC  
-40OC to +85OC  
GND  
0V  
V
+
+
DD  
V
V
2.5V  
2.5V  
100mV  
100mV  
V
V
Industrial  
0V  
Input High Volltage  
(Address, Control &  
Data I/O Inputs)(3)  
V
DDQ + 100mV(2)  
____  
1.7  
1.7  
V
V
5632 tbl 04  
V
IH  
IH  
NOTE:  
1. This is the parameter TA. This is the "instant on" case temperature.  
_
Input High Voltage  
V
V
DD + 100mV(2)  
____  
JTAG  
Capacitance(1)  
V
V
V
IH  
IL  
IL  
V
DD - 0.2V  
-0.3(1)  
V
DD + 100mV(2)  
V
V
Input High Voltage -  
____  
____  
____  
ZZ, OPT, M/S  
(TA = +25°C, F = 1.0MHZ) PQFP ONLY  
Input Low Voltage  
0.7  
0.2  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions(2)  
IN = 3dV  
OUT = 3dV  
Max. Unit  
Input Low Voltage -  
-0.3(1)  
V
ZZ, OPT, M/S  
CIN  
V
8
pF  
5632 tbl 05  
NOTES:  
(3)  
C
OUT  
V
10.5  
pF  
1. VIL (min.) = -1.0V for pulse width less than tRC/2 or 5ns, whichever is less.  
2. VIH (max.) = VDDQ + 1.0V for pulse width less than tRC/2 or 5ns, whichever is  
less.  
5632 tbl 08  
NOTES:  
1. These parameters are determined by device characterization, but are not  
production tested.  
3. To select operation at 2.5V levels on the I/Os and controls of a given port, the  
OPT pin for that port must be set to VSS(0V), and VDDQX for that port must be  
supplied as indicated above.  
2. 3dV references the interpolated capacitance when the input and output switch  
from 0V to 3V or from 3V to 0V.  
3. COUT also references CI/O.  
RecommendedDCOperating  
Conditions with VDDQ at 3.3V  
AbsoluteMaximumRatings(1)  
Symbol  
Parameter  
Core Supply Voltage  
I/O Supply Voltage(3)  
Ground  
Min.  
2.4  
3.15  
0
Typ.  
2.5  
3.3  
0
Max.  
2.6  
3.45  
0
Unit  
V
Symbol  
Rating  
Commercial  
& Industrial  
Unit  
V
V
DD  
DDQ  
SS  
V
V
V
TERM  
V
DD Terminal Voltage  
-0.5 to 3.6  
V
V
(VDD  
)
with Respect to GND  
Input High Voltage  
(Address, Control  
&Data I/O Inputs)(3)  
(2)  
2.0  
1.7  
V
DDQ + 150mV(2)  
V
V
V
TERM  
(VDDQ  
V
DDQ Te rm inal Vo l tag e  
-0.3 to VDDQ + 0.3  
-0.3 to VDDQ + 0.3  
-55 to +125  
V
____  
V
IH  
IH  
)
(2)  
with Respect to GND  
_
Input High Voltage  
V
TERM  
Input and I/O Terminal  
V
____  
V
V
DD + 100mV(2)  
JTAG  
(INPUTS and I/O's)  
Voltage with Respect to GND  
Input High Voltage -  
(3)  
____  
____  
____  
TBIAS  
Temperature  
Under Bias  
oC  
oC  
VIH  
VIL  
VIL  
V
DD - 0.2V  
-0.3(1)  
V
DD + 100mV(2)  
V
V
ZZ, OPT, M/S  
Input Low Voltage  
0.8  
0.2  
TSTG  
Storage  
-65 to +150  
Input Low Voltage -  
-0.3(1)  
V
Temperature  
ZZ, OPT, M/S  
T
JN  
Junction Temperature  
+150  
50  
oC  
5632 tbl 06  
NOTES:  
IOUT(For VDDQ = 3.3V) DC Output Current  
mA  
1. VIL (min.) = -1.0V for pulse width less than tRC/2 or 5ns, whichever is less.  
2. VIH (max.) = VDDQ + 1.0V for pulse width less than tRC/2 or 5ns, whichever is  
less.  
IOUT(For VDDQ = 2.5V) DC Output Current  
40  
mA  
5632 tbl 07  
3. To select operation at 3.3V levels on the I/Os and controls of a given port, the  
OPT pin for that port must be set to VDD (2.5V), and VDDQX for that port must be  
supplied as indicated above.  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS  
may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those  
indicated in the operational sections of this specification is not implied. Exposure  
to absolute maximum rating conditions for extended periods may affect  
reliability.  
2. This is a steady-state DC parameter that applies after the power supply has  
reached its nominal operating value. Power sequencing is not necessary;  
however, the voltage on any Input or I/O pin cannot exceed VDDQ during power  
supply ramp up.  
3. Ambient Temperature under DC Bias. No AC Conditions. Chip Deselected.  
8
IDT70T651/9S  
High-Speed 2.5V 256/128K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VDD = 2.5V ± 100mV)  
70T651/9S  
Symbol  
|ILI  
|ILI  
|ILO  
Parameter  
Input Leakage Current(1)  
JTAG & ZZ Input Leakage Current(1,2)  
Output Leakage Current(1,3)  
Test Conditions  
DDQ = Max., VIN = 0V to VDDQ  
DD = Max. IN = 0V to VDD  
= VIH or CE = VIL, VOUT = 0V to VDDQ  
OL = +4mA, VDDQ = Min.  
OH = -4mA, VDDQ = Min.  
OL = +2mA, VDDQ = Min.  
OH = -2mA, VDDQ = Min.  
Min.  
Max.  
10  
Unit  
µA  
µA  
µA  
V
___  
___  
___  
___  
|
V
V
|
,
V
+30  
10  
|
CE  
0
1
V
OL (3.3V) Output Low Voltage(1)  
OH (3.3V) Output High Voltage(1)  
OL (2.5V) Output Low Voltage(1)  
OH (2.5V) Output High Voltage(1)  
NOTES:  
I
0.4  
___  
V
I
2.4  
___  
V
V
I
0.4  
___  
V
V
I
2.0  
V
5632 tbl 09  
1. VDDQ is selectable (3.3V/2.5V) via OPT pins. Refer to page 6 for details.  
2. Applicable only for TMS, TDI and TRST inputs.  
3. Outputs tested in tri-state mode.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(3) (VDD = 2.5V ± 100mV)  
70T651/9S10  
Com'l  
70T651/9S12  
Com'l  
70T651/9S15  
Com'l Only  
& Ind(7)  
& Ind  
Typ.(4)  
300  
300  
90  
Typ.(4)  
300  
300  
75  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Max.  
405  
445  
120  
145  
265  
290  
Max. Typ.(4)  
Max. Unit  
IDD  
Dynamic Operating  
Current (Both  
mA  
mA  
mA  
mA  
CEL and CER= VIL  
,
S
S
S
S
S
S
355  
395  
105  
130  
230  
255  
225  
305  
Outputs Disabled  
____  
____  
(1)  
Ports Active)  
IND  
f = fMAX  
(6)  
(6)  
I
SB1  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
CEL  
= CE  
R
= VIH  
COM'L  
IND  
60  
85  
(1)  
f = fMAX  
____  
____  
90  
75  
(5)  
ISB2  
Standby Current  
(One Port - TTL  
Level Inputs)  
CE"A" = VIL and CE"B" = VIH  
COM'L  
IND  
200  
200  
180  
180  
150  
200  
Active Port Outputs Disabled,  
____  
____  
(1)  
f = fMAX  
ISB3  
Full Standby Current Both Ports CE  
L
and  
COM'L  
IND  
S
S
2
2
10  
20  
2
2
10  
20  
2
10  
(Both Ports - CMOS CE  
R > VDDQ - 0.2V,  
Level Inputs)  
VIN > VDDQ - 0.2V or VIN < 0.2V,  
____  
____  
f = 0(2)  
(6)  
ISB4  
Full Standby Current  
(One Port - CMOS  
Level Inputs)  
mA  
CE"A" < 0.2V and  
COM'L  
IND  
S
S
200  
200  
265  
290  
180  
180  
230  
255  
150  
200  
CE"B" > VDDQ - 0.2V(5)  
V
IN > VDDQ - 0.2V or VIN < 0.2V,  
Active Port, Outputs Disabled,  
____  
____  
(1)  
f = fMAX  
IZZ  
Sleep Mode Current ZZL = ZZR =  
V
IH  
mA  
COM'L  
IND  
S
S
2
2
10  
20  
2
2
10  
20  
2
10  
(1)  
(Both Ports - TTL  
Level Inputs)  
f = fMAX  
____  
____  
5632 tbl 10  
NOTES:  
1. Atf=fMAX,addressandcontrollines(exceptOutputEnable)arecyclingatthemaximumfrequencyreadcycleof1/tRC,using"ACTESTCONDITIONS"atinputlevels  
ofGNDto3.3V.  
2. f=0meansnoaddressorcontrollineschange.AppliesonlytoinputatCMOSlevelstandby.  
3. Port"A"maybeeitherleftorright port.Port"B"istheoppositefromport"A".  
4. VDD =3.3V,TA =25°C forTyp,andarenotproductiontested.IDDDC(f=0)=100mA(Typ).  
5. CEX = VIL means CE0X = VIL and CE1X = VIH  
CEX = VIH means CE0X = VIH or CE1X = VIL  
CEX< 0.2V means CE0X< 0.2V and CE1X > VDDQX - 0.2V  
CEX > VDDQX - 0.2V means CE0X> VDDQX - 0.2V or CE1X < 0.2V.  
"X"represents"L"forleftportor"R"forrightport.  
6. ISB1,ISB2andISB4willallreachfullstandbylevels(ISB3)ontheappropriateport(s)ifZZLand/orZZR=VIH.  
7. 10nsIndustrialspeedgradeisavailableinBF-208andBC-256packagesonly.  
9
IDT70T651/9S  
High-Speed 2.5V 256/128K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Test Conditions (VDDQ - 3.3V/2.5V)  
Input Pulse Levels  
GND to 3.0V / GND to 2.4V  
2ns Max.  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
1.5V/1.25V  
1.5V/1.25V  
Figure 1  
5632 tbl 11  
50  
50Ω  
,
DATAOUT  
1.5V/1.25  
10pF  
(Tester)  
5632 drw 03  
Figure 1. AC Output Test load.  
4
3.5  
3
2.5  
t
AA/tACE  
2
1.5  
1
(Typical, ns)  
0.5  
0
0
160  
140  
5632 drw 05  
20  
40  
60  
120  
80  
100  
Capacitance (pF) from AC Test Load  
Figure 3. Typical Output Derating (Lumped Capacitive Load).  
10  
IDT70T651/9S  
High-Speed 2.5V 256/128K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(4)  
70T651/9S10  
Com'l Only  
70T651/9S12  
70T651/9S15  
Com'l Only  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
t
t
t
t
t
t
t
t
t
t
t
t
RC  
Read Cycle Time  
10  
____  
12  
____  
15  
____  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AA  
Address Access Time  
10  
10  
5
12  
12  
6
15  
15  
7
Chip Enable Access Time(3)  
Byte Enable Access Time(3)  
Output Enable Access Time  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
Output High-Z Time(1,2)  
Chip Enable to Power Up Time(2)  
Chip Disable to Power Down Time(2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access Time  
____  
____  
____  
____  
____  
____  
____  
____  
____  
ACE  
ABE  
AOE  
OH  
LZ  
5
____  
6
____  
7
____  
3
0
0
3
0
0
3
0
0
____  
____  
____  
HZ  
4
____  
6
____  
8
____  
PU  
0
____  
0
____  
0
____  
PD  
8
4
8
6
12  
8
____  
____  
____  
SOP  
SAA  
2
10  
2
12  
2
15  
ns  
5632tbl 12  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage(4)  
70T651/9S10  
Com'l Only  
70T651/9S12  
Com'l  
70T651/9S15  
Com'l Only  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tWC  
tEW  
tAW  
Write Cycle Time  
10  
8
12  
10  
10  
0
15  
12  
12  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
8
tAS  
0
tWP  
tWR  
tDW  
tDH  
8
10  
0
12  
0
Write Recovery Time  
Data Valid to End-of-Write  
Data Hold Time(4)  
Write Enable to Output in High-Z(1,2)  
Output Active from End-of-Write(1,2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
0
6
8
10  
0
____  
0
____  
0
____  
tWZ  
tOW  
tSWRD  
tSPS  
4
____  
6
____  
8
____  
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
ns  
5632 tbl 13  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 1).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE= VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time. CE = VIL when  
CE0 = VIL and CE1 = VIH. CE = VIH when CE0 = VIH and/or CE1 = VIL.  
4. These values are valid regardless of the power supply level selected for I/O and control signals (3.3V/2.5V). See page 6 for details.  
5. 10nsIndustrialspeedgradeisavailableinBF-208andBC-256packagesonly.  
11  
IDT70T651/9S  
High-Speed 2.5V 256/128K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Read Cycles(5)  
tRC  
ADDR  
(4)  
t
t
AA  
(4)  
ACE  
CE(6)  
(4)  
tAOE  
OE  
(4)  
t
ABE  
BEn  
R/W  
tOH  
(1)  
t
LZ/tLZOB  
VALID DATA(4)  
DATAOUT  
BUSYOUT  
(2)  
tHZ  
.
(3,4)  
5632 drw 06  
t
BDD  
NOTES:  
1. Timing depends on which signal is asserted last, OE, CE or BEn.  
2. Timing depends on which signal is de-asserted first CE, OE or BEn.  
3. tBDD delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY  
has no relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA, tABE or tBDD.  
5. SEM = VIH.  
6. CE = L occurs when CE0 = VIL and CE1 = VIH. CE = H when CE0 = VIH and/or CE1 = VIL.  
Timing of Power-Up Power-Down  
CE  
t
PU  
tPD  
ICC  
50%  
50%  
.
5632 drw 07  
ISB  
12  
IDT70T651/9S  
High-Speed 2.5V 256/128K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
t
WC  
ADDRESS  
(7)  
t
HZ  
OE  
tAW  
CE or SEM(9)  
BEn(9)  
R/W  
(3)  
(2)  
tWP  
(6)  
t
WR  
t
AS  
(7)  
(7)  
t
WZ  
tOW  
(4)  
(4)  
DATAOUT  
DATAIN  
t
DW  
tDH  
5632 drw 10  
.
Timing Waveform of Write Cycle No. 2, CE Controlled Timing(1,5,8)  
t
WC  
ADDRESS  
tAW  
CE or SEM(9)  
BEn(9)  
(6)  
AS  
(3)  
WR  
(2)  
t
t
EW  
t
R/W  
tDW  
tDH  
DATAIN  
.
.
5632 drw 11  
NOTES:  
1. R/W or CE or BEn = VIH during all address transitions for Write Cycles 1 and 2.  
2. A write occurs during the overlap (tEW or tWP) of a CE = VIL, BEn = VIL, and a R/W = VIL for memory array writing cycle.  
3. tWR is measured from the earlier of CE, BEn or R/W (or SEM or R/W) going HIGH to the end of write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM = VIL transition occurs simultaneously with or after the R/W = VIL transition, the outputs remain in the High-impedance state.  
6. Timing depends on which enable signal is asserted last, CE or R/W.  
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load  
(Figure 1).  
8. If OE = VIL during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be  
placed on the bus for the required tDW. If OE = VIH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the  
specified tWP.  
9. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. tEW must be met for either condition. CE = VIL when CE0 = VIL  
and CE1 = VIH. CE = VIH when CE0 = VIH and/or CE1 = VIL.  
13  
IDT70T651/9S  
High-Speed 2.5V 256/128K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
takentostillmeettheWriteCycletime(tWC),thetimeinwhichtheAddress  
inputsmustbestable. Inputdatasetupandholdtimes(tDW andtDH)will  
nowbereferencedtotheendingaddresstransition. InthisRapidWrite  
Mode theI/OwillremainintheInputmodeforthedurationoftheoperations  
duetoR/Wbeingheldlow. AllstandardWriteCyclespecificationsmust  
beadheredto.However,tAS andtWR areonlyapplicablewhenswitching  
between read and write operations. Also, there are two additional  
conditionsontheAddressInputsthatmustalsobemettoensurecorrect  
addresscontrolledwrites. Thesespecifications,theAllowableAddress  
Skew(tAAS)andtheAddressRise/Falltime(tARF),mustbemettousethe  
RapidWriteMode. Iftheseconditionsarenotmetthereisthepotentialfor  
inadvertent write operations at random intermediate locations as the  
devicetransitionsbetweenthedesiredwriteaddresses.  
RapidWrite Mode Write Cycle  
Unlike other vendors' Asynchronous Random Access Memories,  
theIDT70T651/9iscapableofperformingmultipleback-to-backwrite  
operations without having to pulse the R/W, CE, or BEn signals high  
duringaddresstransitions. ThisRapidWriteModefunctionalityallowsthe  
systemdesignertoachieveoptimumback-to-backwritecycleperformance  
withoutthedifficulttaskofgeneratingnarrowresetpulseseverycycle,  
simplifyingsystemdesignandreducingtimetomarket.  
DuringthisnewRapidWriteMode,theendofthewritecycleisnow  
definedbytheendingaddresstransition,insteadoftheR/WorCEorBEn  
transition to the inactive state. R/W, CE, and BEn can be held active  
throughouttheaddresstransitionbetweenwritecycles.Caremustbe  
Timing Waveform of Write Cycle No. 3, RapidWrite Mode Write Cycle(1,3)  
(4)  
WC  
t
WC  
t
tWC  
ADDRESS  
(2)  
EW  
t
CE or SEM(6)  
BEn  
R/W  
t
WR  
t
WP  
(5)  
WZ  
(5)  
OW  
t
t
DATAOUT  
tDH  
tDH  
t
DH  
tDW  
tDW  
tDW  
DATAIN  
5632 drw 08  
NOTES:  
1. OE = VIL for this timing waveform as shown. OE may equal VIH with same write functionality; I/O would then always be in High-Z state.  
2. A write occurs during the overlap (tEW or tWP) of a CE = VIL, BEn = VIL, and a R/W = VIL for memory array writing cycle. The last transition LOW of CE, BEn, and  
R/W initiates the write sequence. The first transition HIGH of CE, BEn, and R/W terminates the write sequence.  
3. If the CE or SEM = VIL transition occurs simultaneously with or after the R/W = VIL transition, the outputs remain in the High-impedance state.  
4. The timing represented in this cycle can be repeated multiple times to execute sequential RapidWrite Mode writes.  
5. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load  
(Figure 1).  
6. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. tEW must be met for either condition. CE = VIL when CE0 = VIL  
and CE1 = VIH. CE = VIH when CE0 = VIH and/or CE1 = VIL.  
14  
IDT70T651/9S  
High-Speed 2.5V 256/128K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics over the Operating Temperature Range  
and Supply Voltage Range for RapidWrite Mode Write Cycle(1)  
Symbol  
Parameter  
Min  
Max  
Unit  
____  
t
AAS  
Allowable Address Skew for RapidWrite Mode  
Address Rise/Fall Time for RapidWrite Mode  
1
ns  
____  
tARF  
1.5  
V/ns  
5632 tbl 14  
NOTE:  
1. Timing applies to all speed grades when utilizing the RapidWrite Mode Write Cycle.  
Timing Waveform of Address Inputs for RapidWrite Mode Write Cycle  
A
0
tARF  
t
AAS  
A
17(1)  
t
ARF  
5632 drw 09  
NOTE:  
1. A16 for IDT70T659.  
15  
IDT70T651/9S  
High-Speed 2.5V 256/128K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
t
SAA  
A0-A2  
VALID ADDRESS  
VALID ADDRESS  
t
t
AW  
tWR  
ACE  
t
EW  
SEM(1)  
tOH  
t
SOP  
tDW  
OUT  
DATA  
VALID(2)  
I/O  
IN  
DATA VALID  
t
AS  
t
WP  
tDH  
R/W  
t
SWRD  
tSOE  
OE  
t
SOP  
Write Cycle  
Read Cycle  
.
5632 drw 12  
NOTES:  
1. CE0 = VIH and CE1 = VIL are required for the duration of both the write cycle and the read cycle waveforms shown above. Refer to Truth Table II for details and for  
appropriate BEn controls.  
2. "DATAOUT VALID" represents all I/O's (I/O0 - I/O35) equal to the semaphore value.  
Timing Waveform of Semaphore Write Contention(1,3,4)  
A0"A"-A2"A"  
MATCH  
SIDE(2) "A"  
R/W"A"  
SEM"A"  
tSPS  
A0"B"-A2"B"  
MATCH  
SIDE(2)  
"B"  
R/W"B"  
SEM"B"  
.
5632 drw 13  
NOTES:  
1. DOR = DOL = VIL, CEL = CER = VIH. Refer to Truth Table II for appropriate BE controls.  
2. All timing is the same for left and right ports. Port "A" may be either left or right port. "B" is the opposite from port "A".  
3. This parameter is measured from R/W"A" or SEM"A" going HIGH to R/W"B" or SEM"B" going HIGH.  
4. If tSPS is not satisfied,the semaphore will fall positively to one side or the other, but there is no guarantee which side will be granted the semaphore flag.  
16  
IDT70T651/9S  
High-Speed 2.5V 256/128K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange  
70T651/9S10  
Com'l Only  
70T651/9S12  
Com'l  
70T651/9S15  
Com'l Only  
& Ind  
Symbol  
Parameter  
Unit  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
BUSY TIMING (M/S=VIH  
)
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tBAA  
tBDA  
tBAC  
tBDC  
tAPS  
tBDD  
tWH  
10  
10  
10  
12  
12  
12  
15  
15  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable Low  
BUSY Disable Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
10  
____  
12  
____  
15  
____  
2.5  
____  
2.5  
____  
2.5  
____  
BUSY Disable to Valid Data(3)  
Write Hold After BUSY(5)  
10  
____  
12  
____  
15  
____  
8
10  
12  
BUSY TIMING (M/S=VIL  
)
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
Write Hold After BUSY(5)  
t
WB  
0
8
0
0
ns  
ns  
tWH  
10  
12  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
____  
____  
t
WDD  
Write Pulse to Data Delay(1)  
Write Data Valid to Read Data Delay(1)  
22  
20  
25  
22  
30  
25  
ns  
tDDD  
ns  
5632 tbl 15b  
NOTES:  
1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read and BUSY (M/S = VIH)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of the Max. spec, tWDD – tWP (actual), or tDDD – tDW (actual).  
4. To ensure that the write cycle is inhibited on port "B" during contention on port "A".  
5. To ensure that a write cycle is completed on port "B" after contention on port "A".  
6. 10nsIndustrialspeedgradeisavailableinBF-208andBC-256packagesonly.  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(1,2,3)  
70T651/9S10  
Com'l Only  
70T651/9S12  
Com'l  
70T651/9S15  
Com'l Only  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
SLEEP MODE TIMING (ZZx=VIH  
)
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
t
t
t
ZZS  
Sleep Mode Set Time  
Sleep Mode Reset Time  
10  
10  
12  
12  
15  
15  
ZZR  
ZZPD  
ZZPU  
Sleep Mode Power Down Time  
Sleep Mode Power Up Time  
10  
____  
12  
____  
15  
____  
0
0
0
5632 tbl 15c  
NOTES:  
1. Timing is the same for both ports.  
2. The sleep mode pin shuts off all dynamic inputs, except JTAG inputs, when asserted. OPTx, INTx, M/S and the sleep mode pins themselves (ZZx) are not affected  
during sleep mode. It is recommended that boundary scan not be operated during sleep mode.  
3. These values are valid regardless of the power supply level selected for I/O and control signals (3.3V/2.5V). See page 6 for details.  
4. 10nsIndustrialspeedgradeisavailableinBF-208andBC-256packagesonly.  
5. This parameter is guaranteed by device characterization, but is not production tested.  
17  
IDT70T651/9S  
High-Speed 2.5V 256/128K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
TimingWaveformof WritewithPort-to-PortReadandBUSY (M/S =VIH)(2,4,5)  
tWC  
MATCH  
ADDR"A"  
t
WP  
R/W"A"  
tDH  
tDW  
VALID  
DATAIN "A"  
(1)  
APS  
t
MATCH  
ADDR"B"  
tBDA  
tBAA  
tBDD  
BUSY"B"  
t
WDD  
DATAOUT "B"  
VALID  
(3)  
t
DDD  
.
5632 drw 14  
NOTES:  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S = VIL (SLAVE).  
2. CE0L = CE0R = VIL; CE1L = CE1R = VIH.  
3. OE = VIL for the reading port.  
4. If M/S = VIL (slave), BUSY is an input. Then for this example BUSY"A" = VIH and BUSY"B" input is shown above.  
5. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".  
Timing Waveform of Write with BUSY (M/S = VIL)  
t
WP  
R/W"A"  
(3)  
WB  
t
BUSY"B"  
(1)  
t
WH  
(2)  
R/W"B"  
.
NOTES:  
5632 drw 15  
1. tWH must be met for both BUSY input (SLAVE) and output (MASTER).  
2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.  
3. tWB only applies to the slave mode.  
18  
IDT70T651/9S  
High-Speed 2.5V 256/128K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of BUSY Arbitration Controlled by CE Timing(M/S = VIH)(1)  
ADDR"A"  
ADDRESSES MATCH  
and "B"  
CE"A"  
(2)  
t
APS  
CE"B"  
t
BAC  
tBDC  
BUSY"B"  
.
5632 drw 16  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(M/S = VIH)(1,3,4)  
ADDR"A"  
ADDRESS "N"  
(2)  
t
APS  
ADDR"B"  
MATCHING ADDRESS "N"  
tBAA  
tBDA  
BUSY"B"  
,
5632 drw 17  
NOTES:  
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from port “A”.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
3. CEX = VIL when CE0X = VIL and CE1X = VIH. CEX = VIH when CE0X = VIH and/or CE1X = VIL.  
4. CE0X = OEX = BEnX = VIL. CE1X = VIH.  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(1,2)  
70T651/9S10  
Com'l Only  
70T651/9S12  
Com'l  
70T651/9S15  
Com'l Only  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
____  
____  
t
t
t
t
AS  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
0
ns  
ns  
ns  
ns  
WR  
INS  
INR  
0
____  
0
____  
0
____  
10  
10  
12  
12  
15  
15  
____  
____  
____  
Interrupt Reset Time  
5632 tbl 16a  
NOTES:  
1. Timing is the same for both ports.  
2. These values are valid regardless of the power supply level selected for I/O and control signals (3.3V/2.5V). See page 6 for details.  
3. 10nsIndustrialspeedgradeisavailableinBF-208andBC-256packagesonly.  
19  
IDT70T651/9S  
High-Speed 2.5V 256/128K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing(1)  
t
WC  
(2)  
ADDR"A"  
INTERRUPT SET ADDRESS  
(5)  
(4)  
tWR  
tAS  
(3)  
CE"A"  
R/W"A"  
INT"B"  
(4)  
tINS  
.
5632 drw 18  
tRC  
INTERRUPT CLEAR ADDRESS(2)  
ADDR"B"  
(4)  
t
AS  
(3)  
CE"B"  
OE"B"  
INT"B"  
(4)  
t
INR  
.
5632 drw 19  
NOTES:  
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from port “A”.  
2. Refer to Interrupt Truth Table.  
3. CEX = VIL means CE0X = VIL and CE1X = VIH. CEX = VIH means CE0X = VIH and/or CE1X = VIL.  
4. Timing depends on which enable signal (CE or R/W) is asserted last.  
5. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
Truth Table III — Interrupt Flag(1,4)  
Left Port  
Right Port  
(5)  
(5)  
R/W  
L
L
A
17L-A0L  
3FFFF  
X
R/W  
X
R
A
17R-A0R  
Function  
CE  
L
OE  
X
L
INT  
X
L
CE  
X
R
OE  
X
R
INTR  
L
X
L(2)  
H(3)  
X
Set Right INT  
Reset Right INT  
Set Left INT Flag  
Reset Left INT Flag  
R
Flag  
X
X
X
X
L(3)  
H(2)  
X
L
L
3FFFF  
3FFFE  
X
R
Flag  
X
X
X
X
L
L
X
L
X
L
L
3FFFE  
X
X
X
X
L
5632 tbl 17  
NOTES:  
1. Assumes BUSYL = BUSYR =VIH. CE0X = VIL and CE1X = VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
4. INTL and INTR must be initialized at power-up.  
5. A17x is a NC for IDT70T659. Therefore, Interrupt Addresses are 1FFFF and 1FFFE.  
20  
IDT70T651/9S  
High-Speed 2.5V 256/128K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table IV —  
AddressBUSY Arbitration  
Inputs  
Outputs  
(4)  
A
OL-A17L  
(5)  
(5)  
(1)  
(1)  
A
OR-A17R  
Function  
Normal  
Normal  
Normal  
CE  
L
CE  
R
BUSY  
H
L
BUSYR  
X
X
NO MATCH  
MATCH  
H
H
H
X
L
X
H
L
H
MATCH  
H
H
MATCH  
(2)  
(2)  
Write Inhibit(3)  
5632 tbl 18  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSY outputs on the  
IDT70T651/9 are push-pull, not open drain outputs. On slaves the BUSY input internally inhibits writes.  
2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address  
and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs can not be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored  
when BUSYR outputs are driving LOW regardless of actual logic level on the pin.  
4. A17 is a NC for IDT70T659. Address comparison will be for A0 - A16.  
5. CEX = L means CE0X = VIL and CE1X = VIH. CEX = H means CE0X = VIH and/or CE1X = VIL.  
Truth Table V — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0  
- D35 Left  
D0  
- D35 Right  
Status  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
5632 tbl 19  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT70T651/9.  
2. There are eight semaphore flags written to via I/O0 and read from all I/O's (I/O0-I/O35). These eight semaphores are addressed by A0 - A2.  
3. CE = VIH, SEM = VIL to access the semaphores. Refer to the Semaphore Read/Write Control Truth Table.  
boxormessagecenter)isassignedtoeachport. Theleftportinterrupt  
flag (INTL) is asserted when the right port writes to memory location  
3FFFE (HEX), where a write is defined as CER = R/WR = VIL per the  
Truth Table. The left port clears the interrupt through access of  
address location 3FFFE when CEL = OEL = VIL, R/W is a "don't care".  
Likewise,therightportinterruptflag(INTR)isassertedwhentheleftport  
writes to memory location 3FFFF (HEX) and to clear the interrupt  
flag (INTR), the right port must read the memory location 3FFFF. The  
message(36bits)at3FFFEor3FFFF(1FFFFor1FFFEforIDT70T659)  
isuser-definedsinceitisanaddressableSRAMlocation.Iftheinterrupt  
functionisnotused, addresslocations3FFFEand3FFFFarenotused  
FunctionalDescription  
TheIDT70T651/9providestwoportswithseparatecontrol,address  
and I/O pins that permit independent access for reads or writes to any  
location in memory. The IDT70T651/9 has an automatic power down  
feature controlled by CE. The CE0 and CE1 control the on-chip power  
downcircuitrythatpermitstherespectiveporttogointoastandbymode  
when not selected (CE= HIGH). When a port is enabled, access to the  
entirememoryarrayispermitted.  
Interrupts  
If the user chooses the interrupt function, a memory location (mail  
21  
IDT70T651/9S  
High-Speed 2.5V 256/128K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
asmailboxes,butaspartoftherandomaccessmemory.RefertoTruth  
Table III for the interrupt operation.  
The BUSY arbitration on a master is based on the chip enable and  
address signals only. It ignores whether an access is a read or write.  
In a master/slave array, both address and chip enable must be valid  
long enough for a BUSY flag to be output from the master before the  
actual write pulse can be initiated with the R/W signal. Failure to  
observe this timing can result in a glitched internal write inhibit signal  
and corrupted data in the slave.  
BusyLogic  
BusyLogicprovidesahardwareindicationthatbothportsoftheRAM  
haveaccessedthesamelocationatthesametime.Italsoallowsoneofthe  
twoaccessestoproceedandsignalstheothersidethattheRAMisBusy”.  
TheBUSYpincanthenbeusedtostalltheaccessuntiltheoperationon  
theothersideiscompleted.Ifawriteoperationhasbeenattemptedfrom  
thesidethatreceivesaBUSYindication,thewritesignalisgatedinternally  
topreventthewritefromproceeding.  
Semaphores  
The IDT70T651/9 is an extremely fast Dual-Port 256/128K x 36  
CMOS Static RAM with an additional 8 address locations dedicated to  
binarysemaphoreflags.Theseflagsalloweitherprocessorontheleftor  
rightsideoftheDual-PortRAMtoclaimaprivilegeovertheotherprocessor  
for functions defined by the system designer’s software. As an ex-  
ample, the semaphore can be used by one processor to inhibit the  
other from accessing a portion of the Dual-Port RAM or any other  
shared resource.  
TheuseofBUSYlogicisnotrequiredordesirableforallapplications.  
InsomecasesitmaybeusefultologicallyORtheBUSYoutputstogether  
and use any BUSY indication as an interrupt source to flag the event of  
anillegalorillogicaloperation.IfthewriteinhibitfunctionofBUSYlogicis  
notdesirable,theBUSYlogiccanbedisabledbyplacingthepartinslave  
modewiththeM/Spin.OnceinslavemodetheBUSYpinoperatessolely  
asawriteinhibitinputpin.Normaloperationcanbeprogrammedbytying  
the BUSY pins HIGH. If desired, unintended write operations can be  
prevented to a port by tying the BUSY pin for that port LOW.  
The BUSY outputs on the IDT70T651/9 RAM in master mode, are  
push-pull type outputs and do not require pull up resistors to operate.  
The Dual-Port RAM features a fast access time, with both ports  
being completely independent of each other. This means that the  
activityontheleftportinnowayslowstheaccesstimeoftherightport.  
Both ports are identical in function to standard CMOS Static RAM and  
can be read from or written to at the same time with the only possible  
conflict arising from the simultaneous writing of, or a simultaneous  
READ/WRITE of, a non-semaphore location. Semaphores are pro-  
tected against such ambiguous situations and may be used by the  
system program to avoid any conflicts in the non-semaphore portion  
of the Dual-Port RAM. These devices have an automatic power-down  
featurecontrolledbyCE0andCE1,theDual-PortRAMchipenables,and  
SEM, thesemaphoreenable. The CE0, CE1, and SEMpinscontrolon-  
chippowerdowncircuitrythatpermitstherespectiveporttogointostandby  
modewhennotselected.  
A
18  
CE0  
CE0  
MASTER  
Dual Port RAM  
SLAVE  
Dual Port RAM  
BUSY  
R
BUSY  
R
BUSY  
L
BUSYL  
CE1  
CE1  
MASTER  
Dual Port RAM  
SLAVE  
Dual Port RAM  
Systems which can best use the IDT70T651/9 contain multiple  
processors or controllers and are typically very high-speed systems  
which are software controlled or software intensive. These systems  
can benefit from a performance increase offered by the IDT70T651/9s  
hardware semaphores, which provide a lockout mechanism without  
requiringcomplexprogramming.  
BUSY  
L
BUSY  
L
BUSYR  
BUSY  
R
.
5632 drw 20  
Figure 3. Busy and chip enable routing for both width and depth  
expansion with IDT70T651/9 Dual-Port RAMs.  
If these RAMs are being expanded in depth, then the BUSY indication  
Softwarehandshakingbetweenprocessorsoffersthemaximumin  
system flexibility by permitting shared resources to be allocated in  
varying configurations. The IDT70T651/9 does not use its semaphore  
flags to control any resources through hardware, thus allowing the  
systemdesignertotalflexibilityinsystemarchitecture.  
for the resulting array requires the use of an external AND gate.  
Width Expansion with Busy Logic  
Master/SlaveArrays  
An advantage of using semaphores rather than the more common  
methods of hardware arbitration is that wait states are never incurred  
in either processor. This can prove to be a major advantage in very  
high-speedsystems.  
When expanding an IDT70T651/9 RAM array in width while using  
BUSY logic, one master part is used to decide which side of the RAMs  
array will receive a BUSY indication, and to output that indication. Any  
number of slaves to be addressed in the same address range as the  
master use the BUSY signal as a write inhibit signal. Thus on the  
IDT70T651/9 RAM the BUSY pin is an output if the part is used as a  
master (M/S pin = VIH), and the BUSY pin is an input if the part used  
as a slave (M/S pin = VIL) as shown in Figure 3.  
How the Semaphore Flags Work  
The semaphore logic is a set of eight latches which are indepen-  
dent of the Dual-Port RAM. These latches can be used to pass a flag,  
or token, from one port to the other to indicate that a shared resource  
is in use. The semaphores provide a hardware assist for a use  
assignmentmethodcalledTokenPassingAllocation.Inthismethod,  
the state of a semaphore latch is used as a token indicating that a  
shared resource is in use. If the left processor wants to use this  
resource,itrequeststhetokenbysettingthelatch.Thisprocessorthen  
If two or more master parts were used when expanding in width, a  
splitdecisioncouldresultwithonemasterindicatingBUSY ononeside  
of the array and another master indicating BUSY on one other side of  
the array. This would inhibit the write operations from one port for part  
of a word and inhibit the write operations from the other port for the  
other part of the word.  
22  
IDT70T651/9S  
High-Speed 2.5V 256/128K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
the gap between the read and write cycles.  
verifiesitssuccessinsettingthelatchbyreadingit. Ifitwassuccessful,it  
proceeds to assume control over the shared resource. If it was not  
successfulinsettingthelatch,itdeterminesthattherightsideprocessor  
has set the latch first, has the token and is using the shared resource.  
The left processor can then either repeatedly request that  
semaphore’s status or remove its request for that semaphore to  
perform another task and occasionally attempt again to gain control of  
the token via the set and test sequence. Once the right side has  
relinquishedthetoken,theleftsideshouldsucceedingainingcontrol.  
The semaphore flags are active LOW. A token is requested by  
writing a zero into a semaphore latch and is released when the same  
sidewritesaonetothatlatch.  
Itisimportanttonotethatafailedsemaphorerequestmustbefollowed  
byeitherrepeatedreadsorbywritingaoneintothesamelocation. The  
reason for this is easily understood by looking at the  
simplelogicdiagramofthesemaphoreflaginFigure4.Twosemaphore  
request latches feed into a semaphore flag. Whichever latch is first to  
presentazerotothe semaphoreflagwillforceitssideofthesemaphore  
flagLOWandtheothersideHIGH.Thisconditionwillcontinueuntilaone  
is written to the same semaphore request latch. If the opposite side  
semaphorerequestlatchhasbeenwrittentozerointhemeantime, the  
semaphoreflagwillflipovertotheothersideassoonasaoneiswritten  
intothefirstrequestlatch.TheoppositesideflagwillnowstayLOWuntil  
its semaphore request latch is written to a one. From this it is easy to  
The eight semaphore flags reside within the IDT70T651/9 in a  
separate memory space from the Dual-Port RAM. This address space  
isaccessedbyplacingalowinputontheSEMpin(whichactsasachip  
selectforthesemaphoreflags)andusingtheothercontrolpins(Address,  
CE0, CE1,R/W and BEn) as they would be used in accessing a  
standardStaticRAM.Eachoftheflagshasauniqueaddresswhichcan  
beaccessedbyeithersidethroughaddresspinsA0A2.Whenaccessing  
thesemaphores, noneoftheotheraddresspinshasanyeffect.  
Whenwritingtoasemaphore,onlydatapinD0 isused.Ifalowlevel  
is written into an unused semaphore location, that flag will be set to  
a zero on that side and a one on the other side (see Truth Table V).  
Thatsemaphorecannowonlybemodifiedbythesideshowingthezero.  
Whenaoneiswrittenintothesamelocationfromthesameside,the flag  
will be set to a one for both sides (unless a semaphore request  
L PORT  
R PORT  
SEMAPHORE  
SEMAPHORE  
REQUEST FLIP FLOP  
REQUEST FLIP FLOP  
0
D
0
D
D
D
Q
Q
WRITE  
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
READ  
5632 drw 21  
Figure 4. IDT70T651/9 Semaphore Logic  
fromtheothersideispending)andthencanbewrittentobybothsides. understand that, if a semaphore is requested and the processor which  
The fact that the side which is able to write a zero into a semaphore requesteditnolongerneedstheresource,theentiresystemcanhangup  
subsequently locks out writes from the other side is what makes untilaoneiswrittenintothatsemaphorerequestlatch.  
semaphoreflagsusefulininterprocessorcommunications.(Athorough  
The critical case of semaphore timing is when both sides request  
discussionontheuseofthisfeaturefollowsshortly.)Azerowrittenintothe a single token by attempting to write a zero into it at the same time. The  
samelocationfromtheothersidewillbestoredinthesemaphorerequest semaphore logic is specially designed to resolve this problem. If  
latchforthatsideuntilthesemaphoreisfreedbythefirstside.  
simultaneous requests are made, the logic guarantees that only one  
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso side receives the token. If one side is earlier than the other in making  
thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining the request, the first side to make the request will receive the token. If  
a zero reads as all zeros for a semaphore read, the SEM, BEn, and OE bothrequestsarriveatthesametime, theassignmentwillbearbitrarily  
signalsneedtobeactive. (PleaserefertoTruthTableII). Furthermore, made to one port or the other.  
thereadvalueislatchedintooneside’soutputregisterwhenthatside's  
One caution that should be noted when using semaphores is that  
semaphoreselect(SEM,BEn)andoutputenable(OE)signalsgoactive. semaphores alone do not guarantee that access to a resource is  
Thisservestodisallowthesemaphorefromchangingstateinthemiddle secure. As with any powerful programming technique, if semaphores  
of a read cycle due to a write cycle from the other side.  
are misused or misinterpreted, a software error can easily happen.  
Initialization of the semaphores is not automatic and must be  
A sequence WRITE/READ must be used by the semaphore in  
order to guarantee that no system level contention will occur. A handled via the initialization program at power-up. Since any sema-  
processor requests access to shared resources by attempting to write phore request flag which contains a zero must be reset to a one,  
a zero into a semaphore location. If the semaphore is already in use, all semaphores on both sides should have a one written into them  
the semaphore request latch will contain a zero, yet the semaphore at initialization from both sides to assure that they will be free  
flag will appear as one, a fact which the processor will verify by the when needed.  
subsequent read (see Table V). As an example, assume a processor  
writes a zero to the left port at a free semaphore location. On a  
subsequent read, the processor will verify that it has written success-  
fully to that location and will assume control over the resource in  
question. Meanwhile, if a processor on the right side attempts to write  
a zero to the same semaphore flag it will fail, as will be verified by the  
fact that a one will be read from that semaphore on the right side  
during subsequent read. Had a sequence of READ/WRITE been  
usedinstead,systemcontentionproblemscouldhaveoccurredduring  
23  
IDT70T651/9S  
High-Speed 2.5V 256/128K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
24  
IDT70T651/9S  
High-Speed 2.5V 256/128K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
SleepMode  
The IDT70T651/9 is equipped with an optional sleep or low power  
modeonbothports.Thesleepmodepinonbothportsisactivehigh.During  
operation occurs during these periods, the memory array may be  
corrupted. Validity of data out from the RAM cannot be guaranteed  
immediatelyafterZZisasserted(priortobeinginsleep).  
normal operation, the ZZ pin is pulled low. When ZZ is pulled high, the  
port will enter sleep mode where it will meet lowest possible power  
conditions.Thesleepmodetimingdiagramshowsthemodesofoperation:  
NormalOperation, NoRead/WriteAllowedandSleepMode.  
DuringsleepmodetheRAMautomaticallydeselectsitself.TheRAM  
disconnectsitsinternalbuffer.Alloutputswillremaininhigh-Zstatewhile  
insleepmode.Allinputsareallowedtotoggle.TheRAMwillnotbeselected  
and will not perform any reads or writes.  
Foraperiodoftime priortosleepmodeandafterrecoveringfromsleep  
mode(tZZS andtZZR),newreadsorwritesarenotallowed.Ifawriteorread  
JTAGTimingSpecifications  
t
JCYC  
t
JR  
tJF  
t
JCL  
tJCH  
TCK  
Device Inputs(1)/  
TDI/TMS  
t
JDC  
t
JS  
t
JH  
Device Outputs(2)/  
TDO  
t
JRSR  
t
JCD  
TRST  
x
5632 drw 23  
t
JRST  
NOTES:  
1. Device inputs = All device inputs except TDI, TMS, TCK and TRST.  
2. Device outputs = All device outputs except TDO.  
JTAG AC Electrical  
Characteristics(1,2,3,4,5)  
70T651/9  
Symbol  
Parameter  
JTAG Clock Input Period  
JTAG Clock HIGH  
JTAG Clock Low  
JTAG Clock Rise Time  
JTAG Clock Fall Time  
JTAG Reset  
Min.  
100  
40  
Max.  
____  
Units  
ns  
t
JCYC  
JCH  
JCL  
JR  
JF  
JRST  
JRSR  
JCD  
JDC  
JS  
JH  
____  
____  
t
ns  
t
40  
____  
ns  
t
3(1)  
3(1)  
ns  
____  
t
ns  
____  
t
50  
ns  
____  
t
JTAG Reset Recovery  
JTAG Data Output  
JTAG Data Output Hold  
JTAG Setup  
50  
____  
ns  
NOTES:  
1. Guaranteed by design.  
t
25  
____  
ns  
2. 30pF loading on external output signals.  
3. Refer to AC Electrical Test Conditions stated earlier in this document.  
4. JTAG operations occur at one speed (10MHz). The base device may run at  
any speed specified in this datasheet.  
t
0
ns  
____  
____  
t
15  
15  
ns  
5. JTAG cannot be tested in sleep mode.  
t
JTAG Hold  
ns  
5632 tbl 20  
25  
IDT70T651/9S  
High-Speed 2.5V 256/128K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Identification Register Definitions  
Instruction Field  
Value  
Description  
Revision Number (31:28)  
0x0  
Reserved for version number  
0x338(1)  
0x33  
1
IDT Device ID (27:12)  
Defines IDT part number 70T651  
IDT JEDEC ID (11:1)  
Allows unique identification of device vendor as IDT  
Indicates the presence of an ID register  
ID Register Indicator Bit (Bit 0)  
5632 tbl 21  
NOTE:  
1. Device ID for IDT70T659 is 0x339.  
ScanRegisterSizes  
Register Name  
Bit Size  
Instruction (IR)  
4
1
Bypass (BYR)  
Identification (IDR)  
32  
Boundary Scan (BSR)  
Note (3)  
5632 tbl 22  
SystemInterfaceParameters  
Instruction  
Code  
Description  
EXTEST  
0000  
Forces contents of the boundary scan cells onto the device outputs(1).  
Places the boundary scan register (BSR) between TDI and TDO.  
BYPASS  
IDCODE  
1111  
Places the bypass register (BYR) between TDI and TDO.  
0010  
Loads the ID register (IDR) with the vendor ID code and places the  
register between TDI and TDO.  
0100  
Places the bypass register (BYR) between TDI and TDO. Forces all  
device output drivers to a High-Z state.  
HIGHZ  
Uses BYR. Forces contents of the boundary scan cells onto the device  
outputs. Places the bypass register (BYR) between TDI and TDO.  
CLAMP  
0011  
0001  
SAMPLE/PRELOAD  
Places the boundary scan register (BSR) between TDI and TDO.  
SAMPLE allows data from device inputs(2) and outputs(1) to be captured  
in the boundary scan cells and shifted serially through TDO. PRELOAD  
allows data to be input serially into the boundary scan cells via the TDI.  
RESERVED  
Several combinations are reserved. Do not use codes other than those  
identified above.  
All Other Codes  
5632 tbl 23  
NOTES:  
1. Device outputs = All device outputs except TDO.  
2. Device inputs = All device inputs except TDI, TMS, TCK and TRST.  
3. The Boundary Scan Descriptive Language (BSDL) file for this device is available on the IDT website (www.idt.com), or by contacting your local  
IDT sales representative.  
26  
IDT70T651/9S  
High-Speed 2.5V 256/128K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Ordering Information  
XXXXX  
A
999  
A
A
A
A
Device  
Type  
Power Speed Package  
Process/  
Temperature  
Range  
Tube of Tray  
Blank  
8
Tape and Reel  
Blank  
I(3)  
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
G(2)  
Green  
BC  
DR  
BF  
256-pin BGA (BC-256)  
208-pin PQFP (DR-208)  
208-pin fpBGA (BF-208)  
Commercial & Industrial(1)  
10  
12  
15  
Speed in nanoseconds  
Commercial & Industrial  
Commercial Only  
S
Standard Power  
9Mbit (256K x 36) Asynchronous Dual-Port RAM  
4Mbit (128K x 36) Asynchronous Dual-Port RAM  
70T651  
70T659  
5632 drw 24  
NOTES:  
1. 10nsIndustrialspeedgradeisavailableinBF-208andBC-256packagesonly.  
2. Greenpartsavailable.Forspecificspeeds,packagesandpowerscontactyourlocalsalesoffice.  
3. Contactyourlocalsalesofficefor additional industrialtemprange speeds,packagesandpowers.  
DATASHEET DOCUMENT HISTORY  
04/25/03:  
10/01/03:  
InitialDatasheet  
Page 9  
Added8nsspeedDCpowernumberstoDCElectricalCharacteristicsTable  
Page 9  
Updated DC power numbers for 10, 12 & 15ns speeds in the DC Electrical Characteristics Table  
Addedfootnotethatindicatesthat8nsspeedisavailableinBF-208andBC-256packagesonly  
Page 9, 11, 15,  
17 & 26  
Page 10  
AddedCapacitanceDeratingDrawing  
Page 11, 15 & 17 Added8nsACtimingnumberstotheACElectricalCharacteristicsTables  
Page 11  
AddedtSOE andtLZOB totheACReadCycleElectricalCharacteristicsTable  
Added tLZOB to the Waveform of Read Cycles Drawing  
Page 12  
Page 14  
AddedtSOE toTimingWaveformofSemaphoreReadafterWriteTiming,EitherSideDrawing  
Added 8ns speed grade and 10ns I-temp to features and to ordering information  
Page 1 & 25  
Page 1, 14 & 15 AddedRapidWriteModeWriteCycletextandwaveforms  
10/20/03:  
04/21/04:  
01/05/06:  
Page 15  
CorrectedtARF to1.5V/nsMin.  
RemovedPreliminarystatusfromentiredatasheet  
Addedgreenavailabilitytofeatures  
Page 1  
Page 27  
Addedgreenindicatortoorderinginformation  
27  
IDT70T651/9S  
High-Speed 2.5V 256/128K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
DATASHEET DOCUMENT HISTORY (con't)  
07/25/08:  
01/19/09:  
06/22/15:  
Page 9  
Corrected a typo in the DC Chars table  
Page 27  
Removed "IDT" from orderable part number  
Page 2 , 3 & 4  
Page 27  
Removed the date from all of the pin configurations BC-256, DR-208 & BF-208  
AddedT&RindicatorandupdatedfootnotestoOrderingInformation  
07/20/15:  
Page 1  
Updatedthecommercialspeedofferingbyremovingthe8nsspeed  
Page 9  
Removed commercial 8ns speed from DC Elec Chars table and edited footnotes to reflect this change  
Removedcommercial8nsspeedfromallACElecCharstablesandeditedfootnotestoreflectthischange  
Removed commercial8nsspeedofferingfromtheOrderingInformation  
Page 11 & 17  
Page 27  
CORPORATE HEADQUARTERS  
for SALES:  
for Tech Support:  
408-284-2794  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
DualPortHelp@idt.com  
Š
TheIDTlogoisaregisteredtrademarkofIntegratedDeviceTechnology,Inc.  
28  

相关型号:

70T651S8BC

CABGA-256, Tray
IDT

70T651S8BCG

Dual-Port SRAM, 256KX36, 8ns, CMOS, PBGA256, 17 X 17 MM, 1.40 MM HEIGHT, 1 MM PITCH, GREEN, BGA-256
IDT

70T651S8BCG8

Application Specific SRAM, 256KX36, 8ns, CMOS, PBGA256, 17 X 17 MM, 1.40 MM HEIGHT, 1 MM PITCH, GREEN, BGA-256
IDT

70T651S8BF

CABGA-208, Tray
IDT

70T653MS10BCG

HIGH-SPEED 2.5V 512K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM
IDT

70T653MS10BCG8

Dual-Port SRAM, 512KX36, 10ns, CMOS, PBGA256, 17 X 17 MM, 1.40 MM HEIGHT, 1 MM PITCH, GREEN, BGA-256
IDT

70T653MS10BCGI

HIGH-SPEED 2.5V 512K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM
IDT

70T653MS10BCGI8

HIGH-SPEED 2.5V 512K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM
IDT

70T653MS12BCG

HIGH-SPEED 2.5V 512K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM
IDT

70T653MS12BCG8

Dual-Port SRAM, 512KX36, 12ns, CMOS, PBGA256, 17 X 17 MM, 1.40 MM HEIGHT, 1 MM PITCH, GREEN, BGA-256
IDT

70T653MS12BCGI

HIGH-SPEED 2.5V 512K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM
IDT

70T653MS12BCGI8

Dual-Port SRAM, 512KX36, 12ns, CMOS, PBGA256, 17 X 17 MM, 1.40 MM HEIGHT, 1 MM PITCH, GREEN, BGA-256
IDT