70V06S55PF9 [IDT]

Dual-Port SRAM, 16KX8, 55ns, CMOS, PQFP64, TQFP-64;
70V06S55PF9
型号: 70V06S55PF9
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Dual-Port SRAM, 16KX8, 55ns, CMOS, PQFP64, TQFP-64

静态存储器 内存集成电路
文件: 总23页 (文件大小:165K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED 3.3V  
16K x 8 DUAL-PORT  
STATIC RAM  
IDT70V06S/L  
Features  
M/S = VIH for BUSY output flag on Master  
M/S = VIL for BUSY input on Slave  
Interrupt Flag  
On-chip port arbitration logic  
Full on-chip hardware support of semaphore signaling  
between ports  
Fully asynchronous operation from either port  
Battery backup operation2V data retention  
TTL-compatible, single 3.3V (±0.3V) power supply  
Available in 68-pin PGA and PLCC, and a 64-pin TQFP  
Industrial temperature range (-40°C to +85°C) is available  
for selected speeds  
True Dual-Ported memory cells which allow simultaneous  
reads of the same memory location  
High-speed access  
– Commercial:15/20/25/35/55ns(max.)  
Industrial:20/25ns (max.)  
Low-power operation  
IDT70V06S  
Active:400mW(typ.)  
Standby: 3.3mW (typ.)  
IDT70V06L  
Active:380mW(typ.)  
Standby:660µW(typ.)  
IDT70V06 easily expands data bus width to 16 bits or more  
using the Master/Slave select when cascading more than  
one device  
Functional Block Diagram  
OEL  
OER  
CEL  
CER  
R/W  
L
R/WR  
,
I/O0L- I/O7L  
I/O0R-I/O7R  
I/O  
Control  
I/O  
Control  
(1,2)  
(1,2)  
R
BUSY  
L
BUSY  
A
13L  
A
13R  
Address  
Decoder  
MEMORY  
ARRAY  
Address  
Decoder  
A
0L  
A0R  
14  
14  
ARBITRATION  
INTERRUPT  
SEMAPHORE  
LOGIC  
CE  
OE  
L
L
CE  
OE  
R/W  
R
R
R
R/W  
L
SEM  
INTL  
L
SEM  
INTR  
R
M/S  
(2)  
(2)  
2942 drw 01  
NOTES:  
1. (MASTER): BUSY is output; (SLAVE): BUSY is input.  
2. BUSY outputs and INT outputs are non-tri-stated push-pull.  
OCTOBER 2008  
1
©2008IntegratedDeviceTechnology,Inc.  
DSC-2942/9  
6.07  
IDT70V06S/L  
High-Speed 3.3V 16K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Description  
address,andI/Opinsthatpermitindependent,asynchronousaccessfor  
reads or writes to any location in memory. An automatic power down  
featurecontrolledbyCE permitstheon-chipcircuitryofeachporttoenter  
a very low standby power mode.  
FabricatedusingIDT’sCMOShigh-performancetechnology,these  
devices typicallyoperate ononly400mWofpower.  
The IDT70V06is a high-speed16Kx8Dual-PortStaticRAM. The  
IDT70V06 is designed to be used as a stand-alone 128K-bit Dual-Port  
Static RAM or as a combination MASTER/SLAVE Dual-Port Static  
RAM for 16-bit-or-more word systems. Using the IDT MASTER/  
SLAVE Dual-Port Static RAM approach in 16-bit or wider memory  
system applications results in full-speed, error-free operation without  
the need for additional discrete logic.  
The IDT70V06 is packaged in a ceramic 68-pin PGA and PLCC  
and a 64-pin thin quad flatpack (TQFP).  
This device provides two independent ports with separate control,  
Pin Configurations(1,2,3)  
11/29/01  
INDEX  
9
8
7
6
5
4
3
2
1
68 67 66 65 64 63 62 61  
60  
I/O2L  
I/O3L  
I/O4L  
I/O5L  
A
A
A
A
A
A
INT  
BUSY  
V
5L  
4L  
3L  
2L  
1L  
0L  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
59  
58  
57  
56  
55  
VSS  
I/O6L  
I/O7L  
IDT70V06J  
J68-1(4)  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
L
VDD  
L
68-Pin PLCC  
Top View(5)  
SS  
VSS  
I/O0R  
I/O1R  
I/O2R  
M/S  
BUSY  
INT  
,
R
R
VDD  
A
A
A
A
A
0R  
I/O3R  
I/O4R  
I/O5R  
I/O6R  
1R  
2R  
3R  
4R  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
2942 drw 02  
11/29/01  
INDEX  
1
2
3
4
5
6
A
A
A
A
A
4L  
3L  
2L  
1L  
0L  
48  
47  
46  
I/O2L  
I/O3L  
I/O4L  
I/O5L  
45  
44  
43  
VSS  
INT  
L
I/O6L  
I/O7L  
70V06PF  
PN-64(4)  
7
8
BUSY  
L
42  
41  
40  
39  
38  
37  
VDD  
V
SS  
64-Pin TQFP  
Top View(5)  
,
9
VSS  
M/S  
BUSY  
R
10  
11  
12  
I/O0R  
I/O1R  
I/O2R  
INT  
R
A
A
A
A
A
0R  
VDD  
13  
14  
15  
16  
1R  
2R  
3R  
4R  
36  
35  
34  
33  
I/O3R  
I/O4R  
I/O5R  
NOTES:  
1. All VDD pins must be connected to power supply.  
2. All VSS pins must be connected to ground supply.  
3. J68-1 package body is approximately .95 in x .95 in x .17 in  
PN-64 package body is approximately 14mm x 14mm x 1.4mm.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part marking.  
2942 drw 03  
2
IDT70V06S/L  
High-Speed 3.3V 16K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Pin Configurations(1,2,3) (con't.)  
01/03/02  
51  
A
50  
48  
A
46  
A
44  
BUSY  
42  
M/S  
40  
INT  
38  
36  
11  
10  
09  
08  
07  
06  
05  
04  
03  
02  
01  
A4L  
2L  
0L  
A1R  
A3R  
L
R
5L  
6L  
8L  
53  
A
52  
A
49  
47  
A
45  
INT  
43  
41  
BUSYR  
39  
37  
35  
34  
A
L
VSS  
A4R  
7L  
A3L  
1L  
A0R  
A2R  
5R  
55  
54  
A
32  
33  
A
A7R  
6R  
A
9L  
57  
A
56  
30  
31  
A
A9R  
8R  
11L  
A10L  
59  
58  
A
28  
29  
A
A11R  
10R  
V
DD  
12L  
IDT70V06G  
G68-1(4)  
61  
N/C  
60  
26  
27  
A13L  
VSS  
A12R  
68-Pin PGA  
Top View(5)  
63  
SEM  
62  
24  
N/C  
25  
A
13R  
L
CE  
L
65  
OE  
64  
22  
SEM  
23  
CE  
R
R
L
R/W  
L
67  
I/O0L  
66  
20  
OE  
21  
R/W  
R
R
N/C  
1
3
5
7
9
68  
11  
I/O1R  
13  
V
15  
18  
19  
I/O1L I/O2L I/O4L  
VSS  
I/O7L  
VSS  
DD  
I/O4R I/O7R N/C  
,
2
4
6
8
10  
12  
14  
16 17  
Left Port  
Right Port  
Names  
I/O3L  
I/O5L  
I/O6L  
VDD I/O0R I/O2R I/O3R I/O5R I/O6R  
Chip Enable  
CE  
R/W  
OE  
L
CE  
R
A
B
C
D
E
F
G
H
J
K
L
INDEX  
L
R/W  
R
Read/Write Enable  
2942 drw 04  
Output Enable  
L
OER  
NOTES:  
A0L - A13L  
A
- A13R  
Address  
1. All 0VRDD pins must be connected to power supply.  
2.  
I/O0L - I/O7L  
AIll/OV0SRS-pIi/nOs must be connected to ground supply.  
7R Data Input/Output  
3. Package body is approximately 1.18 in x 1.18 in x .16 in.  
4. This package code is used to reference the package diagram.  
Pin Names  
Semaphore Enable  
SEM  
INT  
BUSY  
L
SEM  
R
5. This text does not indicate orientation of the actual part marking.  
Interrupt Flag  
L
INT  
BUSY  
M/S  
R
Busy Flag  
L
R
Master or Slave Select  
Power (3.3V)  
Ground (0V)  
V
DD  
V
SS  
2942 tbl 01  
6.42  
3
IDT70V06S/L  
High-Speed 3.3V 16K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table I: Non-Contention Read/Write Control  
Inputs(1)  
/W  
Outputs  
R
I/O0-7  
Mode  
CE  
H
L
OE  
X
X
L
SEM  
H
X
L
High-Z  
DATAIN  
DATAOUT  
High-Z  
Deselected: Power-Down  
Write to Memory  
H
L
H
X
H
Read Memory  
X
H
X
Outputs Disabled  
2942 tbl 02  
NOTE:  
1. A0L A13L A0R A13R  
Truth Table II: Semaphore Read/Write Control(1)  
Inputs  
Outputs  
R/W  
H
I/O0-7  
Mode  
CE  
H
OE  
L
SEM  
L
DATAOUT  
Read Data in Semaphore Flag  
Write I/O into Semaphore Flag  
Not Allowed  
H
X
L
DATAIN  
0
____  
L
X
X
L
2942 tbl 03  
NOTE:  
1. There are eight semaphore flags written to via I/O0 and read from I/O0 - I/O7. These eight semaphores are addressed by A0 - A2.  
4
IDT70V06S/L  
High-Speed 3.3V 16K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AbsoluteMaximumRatings(1)  
MaximumOperatingTemperature  
andSupplyVoltage(1)  
Symbol  
Rating  
Commercial  
& Industrial  
Unit  
Grade  
Commercial  
Industrial  
Ambient Temperature  
GND  
VDD  
(2)  
V
TERM  
Terminal Voltage  
with Respect  
to GND  
-0.5 to +4.6  
V
0OC to +70OC  
0V  
3.3V  
3.3V  
+
0.3V  
-40OC to +85OC  
0V  
+
0.3V  
Temperature  
Under Bias  
-55 to +125  
-65 to +150  
50  
oC  
oC  
T
BIAS  
2942 tbl 05  
NOTE:  
Storage  
Temperature  
TSTG  
1. This is the parameter TA. This is the "instant on" case temperature.  
DC Output  
Current  
mA  
IOUT  
2942 tbl 04  
NOTES:  
RecommendedDCOperating  
Conditions  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may  
cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those  
indicated in the operational sections of this specification is not implied. Exposure  
to absolute maximum rating conditions for extended periods may affect  
reliability.  
Symbol  
Parameter  
Supply Voltage  
Ground  
Min.  
Typ.  
Max.  
3.6  
0
Unit  
V
V
DD  
SS  
IH  
IL  
3.0  
3.3  
2. VTERM must not exceed VDD + 0.3V.  
V
0
0
V
____  
V
Input High Voltage  
Input Low Voltage  
2.0  
V
DD+0.3(2)  
V
Capacitance(TA = +25°C, f = 1.0MHz)  
-0.3(1)  
0.8  
V
____  
Symbol  
Parameter(1)  
Input Capacitance  
Output Capacitance  
Conditions  
IN = 3dV  
OUT = 3dV  
Max. Unit  
V
2942 tbl 06  
CIN  
V
9
pF  
NOTES:  
1. VIL> -1.5V for pulse width less than 10ns.  
2. VTERM must not exceed VDD +0.3V.  
COUT  
V
10  
pF  
2942 tbl 07  
NOTES:  
1. This parameter is determined by device characterization but is not production  
tested.  
2. 3dV references the interpolated capacitance when the input and output signals  
switch from 0V to 3V or from 3V to 0V.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VDD = 3.3V ± 0.3V)  
70V06S  
70V06L  
Min.  
Symbol  
Parameter  
Test Conditions  
DD = 3.6V, VIN = 0  
OUT = 0V to VDD  
Min.  
Max.  
10  
Max.  
5
Unit  
µA  
µA  
V
(1)  
___  
___  
___  
___  
|ILI|  
Input Leakage Current  
V
V to VDD  
___  
___  
|ILO|  
Output Leakage Current  
Output Low Voltage  
Output High Voltage  
V
10  
5
VOL  
IOL = +4mA  
0.4  
0.4  
___  
___  
VOH  
IOH = -4mA  
2.4  
2.4  
V
2942 tbl 08  
NOTE:  
1. At VDD < 2.0V input leakages are undefined.  
6.42  
5
IDT70V06S/L  
High-Speed 3.3V 16K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1) (VDD = 3.3V ± 0.3V)  
70V06X15  
70V06X20  
70V06X25  
Com'l  
& Ind  
Com'l Only  
Com'l  
& Ind  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2)  
Max.  
Typ.(2 )  
Max.  
Typ.(2)  
Max.  
Unit  
IDD  
Dynamic Operating  
Current  
(Both Ports Active)  
S
L
150  
140  
215  
185  
140  
130  
200  
175  
130  
125  
190  
165  
mA  
CE = VIL, Outputs Disabled  
SEM = VIH  
(3)  
f = fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
IND  
S
L
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
130  
195  
125  
180  
ISB1  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
IND  
S
L
25  
20  
35  
30  
20  
15  
30  
25  
16  
13  
30  
25  
CE  
R
SEM  
= CE = VIH  
R
= SLEM  
L
= VIH  
(3)  
f = fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
S
L
15  
40  
13  
40  
ISB2  
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
IND  
S
L
85  
80  
120  
110  
80  
75  
110  
100  
75  
72  
110  
95  
CEL  
or CER = VIH  
Active Port Outputs Disabled,  
(3)  
f=fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
S
L
75  
115  
72  
110  
ISB3  
Full Standby Current  
(Both Ports -  
CMOS Level Inputs)  
Both Ports CE  
CE > VDD - 0.2V,  
IN > VDD - 0.2V or  
IN < 0.2V, f = 0(4)  
SEM = SEM > VDD - 0.2V  
L
and  
COM'L  
IND  
S
L
1.0  
0.2  
5
2.5  
1.0  
0.2  
5
2.5  
1.0  
0.2  
5
2.5  
R
V
____  
____  
____  
____  
____  
____  
____  
____  
S
L
V
0.2  
5
0.2  
5
R
L
ISB4  
Full Standby Current  
(One Port -  
CMOS Level Inputs)  
One Port CEL or  
COM'L  
IND  
S
L
85  
80  
125  
105  
80  
75  
115  
100  
75  
70  
105  
90  
CE > VDD - 0.2V  
R
SEM = SEM > VDD - 0.2V  
R
L
____  
____  
____  
____  
____  
____  
____  
____  
S
L
V
IN > VDD - 0.2V or VIN < 0.2V  
75  
115  
70  
105  
Active Port Outputs Disabled,  
(3)  
f = fMAX  
2942 tbl 09a  
70V06X35  
Com'l Only  
70V06X55  
Com'l Only  
Symbol  
Parameter  
Test Condition  
Version  
Typ.(2 )  
Max.  
Typ.(2)  
Max.  
Unit  
I
DD  
Dynamic Operating  
Current  
COM'L  
S
120  
115  
180  
155  
120  
115  
180  
155  
mA  
CE = VIL, Outputs Disabled  
SEM = VIH  
L
(3)  
(Both Ports Active)  
f = fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
IND  
S
L
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
ISB1  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
IND  
S
L
13  
11  
25  
20  
13  
11  
25  
20  
CE  
R
SEM  
= CE = VIH  
R
= SLEM  
L = VIH  
(3)  
f = fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
S
L
ISB2  
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
IND  
S
L
70  
65  
100  
90  
70  
65  
100  
90  
CE  
L
or CER = VIH  
Active Port Outputs Disabled,  
(3 )  
f=fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
S
L
ISB3  
Full Standby Current  
Both Ports CE  
CE > VDD - 0.2V,  
IN > VDD - 0.2V or  
IN < 0.2V, f = 0(4)  
SEM = SEM > VDD - 0.2V  
L and  
COM'L  
IND  
S
L
1.0  
0.2  
5
2.5  
1.0  
0.2  
5
2.5  
(Both Ports  
-
R
CMOS Level Inputs)  
V
____  
____  
____  
____  
____  
____  
____  
____  
S
L
V
R
L
ISB4  
Full Standby Current  
(One Port -  
CMOS Level Inputs)  
One Port CEL or  
COM'L  
IND  
S
L
65  
60  
100  
85  
65  
60  
100  
85  
CE > VDD - 0.2V  
SEM = SEM > VDD - 0.2V  
IN > VDD - 0.2V or VIN < 0.2V  
R
R
L
____  
____  
____  
____  
____  
____  
____  
____  
V
S
L
Active Port Outputs Disabled,  
(3)  
f = fMAX  
2942 tbl 09b  
NOTES:  
1. 'X' in part number indicates power rating (S or L)  
2. VDD = 3.3, TA = +25°C, and are not production tested. IDD DC = 115mA (Typ.)  
3. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tRC, and using AC Test Conditions” of input levels of  
GND to 3V.  
4. f = 0 means no address or control lines change.  
6
IDT70V06S/L  
High-Speed 3.3V 16K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
3.3V  
3.3V  
AC Test Conditions  
Input Pulse Levels  
GND to 3.0V  
590  
590Ω  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
3ns Max.  
1.5V  
DATAOUT  
BUSY  
INT  
DATAOUT  
1.5V  
5pF*  
435Ω  
30pF  
435Ω  
Figures 1 and 2  
,
2942 tbl 10  
2942 drw 05  
Figure 1. AC Output Test Load  
Figure 2. Output Test Load  
(For tLZ, tHZ, tWZ, tOW)  
*Including scope and jig.  
Timing of Power-Up Power-Down  
CE  
tPU  
tPD  
ICC  
ISB  
,
2942 drw 06  
6.42  
7
IDT70V06S/L  
High-Speed 3.3V 16K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(4)  
70V06X15  
70V06X20  
70V06X25  
Com'l  
& Ind  
Com'l Only  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
t
RC  
AA  
ACE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
SAA  
Read Cycle Time  
15  
20  
25  
ns  
ns  
ns  
____  
____  
____  
t
Address Access Time  
15  
15  
20  
20  
25  
25  
____  
____  
____  
____  
____  
____  
Chip Enable Access Time(3)  
t
Output Enable Access Time(3)  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
t
10  
12  
13  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
t
3
3
3
____  
____  
____  
t
3
3
3
____  
____  
____  
Output High-Z Time(1,2)  
t
10  
12  
15  
____  
____  
____  
Chip Enable to Power Up Time(1,2)  
t
0
0
0
____  
____  
____  
Chip Disable to Power Down Time(1,2)  
t
15  
20  
25  
____  
____  
____  
t
Semaphore Flag Update Pulse (OE or SEM)  
10  
10  
10  
____  
____  
____  
Semaphore Address Access(3)  
t
15  
20  
25  
ns  
2942 tbl 11a  
70V06X35  
Com'l Only  
70V06X55  
Com'l Only  
Symbol  
READ CYCLE  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
t
RC  
AA  
ACE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
SAA  
Read Cycle Time  
35  
55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
t
Address Access Time  
35  
35  
55  
55  
Chip Enable Access Time(3)  
Output Enable Access Time(3)  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
____  
____  
____  
____  
t
t
20  
30  
____  
____  
t
3
3
____  
____  
t
3
3
Output High-Z Time(1,2)  
15  
25  
____  
____  
t
t
Chip Enable to Power Up Time(1,2)  
Chip Disable to Power Down Time(1,2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access(3)  
0
0
____  
____  
____  
____  
t
35  
50  
____  
____  
t
15  
15  
____  
____  
t
35  
55  
ns  
2942 tbl 11b  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranteed but not tested.  
3. To access SRAM, CE = VIL, SEM = VIH.  
4. 'X' in part number indicates power rating (S or L).  
8
IDT70V06S/L  
High-Speed 3.3V 16K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Read Cycles(5)  
tRC  
ADDR  
(4)  
t
t
AA  
(4)  
ACE  
CE  
OE  
(4)  
tAOE  
R/W  
DATAOUT  
BUSYOUT  
(1)  
t
OH  
tLZ  
VALID DATA(4)  
(2)  
t
HZ  
(3,4)  
2942 drw 07  
tBDD  
NOTES:  
1. Timing depends on which signal is asserted las OE or CE.  
2. Timing depends on which signal is de-asserted first CE or OE.  
3. tBDD delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY has no  
relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
6.42  
9
IDT70V06S/L  
High-Speed 3.3V 16K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage(5)  
70V06X15  
Com'l Only  
70V06X20  
Com'l  
70V06X25  
Com'l  
& Ind  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
15  
12  
12  
0
20  
15  
15  
0
25  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
t
t
t
12  
0
15  
0
20  
0
t
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
t
10  
15  
15  
____  
____  
____  
t
10  
12  
15  
____  
____  
____  
t
0
0
0
(1,2)  
____  
____  
____  
t
Write Enable to Output in High-Z  
Output Active from End-of-Write(1,2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
10  
12  
15  
____  
____  
____  
t
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
t
t
ns  
2942 tbl 12a  
70V06X35  
Com'l Only  
70V06X55  
Com'l Only  
Symbol  
WRITE CYCLE  
Parameter  
Min. Max.  
Min.  
Max.  
Unit  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
35  
30  
30  
0
55  
45  
45  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
t
t
t
25  
0
40  
0
t
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
t
15  
30  
____  
____  
t
15  
25  
____  
____  
t
0
0
(1,2)  
____  
____  
t
Write Enable to Output in High-Z  
15  
25  
t
Output Active from End-of-Write(1,2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
t
t
ns  
2942 tbl 12b  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).  
2. This parameter is guaranteed but not tested.  
3. To access SRAM, CE = VIL, SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time.  
4. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH and tOW values will vary over voltage and  
temperature, the actual tDH will always be smaller than the actual tOW.  
5. 'X' in part number indicates power rating (S or L).  
10  
IDT70V06S/L  
High-Speed 3.3V 16K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,3,5,8)  
t
WC  
ADDRESS  
(7)  
t
HZ  
OE  
tAW  
CE or SEM(9)  
(6)  
(3)  
(2)  
tAS  
tWR  
t
WP  
R/W  
DATAOUT  
DATAIN  
(7)  
t
OW  
tWZ  
(4)  
(4)  
tDW  
tDH  
2942 drw 08  
Timing Waveform of Write Cycle No. 2, CE Controlled Timing(1,3,5,8)  
t
WC  
ADDRESS  
t
AW  
CE or SEM(9)  
R/W  
(6)  
AS  
(3)  
(2)  
t
WR  
t
tEW  
tDW  
tDH  
IN  
DATA  
2942 drw 09  
NOTES:  
1. R/W or CE must be HIGH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a LOW CE and a LOW R/W for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH to the end of write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM LOW transition occurs simultaneously with or after the R/W low transition, the outputs remain in the High-impedance state.  
6. Timing depends on which enable signal is asserted last, CE, or R/W.  
7. Timing depends on which enable signal is de-asserted first, CE, or R/W.  
8. If OE is LOW during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be placed on the  
bus for the required tDW. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified tWP.  
9. To access SRAM, CE = VIL and SEM = VIH. To access Semaphore, CE = VIH and SEM = VIL. tEW must be met for either condition.  
6.42  
11  
IDT70V06S/L  
High-Speed 3.3V 16K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
tSAA  
tOH  
A0-A2  
VALID ADDRESS  
VALID ADDRESS  
tAW  
tWR  
tACE  
tEW  
SEM  
tDW  
tSOP  
OUT  
DATA  
DATA  
0
DATAIN VALID  
VALID(2)  
tAS  
tWP  
tDH  
R/W  
tSWRD  
tAOE  
OE  
tSOP  
Write Cycle  
Read Cycle  
2942 drw 10  
NOTES:  
1. CE = VIH for the duration of the above timing (both write and read cycle).  
2. DATAOUT VALID” represents all I/O's (I/O0 - I/O7) equal to the semaphore value.  
Timing Waveform of Semaphore Write Contention(1,3,4)  
A0"A"-A2"A"  
MATCH  
SIDE(2) "A"  
R/W"A"  
SEM"A"  
tSPS  
A0"B"-A2"B"  
MATCH  
SIDE(2)  
"B"  
R/W"B"  
SEM"B"  
2942 drw 11  
NOTES:  
1. DOR = DOL = VIL, CER = CEL = VIH, Semaphore Flag is released from both sides (reads as ones from both sides) at cycle start.  
2. A” may be either left or right port. B” is the opposite port from A”.  
3. This parameter is measured from R/WA” or SEMA” going HIGH to R/WB” or SEMB” going HIGH.  
4. If tSPS is not satisfied, the semaphore will fall positively to one side or the other, but there is no guarantee which side will obtain the flag.  
12  
IDT70V06S/L  
High-Speed 3.3V 16K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(6)  
70V06X15  
Com'l Ony  
70V06X20  
Com'l  
& Ind  
70V06X25  
Com'l  
& Ind  
Symbol  
BUSY TIMING (M/S = VIH  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
)
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
15  
15  
15  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable LOW  
BUSY Disable Time from Chip Enable HIGH  
Arbitration Priority Set-up Time(2)  
t
t
t
15  
17  
17  
____  
____  
____  
t
5
5
5
____  
____  
____  
BUSY Disable to Valid Data(3)  
Write Hold After BUSY(5)  
t
18  
30  
30  
____  
____  
____  
t
12  
15  
17  
BUSY TIMING (M/S = VIL  
)
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
Write Hold After BUSY(5)  
t
WB  
0
0
0
ns  
ns  
tWH  
12  
15  
17  
PORT-TO-PORT DELAY TIMING  
Write Pulse to Data Delay  
Write Data Valid to Read Data Delay(1)  
(1)  
____  
____  
____  
____  
____  
____  
t
WDD  
30  
25  
45  
35  
50  
35  
ns  
tDDD  
ns  
2942 tbl 13a  
70V06X35  
Com'l Only  
70V06X55  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
BUSY TIMING (M/S = VIH  
)
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
20  
20  
20  
45  
40  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
t
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable LOW  
BUSY Disable Time from Chip Enable HIGH  
Arbitration Priority Set-up Time(2)  
t
t
20  
35  
____  
____  
t
5
5
____  
____  
BUSY Disable to Valid Data(3)  
Write Hold After BUSY(5)  
t
35  
40  
____  
____  
t
25  
25  
BUSY TIMING (M/S = VIL  
)
____  
____  
____  
____  
BUSY Input to Write(4)  
Write Hold After BUSY(5)  
t
WB  
0
0
ns  
ns  
tWH  
25  
25  
PORT-TO-PORT DELAY TIMING  
Write Pulse to Data Delay  
Write Data Valid to Read Data Delay(1)  
(1)  
____  
____  
____  
____  
t
WDD  
60  
45  
80  
65  
ns  
tDDD  
ns  
2942 tbl 13b  
NOTES:  
1. Port-to-port delay through SRAM cells from writing port to reading port, refer to "Timing Waveform of Read With BUSY (M/S = VIH) or "Timing Waveform of Write With  
Port-To-Port Delay (M/S=VIL)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0, tWDD – tWP (actual) or tDDD – tDW (actual).  
4. To ensure that the write cycle is inhibited during contention.  
5. To ensure that a write cycle is completed after contention.  
6. "X" is part numbers indicates power rating (S or L).  
6.42  
13  
IDT70V06S/L  
High-Speed 3.3V 16K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write with Port-To-Port Read and BUSY(2,4,5)  
(M/S = VIH)  
tWC  
MATCH  
ADDR"A"  
tWP  
R/W"A"  
tDW  
tDH  
VALID  
DATAIN "A"  
(1)  
tAPS  
MATCH  
ADDR"B"  
BUSY"B"  
tBDA  
tBDD  
tBAA  
tWDD  
VALID  
DATAOUT "B"  
(3)  
tDDD  
2942 drw 12  
NOTES:  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S = VIL (SLAVE).  
2. CEL = CER = VIL  
3. OE = VIL for the reading port.  
4. If M/S = VIL(slave) then BUSY is input. Then for this example BUSYA” = VIH and BUSYB” input is shown above.  
5. All timing is the same for left and right port. Port "A" may be either left or right port. Port "B" is the port opposite from Port "A".  
14  
IDT70V06S/L  
High-Speed 3.3V 16K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write with BUSY  
tWP  
R/W"A"  
(3)  
tWB  
BUSY"B"  
(1)  
tWH  
(2)  
R/W"B"  
,
2942 drw 13  
NOTES:  
1. tWH must be met for both BUSY input (slave) output master.  
2. BUSY is asserted on Port B” Blocking R/WB”, until BUSYB” goes HIGH.  
3. tWB is only for the slave version.  
Waveform of BUSY Arbitration Controlled by CE Timing(1) (M/S = VIH)  
ADDR"A"  
ADDRESSES MATCH  
and "B"  
CE"A"  
(2)  
tAPS  
CE"B"  
tBAC  
tBDC  
BUSY"B"  
2942 drw 14  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(1) (M/S = VIH)  
ADDR"A"  
ADDRESS "N"  
(2)  
t
APS  
ADDR"B"  
MATCHING ADDRESS "N"  
t
BAA  
tBDA  
BUSY"B"  
2942 drw 15  
NOTES:  
1. All timing is the same for left and right ports. Port A” may be either the left or right port. Port B” is the port opposite from A”.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
6.42  
15  
IDT70V06S/L  
High-Speed 3.3V 16K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(1)  
70V06X15  
70V06X20  
70V06X25  
Com'l  
& Ind  
Com'l Only  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
0
ns  
ns  
ns  
t
0
0
0
____  
____  
____  
t
15  
15  
20  
20  
20  
20  
____  
____  
____  
t
Interrupt Reset Time  
ns  
2942 tbl 14a  
70V06X35  
Com'l Only  
70V06X55  
Com'l Only  
Symbol  
INTERRUPT TIMING  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
ns  
ns  
ns  
t
0
0
____  
____  
t
25  
25  
40  
40  
____  
____  
t
Interrupt Reset Time  
ns  
2942 tbl 14b  
NOTE:  
1. 'X' in part number indicates power rating (S or L).  
Waveform of Interrupt Timing(1)  
tWC  
INTERRUPT SET ADDRESS(2)  
ADDR"A"  
(3)  
(4)  
tAS  
tWR  
CE"A"  
R/W"A"  
INT"B"  
(3)  
t
INS  
2942 drw 16  
NOTES:  
1. All timing is the same for left and right ports. Port A” may be either the left or right port. Port B” is the port opposite from A”.  
2. See Interrupt Truth Table III.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
16  
IDT70V06S/L  
High-Speed 3.3V 16K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing(1) (con't.)  
t
RC  
INTERRUPT CLEAR ADDRESS (2)  
ADDR"B"  
CE"B"  
(3)  
tAS  
OE"B"  
(3)  
t
INR  
INT"B"  
2942 drw 17  
NOTES:  
1. All timing is the same for left and right ports. Port A” may be either the left or right port. Port B” is the port opposite from A”.  
2. See Interrupt Truth Table III.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
Truth Table III — Interrupt Flag(1)  
Left Port  
Right Port  
R/W  
L
A
13L-A0L  
R/W  
R
A
13R-A0R  
Function  
Set Right INT Flag  
Reset Right INT Flag  
Set Left INT Flag  
Reset Left INT Flag  
CE  
L
OE  
L
INT  
L
CE  
R
OE  
R
INTR  
(2)  
L
X
X
X
L
X
X
L
X
X
X
L
3FFF  
X
X
X
X
L
X
L
L
X
X
L
X
3FFF  
3FFE  
X
L
R
(3)  
X
H
R
(3)  
X
L
X
X
X
X
L
(2)  
3FFE  
H
X
L
2942 tbl 15  
NOTES:  
1. Assumes BUSYL = BUSYR = VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
6.42  
17  
IDT70V06S/L  
High-Speed 3.3V 16K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table IV — Address BUSY  
Arbitration  
Inputs  
Outputs  
A13L-A0L  
A13R-A0R  
(1)  
(1)  
Function  
Normal  
Normal  
Normal  
CEL  
X
CER  
X
BUSYL  
H
BUSYR  
NO MATCH  
MATCH  
H
H
H
X
H
X
H
MATCH  
H
H
(3)  
L
L
MATCH  
(2)  
(2)  
Write Inhibit  
2942 tbl 16  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSYX outputs on the IDT70V06 are push  
pull, not open drain outputs. On slaves the BUSYX input internally inhibits writes.  
2. L if the inputs to the opposite port were stable prior to the address and enable inputs of this port. H if the inputs to the opposite port became stable after the address and enable  
inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs cannot be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored when  
BUSYR outputs are driving LOW regardless of actual logic level on the pin.  
Truth Table V — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0  
- D7  
Left  
D0  
- D7  
Right  
Status  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
2942 tbl 17  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT70V06.  
2. There are eight semaphore flags written to via I/O0 and read from all I/O's (I/O0 - I/O7). These eight semaphores are addressed by A0 -A2.  
3. CE = VIH, SEM = VIL to access the semaphores. Refer to the Semaphore Read/Write Control Truth Table.  
Functional Description  
The IDT70V06 provides two ports with separate control, address  
and I/O pins that permit independent access for reads or writes to any  
location in memory. The IDT70V06 has an automatic power down  
featurecontrolledbyCE.TheCEcontrolson-chippowerdowncircuitry  
that permits the respective port to go into a standby mode when not  
selected (CE = VIH). When a port is enabled, access to the entire  
memory array is permitted.  
(HEX). Theleftportclearstheinterruptbyreadingaddresslocation3FFE.  
Likewise,therightportinterruptflag(INTR)issetwhentheleftportwrites  
tomemorylocation3FFF(HEX)andtocleartheinterruptflag(INTR),the  
rightportmustreadthememorylocation3FFF.Themessage(8bits)at  
3FFEor3FFFisuser-defined.Iftheinterruptfunctionisnotused,address  
locations 3FFEand3FFFarenotusedas mailboxes,butas partofthe  
random access memory. Refer to Truth Table III for the interrupt  
operation.  
Interrupts  
Busy Logic  
If the user chooses the interrupt function, a memory location (mail  
boxormessagecenter)is assignedtoeachport. Theleftportinterrupt  
flag (INTL) is set when the right port writes to memory location 3FFE  
Busy Logic provides a hardware indication that both ports of the  
SRAM have accessed the same location at the same time. It also  
18  
IDT70V06S/L  
High-Speed 3.3V 16K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
CE  
CE  
MASTER  
Dual Port  
SRAM  
SLAVE  
Dual Port  
SRAM  
BUSY (L) BUSY (R)  
BUSY (L) BUSY (R)  
MASTER  
Dual Port  
SRAM  
SLAVE  
CE  
CE  
Dual Port  
SRAM  
BUSY (R)  
BUSY (R)  
BUSY (R)  
BUSY (L)  
BUSY (L)  
BUSY (L)  
2942 drw 18  
Figure 3. Busy and chip enable routing for both width and depth expansion with IDT70V06 SRAMs.  
enoughforaBUSYflagtobeoutputfromthemasterbeforetheactualwrite  
allowsoneofthetwoaccessestoproceedandsignalstheothersidethat  
the SRAMis “busy”. TheBUSY pincanthenbeusedtostalltheaccess  
untiltheoperationon theothersideiscompleted.Ifawriteoperationhas  
beenattemptedfromthesidethatreceivesaBUSYindication,thewrite  
signalisgatedinternallytopreventthewritefromproceeding.  
pulsecanbeinitiatedwiththeR/Wsignal. Failuretoobservethistiming  
canresultinaglitchedinternalwriteinhibitsignalandcorrupteddatainthe  
slave.  
TheuseofBUSYlogicisnotrequiredordesirableforallapplications.  
InsomecasesitmaybeusefultologicallyORtheBUSYoutputstogether  
anduseanyBUSYindicationasaninterruptsourcetoflagtheeventofan  
illegalorillogicaloperation.IfthewriteinhibitfunctionofBUSYlogicisnot  
desirable,theBUSYlogiccanbedisabledbyplacingthepartinslavemode  
with the M/S pin. Once in slave mode the BUSYpin operates solely as  
apin.NormaloperationcanbeprogrammedbytyingtheBUSYpinsHIGH.  
Ifdesired,unintendedwriteoperationscanbepreventedtoaportbytying  
theBUSYpinforthatportLOW.  
The BUSY outputs on the IDT 70V06 RAM in master mode, are  
push-pull type outputs and do not require pull up resistors to operate.  
If these RAMs are being expanded in depth, then the busy indication  
for the resulting array requires the use of an external AND gate.  
Semaphores  
The IDT70V06is anextremelyfastDual-Port16Kx8CMOSStatic  
RAM with an additional 8 address locations dedicated to binary  
semaphore flags. These flags alloweitherprocessoronthe leftorright  
sideoftheDual-PortSRAMtoclaimaprivilegeovertheotherprocessor  
for functions defined by the system designers software. As an ex-  
ample, the semaphore can be used by one processor to inhibit the  
otherfromaccessingaportionoftheDual-PortSRAMoranyothershared  
resource.  
The Dual-Port SRAM features a fast access time, and both ports  
are completelyindependentofeachother. This means thatthe activity  
on the left port in no way slows the access time of the right port. Both  
ports are identical in function to standard CMOS Static RAM and can  
be read from, or written to, at the same time with the only possible  
conflict arising from the simultaneous writing of, or a simultaneous  
READ/WRITE of, a non-semaphore location. Semaphores are pro-  
tected against such ambiguous situations and may be used by the  
system program to avoid any conflicts in the non-semaphore portion  
of the Dual-Port SRAM. These devices have an automatic power-  
downfeaturecontrolledbyCE,theDual-PortSRAMenable,andSEM,  
the semaphore enable. The CE and SEM pins control on-chip power  
downcircuitrythatpermits the respective porttogointostandbymode  
when not selected. This is the condition which is shown in Truth Table  
I where CE and SEM are both HIGH.  
Width Expansion with Busy Logic  
Master/Slave Arrays  
When expanding an IDT70V06 SRAM array in width while using  
BUSYlogic,onemasterpartisusedtodecidewhichsideoftheSRAMarray  
willreceiveaBUSYindication,andtooutputthatindication.Anynumber  
ofslavestobeaddressedinthesameaddressrangeasthemasteruse  
theBUSYsignalasawriteinhibitsignal.ThusontheIDT70V06RAMthe  
BUSYpinisanoutputifthepartisusedasamaster(M/Spin=VIH),and  
theBUSYpinisaninputifthepartusedasaslave(M/Spin=VIL)asshown  
in Figure 3.  
Systems which can best use the IDT70V06 contain multiple  
processors or controllers and are typically very high-speed systems  
which are software controlled or software intensive. These systems  
can benefit from a performance increase offered by the IDT70V06's  
hardware semaphores, which provide a lockout mechanism without  
requiring complex programming.  
Softwarehandshakingbetweenprocessors offers themaximumin  
system flexibility by permitting shared resources to be allocated in  
varyingconfigurations.TheIDT70V06doesnotuseitssemaphoreflags  
If two or more master parts were used when expanding in width, a  
splitdecisioncouldresultwithonemasterindicatingBUSYononeside  
of the array and another master indicating BUSY on one other side of  
the array. This would inhibit the write operations from one port for part  
of a word and inhibit the write operations from the other port for part of  
the other word.  
TheBUSYarbitration,onamaster,is basedonthechipenableand  
address signals only. It ignores whether an access is a read or write.  
Inamaster/slavearray,bothaddressandchipenablemustbevalidlong  
6.42  
19  
IDT70V06S/L  
High-Speed 3.3V 16K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
to control any resources through hardware, thus allowing the system output enable (OE) signals go active. This serves to disallow  
designertotalflexibilityinsystemarchitecture. the semaphore from changing state in the middle of a read cycle  
An advantage of using semaphores rather than the more common duetoawritecyclefromtheotherside.Becauseofthislatch,arepeated  
methods of hardware arbitration is that wait states are never incurred readofasemaphoreinatestloopmustcauseeithersignal(SEMorOE)  
in either processor. This can prove to be a major advantage in very togoinactive orthe outputwillneverchange.  
high-speed systems.  
A sequence WRITE/READ must be used by the semaphore in  
order to guarantee that no system level contention will occur. A  
processor requests access to shared resources by attempting to write  
a zero into a semaphore location. If the semaphore is already in use,  
the semaphore request latch will contain a zero, yet the semaphore  
flag will appear as one, a fact which the processor will verify by the  
subsequent read (see Table V). As an example, assume a processor  
writes a zero to the left port at a free semaphore location. On a  
subsequent read, the processor will verify that it has written success-  
fully to that location and will assume control over the resource in  
question. Meanwhile, if a processor on the right side attempts to write  
a zero to the same semaphore flag it will fail, as will be verified by the  
factthataonewillbereadfromthatsemaphoreontherightsideduring  
subsequent read. Had a sequence of READ/WRITE been used  
instead, system contention problems could have occurred during the  
gap between the read and write cycles.  
It is important to note that a failed semaphore request must be  
followed by either repeated reads or by writing a one into the same  
location. The reason for this is easily understood by looking at the  
simple logic diagram of the semaphore flag in Figure 4. Two sema-  
phore request latches feed into a semaphore flag. Whichever latch is  
first to present a zero to the semaphore flag will force its side of the  
semaphore flag LOW and the other side HIGH. This condition will  
continue until a one is written to the same semaphore request latch.  
Should the other sides semaphore request latch have been written to  
a zero in the meantime, the semaphore flag will flip over to the other  
side as soon as a one is written into the first sides request latch. The  
secondsides flagwillnowstay LOWuntilits semaphore requestlatch  
is written to a one. From this it is easy to understand that, if a  
semaphore is requested and the processor which requested it no  
longer needs the resource, the entire system can hang up until a one  
is written into that semaphore request latch.  
How the Semaphore Flags Work  
The semaphore logic is a set of eight latches which are indepen-  
dentofthe Dual-PortSRAM. These latches canbe usedtopass a flag,  
or token, from one port to the other to indicate that a shared resource  
is in use. The semaphores provide a hardware assist for a use  
assignmentmethodcalledTokenPassingAllocation.”Inthis method,  
the state of a semaphore latch is used as a token indicating that a  
shared resource is in use. If the left processor wants to use this  
resource,itrequeststhetokenbysettingthelatch.Thisprocessorthen  
verifiesitssuccessinsettingthelatchbyreadingit.Ifitwassuccessful,  
it assumes control over the shared resource. If it was not successful  
in setting the latch, it determines that the right side processor has set  
the latch first, has the token and is using the shared resource. The left  
processor can then either repeatedly request that semaphores status  
or remove its request for that semaphore to perform another task and  
occasionally attempt again to gain control of the token via the set and  
test sequence. Once the right side has relinquished the token, the left  
side should succeed in gaining control.  
The semaphore flags are active LOW. A token is requested by  
writing a zero into a semaphore latch and is released when the same  
side writes a one to that latch.  
The eight semaphore flags reside within the IDT70V06 in a  
separate memory space from the Dual-Port SRAM. This address  
space is accessed by placing a LOW input on the SEM pin (which  
acts as a chip select for the semaphore flags) and using the other  
control pins (Address, OE, and R/W) as they would be used in  
accessing a standard Static RAM. Each of the flags has a unique  
address which can be accessed by either side through address pins  
A0 A2. When accessing the semaphores, none of the other address  
pins has any effect.  
The critical case of semaphore timing is when both sides request  
a single tokenbyattemptingtowrite a zerointoitatthe same time. The  
semaphore logic is specially designed to resolve this problem. If  
simultaneous requests are made, the logic guarantees that only one  
side receives the token. If one side is earlier than the other in making  
the request, the first side to make the request will receive the token. If  
bothrequests arriveatthesametime,theassignmentwillbearbitrarily  
made to one port or the other.  
One caution that should be noted when using semaphores is that  
semaphores alone do not guarantee that access to a resource is  
secure. As with any powerful programming technique, if semaphores  
are misused or misinterpreted, a software error can easily happen.  
Initialization of the semaphores is not automatic and must be  
handled via the initialization program at power-up. Since any sema-  
phore request flag which contains a zero must be reset to a one, all  
semaphores on both sides should have a one written into them at  
initialization from both sides to assure that they will be free when  
needed.  
Whenwritingtoasemaphore,onlydatapinD0 isused.Ifalowlevel  
is written into an unused semaphore location, that flag will be set to a  
zero on that side and a one on the other side (see Truth Table V). That  
semaphore can now only be modified by the side showing the zero.  
When a one is written into the same location from the same side, the  
flag will be set to a one for both sides (unless a semaphore request  
fromtheothersideispending)andthencanbewrittentobybothsides.  
The fact that the side which is able to write a zero into a semaphore  
subsequently locks out writes from the other side is what makes  
semaphore flags useful in interprocessor communications. (A thor-  
ough discussion on the use of this feature follows shortly.) A zero  
written into the same location from the other side will be stored in the  
semaphore request latch for that side until the semaphore is freed by  
the first side.  
Whena semaphore flagis read, its value is spreadintoalldata bits  
so that a flag that is a one reads as a one in all data bits and a flag  
containinga zeroreads as allzeros. The readvalue is latchedintoone  
sides output register when that side's semaphore select (SEM) and  
20  
IDT70V06S/L  
High-Speed 3.3V 16K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
UsingSemaphores—SomeExamples  
Perhapsthesimplestapplicationofsemaphoresistheirapplicationas  
resource markers for the IDT70V06s Dual-Port SRAM. Say the 16K x  
8 SRAM was to be divided into two 8K x 8 blocks which were to be  
dedicatedatanyonetimetoservicingeithertheleftorrightport.Semaphore  
0couldbeusedtoindicatethesidewhichwouldcontrolthelowersection  
of memory, and Semaphore 1 could be defined as the indicator for the  
uppersectionofmemory.  
To take a resource, in this example the lower 8K of Dual-Port  
SRAM,theprocessorontheleftportcouldwriteandthenreadazeroin  
toSemaphore0.Ifthistaskweresuccessfullycompleted(azerowasread  
backratherthana one), the leftprocessorwouldassume controlofthe  
lower8K.Meanwhiletherightprocessorwasattemptingtogaincontrolof  
the resourceaftertheleftprocessor,itwouldreadbackaoneinresponse  
tothezeroithadattemptedtowriteintoSemaphore0.Atthis point,the  
softwarecouldchoosetotryandgaincontrolofthesecond8Ksectionby  
writing,thenreadingazerointoSemaphore1.Ifitsucceededingaining  
control,itwouldlockouttheleftside.  
Once the left side was finished with its task, it would write a one to  
Semaphore 0 and may then try to gain access to Semaphore 1. If  
Semaphore 1 was still occupied by the right side, the left side could  
undo its semaphore request and perform other tasks until it was able  
to write, then read a zero into Semaphore 1. If the right processor  
performsasimilartaskwithSemaphore0,thisprotocolwouldallowthe  
twoprocessors toswap8Kblocks ofDual-PortSRAMwitheachother.  
The blocks do not have to be any particular size and can even be  
variable, depending upon the complexity of the software using the  
semaphore flags. All eight semaphores could be used to divide the  
Dual-PortSRAMorothersharedresourcesintoeightparts.Semaphores  
canevenbeassigneddifferentmeaningsondifferentsidesratherthan  
being given a common meaning as was shown in the example above.  
Semaphores are a useful form of arbitration in systems like disk  
interfaces where the CPU must be locked out of a section of memory  
during a transfer and the I/O device cannot tolerate any wait states.  
With the use of semaphores, once the two devices has determined  
which memory area was off-limits” to the CPU, both the CPU and the  
I/O devices could access their assigned portions of memory continu-  
ously without any wait states.  
Semaphores are also useful in applications where no memory  
“WAIT” state is available on one or both sides. Once a semaphore  
handshake has been performed, both processors can access their  
assignedSRAMsegmentsatfullspeed.  
Anotherapplicationisintheareaofcomplexdatastructures.Inthis  
case, block arbitration is very important. For this application one  
processor may be responsible for building and updating a data  
structure. The other processor then reads and interprets that data  
structure. If the interpreting processor reads an incomplete data  
structure, a major error condition may exist. Therefore, some sort of  
arbitration must be used between the two different processors. The  
building processor arbitrates for the block, locks it and then is able to  
goinandupdatethedatastructure.Whentheupdateiscompleted,the  
data structure blockis released. This allows the interpretingprocessor  
to come back and read the complete data structure, thereby guaran-  
teeing a consistent data structure.  
L PORT  
R PORT  
SEMAPHORE  
REQUEST FLIP FLOP  
SEMAPHORE  
REQUEST FLIP FLOP  
D0  
D0  
D
D
Q
Q
WRITE  
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
READ  
,
2942 drw 19  
Figure 4. IDT70V06 Semaphore Logic  
6.42  
21  
IDT70V06S/L  
High-Speed 3.3V 16K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Ordering Information  
XXXXX  
A
999  
A
A
Device  
Type  
Power Speed Package  
Process/  
Temperature  
Range  
Blank  
I(1)  
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
PF  
G
J
64-pin TQFP (PN64-1)  
68-pin PGA (G68-1)  
68-pin PLCC (J68-1)  
15  
20  
25  
35  
55  
Commercial Only  
,
Commercial & Industrial  
Speed in Nanoseconds  
Commercial & Industrial  
Commercial Only  
Commercial Only  
S
L
Standard Power  
Low Power  
70V06 128K (16K x 8) 3.3V Dual-Port  
RAM  
2942 drw 20  
NOTE:  
1. Contactyourlocalsales officeforIndustrialtemprangeinotherspeeds,packages andpowers.  
Datasheet Document History  
3/10/99:  
Initiated datasheet document history  
Converted to new format  
Cosmetic and typographical corrections  
Page 2 and 3 Added additional notes to pin configurations  
Changeddrawingformat  
6/9/99:  
11/10/99:  
3/10/00:  
Replaced IDT logo  
Added 15 & 20ns speed grades  
UpgradedDCparameters  
AddedIndustrialTemperatureinformation  
Changed±200mVto0mV  
5/30/00:  
Page 5 Increasedstoragetemperatureparameter  
ClarifiedTAparameter  
Page 6 DCElectricalparameters–changedwordingfrom"open"to"disabled"  
22  
IDT70V06S/L  
High-Speed 3.3V 16K x 8 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
DatasheetDocumentHistory(cont'd)  
11/20/01:  
Page 1 CorrectedstandbypowerdesignationfrommWto µW  
Page 2 & 3 Added date revision for pin configurations  
Page 2, 3, 5 & 6 Changed naming conventions from VCC to VDD and from GND to VSS  
Page 6 RemovedIndustrialtempforstandardpowerfor20nsand25nsspeedsfromDCElectricalCharacteristics  
RemovedIndustrialtempfor35nsand55nsspeedsfromDCElectricalCharacteristics  
Pages8,13&16RemovedIndustrialtempfor35nsand55nsspeedsfromACElectricalCharacteristics  
Page 8 Replacedtable 11withtable 11a toshowACElectricalCharacteristics forREADCYCLEfor15, 20&25ns  
Page 22 RemovedIndustrialtempfrom35nsand55nsinorderinginformation  
10/23/08:  
Page 22 Removed "IDT" from orderable part numbe  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
408-284-2794  
DualPortHelp@idt.com  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
6.42  
23  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY