70V27L15BF [IDT]

CABGA-144, Tray;
70V27L15BF
型号: 70V27L15BF
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

CABGA-144, Tray

文件: 总21页 (文件大小:363K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED 3.3V  
32K x 16 DUAL-PORT  
STATIC RAM  
IDT70V27S/L  
Features:  
IDT70V27 easily expands data bus width to 32 bits or more  
using the Master/Slave select when cascading more than  
one device  
M/S = VIH for BUSY output flag on Master,  
M/S = VIL for BUSY input on Slave  
True Dual-Ported memory cells which allow simultaneous  
access of the same memory location  
High-speed access  
– Commercial:15/20/25/35/55ns(max.)  
– Industrial: 20/35ns(max.)  
Low-power operation  
Busy and Interrupt Flags  
On-chip port arbitration logic  
– IDT70V27S  
Full on-chip hardware support of semaphore signaling  
between ports  
Fully asynchronous operation from either port  
LVTTL-compatible, single 3.3V (±0.3V) power supply  
Available in 100-pin Thin Quad Flatpack (TQFP), and 144-  
pin Fine Pitch BGA (fpBGA)  
Industrial temperature range (-40°C to +85°C) is available  
for selected speeds  
Green parts available, see ordering information  
Active:500mW(typ.)  
Standby: 3.3mW (typ.)  
– IDT70V27L  
Active:500mW(typ.)  
Standby: 660µW (typ.)  
Separate upper-byte and lower-byte control for bus  
matching capability  
Dual chip enables allow for depth expansion without  
external logic  
FunctionalBlockDiagram  
R/W  
L
R/WR  
UB  
L
UB  
R
CE0L  
CE0R  
CE1L  
CE1R  
OE  
R
OE  
L
L
LB  
R
LB  
I/O8-15L  
I/O0-7L  
I/O8-15R  
I/O0-7R  
I/O  
Control  
I/O  
Control  
,
(1,2)  
(1,2)  
BUSY  
L
BUSY  
R
32Kx16  
A
14R  
0R  
A
14L  
0L  
Address  
Decoder  
Address  
Decoder  
MEMORY  
ARRAY  
70V27  
A
A
A
14L  
A
A
14R  
0R  
A
CE0L  
0L  
ARBITRATION  
INTERRUPT  
SEMAPHORE  
LOGIC  
CE0R  
CE1L  
OE  
CE1R  
OE  
L
R
R/  
WL  
R/WR  
L
L
SEM  
INT  
SEM  
R
(2)  
(2)  
INT  
R
M/S(2)  
NOTES:  
3603 drw 01  
1) BUSY is an input as a Slave (M/S=VIL) and an output as a Master (M/S=VIH).  
2) BUSY and INT are non-tri-state totem-pole outputs (push-pull).  
SEPTEMBER 2012  
6.01  
1
DSC3603/12  
©2012IntegratedDeviceTechnology,Inc.  
IDT 70V27S/L  
High-Speed 3.3V 32K x 16 Dual-Port Static RAM  
Commercial and Industrial Temperature Range  
Description:  
reads or writes to any location in memory. An automatic power down  
featurecontrolledby thechipenables(CE0 andCE1)permitstheon-chip  
circuitry of each port to enter a very low standby power mode.  
Fabricated using CMOS high-performance technology, these  
devices typically operate on only 500mW of power. The IDT70V27 is  
packagedina100-pinThinQuadFlatpack(TQFP) anda144-pinFine  
PitchBGA(fpBGA).  
The IDT70V27 is a high-speed 32K x 16 Dual-Port Static RAM,  
designed to be used as a stand-alone 512K-bit Dual-Port RAM or as a  
combinationMASTER/SLAVEDual-PortRAMfor32-bitandwiderword  
systems.UsingtheIDTMASTER/SLAVEDual-PortRAMapproachin32-  
bitorwidermemorysystemapplicationsresultsinfull-speed,error-free  
operationwithouttheneedforadditionaldiscretelogic.  
Thedeviceprovidestwoindependentportswithseparatecontrol,  
address,andI/Opinsthatpermitindependent,asynchronousaccessfor  
PinConfigurations(1,2,3)  
07/29/04  
INDEX  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
1
A
9L  
A
9R  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
A
A
A
A
A
NC  
NC  
NC  
LBR  
UBR  
CE0R  
CE1R  
SEM  
V
R/W  
OE  
V
V
10R  
11R  
12R  
13R  
14R  
2
A
A
A
A
A
NC  
NC  
NC  
LB  
UB  
CE0L  
CE1L  
SEM  
V
R/W  
OE  
V
V
10L  
11L  
12L  
13L  
14L  
3
4
5
6
7
8
9
L
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
IDT70V27PF  
PN100-1(4)  
L
100-PIN TQFP  
TOP VIEW(5)  
L
R
DD  
SS  
L
R
L
R
SS  
SS  
SS  
SS  
I/O15L  
I/O14L  
I/O13L  
I/O12L  
I/O11L  
I/O10L  
I/O15R  
I/O14R  
I/O13R  
I/O12R  
I/O11R  
I/O10R  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
3603 drw 02  
NOTES:  
1. All VDD pins must be connected to power supply.  
2. All VSS pins must be connected to ground supply.  
3. Package body is approximately 14mm x 14mm x 1.4mm.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part-marking.  
2
IDT 70V27S/L  
High-Speed 3.3V 32K x 16 Dual-Port Static RAM  
Commercial and Industrial Temperature Range  
Pin Configurations(1,2,3) (con't.)  
07/29/04  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
A13  
NC  
NC  
A
8L  
A
5L  
A
1L  
INT  
L
V
SS BUSY  
R
A
1R  
2R  
A
5R  
NC  
NC  
NC  
B1  
B2  
B3  
B4  
C4  
B5  
C5  
B6  
B7  
B8  
B9  
B10  
B11  
B12  
B13  
INT  
R
A
A
6L  
A
2L  
NC  
M/S  
A
6R  
NC  
NC  
NC  
NC  
NC  
NC  
C1  
C2  
C3  
C6  
C7  
C8  
C9  
C10  
C11  
C12  
C13  
A10L  
A
3L  
A
3R  
A
7R  
A
9R  
A
9L  
NC  
A
7L  
NC  
NC  
A10R  
A11R  
NC  
D1  
D2  
13L  
D3  
D4  
A
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
D13  
A14L  
BUSY  
L A0R  
A
4R  
A
8R  
A
12R  
A
A
12L  
11L  
A
4L  
A0L  
A
13R  
A
14R  
E1  
E2  
E3  
E4  
E10  
E11  
E12  
E13  
LB  
R
LB  
L
NC  
NC  
NC  
NC  
NC  
NC  
F1  
F2  
F3  
F4  
F10  
F11  
CE0R  
G11  
F12  
CE1R  
G12  
F13  
CE1L CE0L  
UB  
L
SEM  
L
SEMR  
UB  
R
IDT70V27BF  
BF144-1(4)  
G1  
G2  
G3  
G4  
G10  
G13  
NC  
V
DD  
VDD  
V
DD  
NC  
V
SS  
NC  
VSS  
144-Pin fpBGA  
Top View(5)  
H1  
H2  
H3  
H4  
H10  
H11  
H12  
H13  
NC  
NC  
OEL  
OER  
R/W  
L
NC  
R/W  
R
VSS  
J1  
J2  
J3  
J4  
J10  
J11  
J12  
J13  
I/O13R  
V
SS  
I/O15L I/O14L I/013L  
I/O14R I/O15R  
K11 K12  
V
SS  
K1  
K2  
K3  
K4  
L4  
K5  
K6  
K7  
K8  
K9  
K10  
K13  
,
NC  
NC  
NC  
NC  
I/O6L I/O3L I/O0R I/O3R I/O6R I/O11R NC  
NC I/O12R  
I/O12L  
L1  
L2  
L3  
L5  
I/O5L  
L6  
I/O2L  
L7  
L8  
L9  
I/O5R  
L10  
L11  
L12  
L13  
V
SS  
I/O11L I/O10L  
NC  
V
DD  
NC  
NC  
NC I/O10R  
M1  
M2  
M3  
M4  
M5  
I/O4L  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
I/O9L  
NC  
NC  
V
DD  
V
SS  
I/O0L I/O2R I/O4R I/O7R I/O8R  
NC  
I/O9R  
N1  
N2  
N3  
N4  
I/O7L  
N5  
N6  
I/O1L  
N7  
V
N8  
N9  
N10  
DD  
N11  
N12  
N13  
NC  
NC  
NC  
NC  
DD  
NC  
V
NC  
NC  
I/O8L  
I/O1R  
3603 drw 02a  
NOTES:  
1. All VDD pins must be connected to power supply.  
2. All VSS pins must be connected to ground supply.  
3. Package body is approximately 12mm x 12mm x 1.4mm.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part-marking.  
PinNames  
Left Port  
Right Port  
CE0R, CE1R  
R/W  
OE  
Names  
Chip Enable  
CE0L, CE1L  
R/W  
L
R
Read/Write Enable  
Output Enable  
OEL  
R
A
0L - A14L  
I/O0L - I/O15L  
SEM  
UB  
LB  
INT  
BUSY  
A
0R - A14R  
I/O0R - I/O15R  
SEM  
UB  
LB  
INT  
BUSY  
M/S  
Address  
Data Input/Output  
Semaphore Enable  
Upper Byte Select  
Lower Byte Select  
Interrupt Flag  
L
R
L
R
L
R
L
R
Busy Flag  
L
R
Master or Slave Select  
Power (3.3V)  
V
V
DD  
ss  
Ground (0V)  
3603 tbl 01  
3
IDT 70V27S/L  
High-Speed 3.3V 32K x 16 Dual-Port Static RAM  
Commercial and Industrial Temperature Range  
Truth Table I – Chip Enable(1,2,3)  
CE  
1
Mode  
CE  
CE0  
V
IL  
V
IH  
Port Selected (TTL Active)  
L
< 0.2V  
>VDD -0.2V  
X
Port Selected (CMOS Active)  
Port Deselected (TTL Inactive)  
Port Deselected (TTL Inactive)  
Port Deselected (CMOS Inactive)  
Port Deselected (CMOS Inactive)  
V
IH  
X
VIL  
H
>VDD -0.2V  
X
X
<0.2V  
3603 tbl 02  
NOTES:  
1. Chip Enable references are shown above with the actual CE0 and CE1 levels, CE is a reference only.  
2. Port "A" and "B" references are located where CE is used.  
3. "H" = VIH and "L" = VIL  
Truth Table II – Non-Contention Read/Write Control  
Inputs(1)  
Outputs  
(2)  
R/W  
X
I/O8-15  
I/O0-7  
High-Z  
High-Z  
High-Z  
DATAIN  
DATAIN  
High-Z  
Mode  
Deselected: Power-Down  
Both Bytes Deselected  
Write to Upper Byte Only  
Write to Lower Byte Only  
Write to Both Bytes  
CE  
OE  
X
X
X
X
X
L
UB  
X
H
L
LB  
X
H
H
L
SEM  
H
H
High-Z  
High-Z  
X
X
H
L
L
H
DATAIN  
High-Z  
L
L
H
L
H
L
L
L
H
DATAIN  
DATAOUT  
High-Z  
L
H
H
H
X
L
H
L
H
Read Upper Byte Only  
L
L
H
L
H
DATAOUT Read Lower Byte Only  
DATAOUT Read Both Bytes  
L
X
L
L
H
DATAOUT  
High-Z  
H
X
X
X
High-Z  
Outputs Disabled  
3603 tbl 03  
NOTES:  
1. A0L — A14L A0R — A14R.  
2. Refer to Chip Enable Truth Table.  
Truth Table III – Semaphore Read/Write Control  
Inputs(1)  
Outputs  
(2)  
R/W  
H
I/O8-15  
I/O0-7  
Mode  
CE  
OE  
L
UB  
X
LB  
X
SEM  
H
X
L
L
DATAOUT  
DATAOUT  
DATAOUT Read Data in Semaphore Flag  
DATAOUT Read Data in Semaphore Flag  
H
L
H
H
X
H
X
L
X
X
X
X
X
H
L
X
H
X
L
L
L
L
L
DATAIN  
DATAIN  
Write I/O  
0
0
into Semaphore Flag  
into Semaphore Flag  
DATAIN  
DATAIN  
Write I/O  
______  
______  
Not Allowed  
Not Allowed  
______  
______  
L
X
X
3603 tbl 04  
NOTES:  
1. There are eight semaphore flags written to I/O0 and read from all the I/Os (I/O0-I/O15). These eight semaphore flags are addressed by A0-A2.  
2. Refer to Chip Enable Truth Table.  
4
IDT 70V27S/L  
High-Speed 3.3V 32K x 16 Dual-Port Static RAM  
Commercial and Industrial Temperature Range  
AbsoluteMaximumRatings(1)  
MaximumOperatingTemperature  
andSupplyVoltage(1)  
Commercial  
Symbol  
Rating  
Unit  
& Industrial  
Ambient  
Grade  
Commercial  
Temperature  
0OC to +70OC  
-40OC to +85OC  
GND  
0V  
VDD  
(2)  
V
TERM  
Terminal Voltage  
with Respect  
to GND  
-0.5 to +4.6  
V
3.3V  
3.3V  
+
0.3V  
Industrial  
0V  
+
0.3V  
Temperature  
Under Bias  
-55 to +125  
-65 to +150  
50  
oC  
oC  
T
BIAS  
3603 tbl 06  
NOTES:  
1. This is the parameter TA. This is the "instant on" case temperature.  
Storage  
Temperature  
TSTG  
IOUT  
DC Output  
Current  
mA  
3603 tbl 05  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS  
may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those  
indicated in the operational sections of this specification is not implied. Exposure  
to absolute maximum rating conditions for extended periods may affect  
reliability.  
RecommendedDCOperating  
Conditions(1)  
Symbol  
Parameter  
Supply Voltage  
Ground  
Min.  
Typ.  
Max.  
Unit  
V
V
V
DD  
SS  
3.0  
3.3  
3.6  
2. VTERM must not exceed VDD + 0.3V for more than 25% of the cycle time or 10ns  
maximum, and is limited to < 20mA for the period of VTERM > VDD + 0.3V.  
0
0
0
V
DD+0.3V(2)  
0.8  
V
____  
V
IH  
IL  
Input High Voltage  
Input Low Voltage  
2.0  
V
-0.3(1)  
V
____  
V
Capacitance(1)  
3603 tbl 07  
NOTES:  
1. VIL > -1.5V for pulse width less than 10ns.  
VDD  
(TA = +25°C, f = 1.0mhz)TQFP ONLY  
2. VTERM must not exceed  
+ 0.3V.  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions  
IN = 0V  
OUT = 0V  
Max. Unit  
CIN  
V
9
pF  
pF  
(2)  
OUT  
C
V
10  
NOTES:  
1. This parameter is determined by device characterization but is not  
production tested.  
2. COUT also reference CI/O.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VDD = 3.3V ± 0.3V)  
70V27S  
70V27L  
Symbol  
Parameter  
Input Leakage Current(1)  
Output Leakage Current  
Output Low Voltage  
Test Conditions  
DD = 3.6V, VIN = 0V to VDD  
Min.  
Max.  
10  
Min.  
Max.  
Unit  
µA  
µA  
V
___  
___  
___  
___  
|ILI|  
V
5
5
___  
___  
|ILO  
|
10  
CE = VIH, VOUT = 0V to VDD  
OL = 4mA  
OH = -4mA  
V
OL  
OH  
I
0.4  
0.4  
___  
___  
V
Output High Voltage  
I
2.4  
2.4  
V
3603 tbl 09  
NOTE:  
1. At VDD < 2.0V, input leakages are undefined.  
5
IDT 70V27S/L  
High-Speed 3.3V 32K x 16 Dual-Port Static RAM  
Commercial and Industrial Temperature Range  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1,6) (VDD = 3.3V ± 0.3V)  
70V27X15  
70V27X20  
70V27X25  
Com'l Only  
Com'l & Ind  
Com'l Only  
Typ.(2)  
Typ.(2)  
Typ.(2)  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Max.  
Max.  
255  
Max.  
Unit  
Dynamic Operating  
Current  
(Both Ports Active)  
S
L
170  
170  
260  
225  
165  
165  
145  
145  
245  
210  
mA  
CE = VIL, Outputs Disabled  
SEM = VIH  
IDD  
220  
(3)  
f = fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
IND'L  
COM'L  
IND'L  
S
L
165  
230  
ISB1  
Standby Current  
(Both Ports - TTL Level  
Inputs)  
S
L
44  
44  
70  
60  
39  
39  
60  
50  
27  
27  
50  
40  
mA  
mA  
CE  
L
= CER = VIH  
SEM  
R
= SEM  
L
= VIH  
(3)  
f = fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
S
L
39  
55  
(5)  
ISB2  
Standby Current  
(One Port - TTL Level  
Inputs)  
COM'L  
IND'L  
S
L
115  
115  
160  
145  
105  
105  
155  
140  
90  
90  
150  
135  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
(3)  
f=fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
S
L
SEM  
R
= SEM  
L
= VIH  
105  
150  
I
SB3  
Full Standby Current  
(Both Ports - All  
CMOS Level Inputs)  
Both Ports CE  
CE  
L
and  
mA  
mA  
COM'L  
IND'L  
S
L
1.0  
0.2  
6
3
1.0  
0.2  
6
3
1.0  
0.2  
6
3
R
> VDD - 0.2V  
IN > VDD - 0.2V or  
V
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
IN < 0.2V, f = 0(4)  
S
L
V
0.2  
6
SEM  
R
= SEML > VDD - 0.2V  
ISB4  
Full Standby Current  
(One Port - All CMOS  
Level Inputs)  
CE"A" < 0.2V and  
COM'L  
IND'L  
S
L
115  
115  
155  
140  
105  
105  
150  
135  
90  
90  
145  
130  
CE"B" > VDD - 0.2V(5)  
SEM  
R
= SEML > VDD - 0.2V  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
S
L
V
IN > VDD - 0.2V or VIN < 0.2V  
105  
145  
Active Port Outputs Disabled  
f = fMAX(3)  
3603 tbl 10a  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L).  
2. VDD = 3.3V, TA = +25°C, and are not production tested. IDD DC = 90mA (Typ.)  
3. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tRC, and using “AC Test Conditions” of input  
levels of GND to 3V.  
4. f = 0 means no address or control lines change.  
5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
6. Refer to Chip Enable Truth Table.  
6
IDT 70V27S/L  
High-Speed 3.3V 32K x 16 Dual-Port Static RAM  
Commercial and Industrial Temperature Range  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1,6) (VDD = 3.3V ± 0.3V)  
70V27X35  
70V27X55  
Com'l & Ind  
Com'l Only  
Typ.(2)  
Typ.(2)  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Max.  
Max.  
Unit  
Dynamic Operating Current  
(Both Ports Active)  
S
L
135  
135  
235  
190  
125  
125  
225  
180  
mA  
CE = VIL, Outputs Disabled  
IDD  
SEM = VIH  
f = fMAX  
(3)  
____  
____  
____  
____  
____  
____  
IND'L  
COM'L  
IND'L  
S
L
135  
235  
ISB1  
Standby Current  
(Both Ports - TTL Level  
Inputs)  
S
L
22  
22  
45  
35  
15  
15  
40  
30  
mA  
mA  
CE  
L
= CER = VIH  
SEM  
R
= SEM  
L
= VIH  
(3)  
f = fMAX  
____  
____  
____  
____  
____  
____  
S
L
22  
45  
(5)  
ISB2  
Standby Current  
(One Port - TTL Level  
Inputs)  
COM'L  
IND'L  
S
L
85  
85  
140  
125  
75  
75  
140  
125  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
(3)  
f=fMAX  
____  
____  
____  
____  
____  
____  
S
L
SEM  
R
= SEM  
L
= VIH  
85  
140  
I
SB3  
Full Standby Current (Both Both Ports CE  
L
and  
mA  
mA  
COM'L  
IND'L  
S
L
1.0  
0.2  
6
3
1.0  
0.2  
6
3
Ports - All CMOS Level  
Inputs)  
CER > VDD - 0.2V  
V
IN > VDD - 0.2V or  
IN < 0.2V, f = 0(4)  
____  
____  
____  
____  
____  
____  
S
L
V
0.2  
6
SEM  
R
= SEML > VDD - 0.2V  
ISB4  
Full Standby Current  
(One Port - All CMOS  
Level Inputs)  
CE"A" < 0.2V and  
COM'L  
IND'L  
S
L
85  
85  
135  
120  
75  
75  
135  
120  
CE"B" > VDD - 0.2V(5)  
SEM  
R
= SEML > VDD - 0.2V  
____  
____  
____  
____  
____  
____  
S
L
V
IN > VDD - 0.2V or VIN < 0.2V  
85  
135  
Active Port Outputs Disabled  
f = fMAX(3)  
3603 tbl 10b  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L).  
2. VDD = 3.3V, TA = +25°C, and are not production tested. IDD DC = 90mA (Typ.)  
3. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tRC, and using “AC Test Conditions” of input  
levels of GND to 3V.  
4. f = 0 means no address or control lines change.  
5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
6. Refer to Chip Enable Truth Table.  
3.3V  
3.3V  
AC Test Conditions  
Input Pulse Levels  
GND to 3.0V  
3ns Max.  
1.5V  
590  
590Ω  
Input Rise/Fall Times  
DATAOUT  
BUSY  
INT  
DATAOUT  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
30pF  
5pF*  
435Ω  
435Ω  
1.5V  
Figures 1 and 2  
3603 tbl 11  
3603 drw 04  
Figure 2. Output Test Load  
(for tLZ, tHZ, tWZ, tOW)  
Figure 1. AC Output Test Load  
*Including scope and jig  
7
IDT 70V27S/L  
High-Speed 3.3V 32K x 16 Dual-Port Static RAM  
Commercial and Industrial Temperature Range  
AC Electrical Characteristics Over the Operating  
TemperatureandSupplyVoltageRange(4)  
70V27X15  
70V27X20  
70V27X25  
Com'l Only  
Com'l & Ind  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
t
RC  
AA  
ACE  
ABE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
SAA  
Read Cycle Time  
15  
20  
25  
ns  
ns  
ns  
____  
____  
____  
t
Address Access Time  
15  
15  
15  
20  
20  
20  
25  
25  
25  
____  
____  
____  
____  
____  
____  
____  
____  
____  
Chip Enable Access Time(3)  
t
Byte Enable Access Time(3)  
Output Enable Access Time  
Output Hold from Address Change  
t
ns  
ns  
ns  
ns  
t
10  
12  
15  
____  
____  
____  
t
3
3
3
____  
____  
____  
Output Low-Z Time(1,2)  
t
3
3
3
____  
____  
____  
Output High-Z Time(1,2)  
t
12  
12  
15  
ns  
ns  
ns  
ns  
____  
____  
____  
Chip Enable to Power Up Time(2,5)  
t
0
0
0
____  
____  
____  
Chip Disable to Power Down Time(2,5)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access Time  
t
15  
20  
25  
____  
____  
____  
t
10  
10  
15  
____  
____  
____  
t
15  
20  
35  
ns  
3603 tbl 12a  
70V27X35  
Com'l & Ind  
70V27X55  
Com'l Only  
Symbol  
READ CYCLE  
Parameter  
Min.  
Max.  
Min. Max.  
Unit  
____  
____  
t
RC  
AA  
ACE  
ABE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
SAA  
Read Cycle Time  
35  
55  
ns  
ns  
ns  
____  
____  
t
Address Access Time  
35  
35  
35  
55  
55  
55  
____  
____  
Chip Enable Access Time(3)  
t
____  
____  
____  
____  
Byte Enable Access Time(3)  
Output Enable Access Time  
Output Hold from Address Change  
t
ns  
ns  
ns  
ns  
t
20  
30  
____  
____  
t
3
3
____  
____  
Output Low-Z Time(1,2)  
t
3
3
____  
____  
Output High-Z Time(1,2)  
t
20  
25  
ns  
ns  
ns  
ns  
____  
____  
Chip Enable to Power Up Time(2,5)  
Chip Disable to Power Down Time(2,5)  
t
0
0
____  
____  
t
45  
50  
____  
____  
t
Semaphore Flag Update Pulse (OE or SEM)  
15  
15  
____  
____  
t
Semaphore Address Access Time  
45  
65  
ns  
3603 tbl 12b  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE= VIH and SEM = VIL.  
4. 'X' in part numbers indicates power rating (S or L).  
5. Refer to Chip Enable Truth Table.  
8
IDT 70V27S/L  
High-Speed 3.3V 32K x 16 Dual-Port Static RAM  
Commercial and Industrial Temperature Range  
Waveform of Read Cycles(5)  
tRC  
ADDR  
(4)  
t
t
AA  
(4)  
ACE  
CE(6)  
OE  
(4)  
tAOE  
(4)  
tABE  
UB, LB  
R/W  
DATAOUT  
BUSYOUT  
t
OH  
(1)  
tLZ  
VALID DATA(4)  
(2)  
tHZ  
(3,4)  
3603 drw 05  
tBDD  
Timing of Power-Up Power-Down  
CE(6)  
tPU  
tPD  
ICC  
50%  
50%  
ISB  
,
3603 drw 06  
NOTES:  
1. Timing depends on which signal is asserted last: CE, OE, LB, or UB.  
2. Timing depends on which signal is de-asserted first: CE, OE, LB, or UB.  
3. tBDD delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations  
BUSY has no relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
6. Refer to Chip Enable Truth Table.  
9
IDT 70V27S/L  
High-Speed 3.3V 32K x 16 Dual-Port Static RAM  
Commercial and Industrial Temperature Range  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage(5)  
70V27X15  
70V27X20  
70V27X25  
Com'l Only  
Com'l & Ind  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
15  
12  
12  
0
20  
15  
15  
0
25  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
t
t
Address Set-up Time(3)  
Write Pulse Width  
t
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
12  
0
15  
0
20  
0
t
Write Recovery Time  
Data Valid to End-of-Write  
t
10  
15  
15  
(1,2)  
____  
____  
____  
t
10  
10  
15  
Output High-Z Time  
____  
____  
____  
(4)  
t
0
0
0
ns  
ns  
ns  
ns  
Data Hold Time  
____  
____  
____  
(1,2)  
t
10  
10  
15  
Write Enable to Output in High-Z  
(1, 2,4)  
____  
____  
____  
t
0
5
5
0
5
5
0
5
5
Output Active from End-of-Write  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
____  
____  
____  
____  
____  
____  
t
t
ns  
3603 tbl 13a  
70V27X35  
Com'l & Ind  
70V27X55  
Com'l Only  
Symbol  
WRITE CYCLE  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
35  
30  
30  
0
55  
45  
45  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
t
t
Address Set-up Time(3)  
Write Pulse Width  
t
____  
____  
____  
____  
____  
____  
t
25  
0
40  
0
t
Write Recovery Time  
Data Valid to End-of-Write  
t
20  
30  
(1,2)  
____  
____  
t
20  
25  
Output High-Z Time  
____  
____  
(4)  
t
0
0
ns  
ns  
ns  
ns  
Data Hold Time  
Write Enable to Output in High-Z (1,2)  
____  
____  
t
20  
25  
____  
____  
(1,2,4)  
t
0
5
5
0
5
5
Output Active from End-of-Write  
____  
____  
____  
____  
t
SEM Flag Write to Read Time  
SEM Flag Contention Window  
t
ns  
3603 tbl 13b  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM CE= VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time. Refer to Chip Enable  
Truth Table.  
4. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH and tOW values will vary over voltage  
and temperature, the actual tDH will always be smaller than the actual tOW.  
5. 'X' in part numbers indicates power rating (S or L).  
10  
IDT 70V27S/L  
High-Speed 3.3V 32K x 16 Dual-Port Static RAM  
Commercial and Industrial Temperature Range  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
t
WC  
ADDRESS  
(7)  
t
HZ  
OE  
t
AW  
CE or SEM (9,10)  
UB or LB(9)  
R/W  
(3)  
(2)  
(6)  
AS  
tWR  
t
tWP  
(7)  
tOW  
tWZ  
(4)  
(4)  
DATAOUT  
DATAIN  
tDW  
tDH  
3603 drw 07  
Timing Waveform of Write Cycle No. 2, CE, UB, LB Controlled Timing(1,5)  
t
WC  
ADDRESS  
tAW  
CE or SEM(9,10)  
UB or LB(9)  
R/W  
(6)  
AS  
(3)  
(2)  
t
tEW  
t
WR  
tDW  
tDH  
DATAIN  
3603 drw 08  
NOTES:  
1. R/W or CE or UB and LB must be HIGH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a LOW CE and a LOW R/W for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH to the end of write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the High-impedance state.  
6. Timing depends on which enable signal is asserted last, CE or R/W.  
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load (Figure  
2).  
8. If OE is LOW during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be placed  
on the bus for the required tDW. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the  
specified tWP.  
9. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. tEW must be met for either condition.  
10. Refer to Chip Enable Truth Table.  
11  
IDT 70V27S/L  
High-Speed 3.3V 32K x 16 Dual-Port Static RAM  
Commercial and Industrial Temperature Range  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
tSAA  
A0-A2  
VALID ADDRESS  
VALID ADDRESS  
tAW  
tWR  
tACE  
tEW  
SEM  
tOH  
tSOP  
tDW  
OUT  
DATA  
VALID(2)  
I/O  
IN  
DATA VALID  
tAS  
tWP  
tDH  
R/W  
tSWRD  
tAOE  
OE  
Write Cycle  
Read Cycle  
3603 drw 09  
NOTES:  
1. CE = VIH or UB and LB = VIH for the duration of the above timing (both write and read cycle), refer to Chip Enable Truth Table.  
2. "DATAOUT VALID" represents all I/O's (I/O0-I/O15) equal to the semaphore value.  
Timing Waveform of Semaphore Write Contention(1,3,4)  
A0"A"-A2"A"  
MATCH  
(2)  
SIDE  
“A”  
R/W"A"  
SEM"A"  
tSPS  
A0"B"-A2"B"  
MATCH  
(2)  
SIDE  
“B”  
R/W"B"  
SEM"B"  
3603 drw 10  
NOTES:  
1. DOR = DOL = VIL, CER = CEL = VIH, or both UB & LB = VIH (refer to Chip Enable Truth Table).  
2. All timing is the same for left and right ports. Port “A” may be either left or right port. Port “B” is the opposite from port “A”.  
3. This parameter is measured from R/W"A" or SEM"A" going HIGH to R/W"B" or SEM"B" going HIGH.  
4. If tSPS is not satisfied, there is no guarantee which side will be granted the semaphore flag.  
12  
IDT 70V27S/L  
High-Speed 3.3V 32K x 16 Dual-Port Static RAM  
Commercial and Industrial Temperature Range  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(6)  
70V27X15  
70V27X20  
70V27X25  
Com'l Only  
Com'l & Ind  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
BUSY TIMING (M/S=VIH  
)
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
15  
15  
15  
20  
20  
20  
25  
25  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable Low  
BUSY Disable Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
t
t
t
15  
20  
25  
____  
____  
____  
t
5
5
5
____  
____  
____  
BUSY Disable to Valid Data(3)  
t
17  
35  
35  
____  
____  
____  
(5)  
t
12  
15  
20  
Write Hold After BUSY  
BUSY TIMING (M/S=VIL  
)
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
t
WB  
0
0
0
ns  
ns  
(5)  
tWH  
12  
15  
20  
Write Hold After BUSY  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
____  
____  
Write Pulse to Data Delay(1)  
t
WDD  
30  
25  
45  
30  
55  
50  
ns  
Write Data Valid to Read Data Delay(1)  
tDDD  
ns  
3603 tbl 14a  
70V27X35  
Com'l & Ind  
70V27X55  
Com'l Only  
Symbol  
BUSY TIMING (M/S=VIH  
Parameter  
Min.  
Max.  
Min. Max.  
Unit  
)
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
35  
35  
35  
45  
45  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable Low  
BUSY Disable Time from Chip Enable High  
Arbitration Priority Set-up Time (2)  
BUSY Disable to Valid Data(3)  
t
t
t
35  
45  
____  
____  
t
5
5
____  
____  
t
40  
50  
____  
____  
Write Hold After BUSY(5)  
t
25  
25  
BUSY TIMING (M/S=VIL  
)
____  
____  
____  
____  
BUSY Input to Write(4)  
Write Hold After BUSY(5)  
t
WB  
0
0
ns  
ns  
tWH  
25  
25  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
Write Pulse to Data Delay(1)  
t
WDD  
65  
60  
85  
80  
ns  
Write Data Valid to Read Data Delay(1)  
tDDD  
ns  
3603 tbl 14b  
NOTES:  
1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read and BUSY (M/S = VIH)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0, tWDD – tWP (actual), or tDDD – tDW (actual).  
4. To ensure that the write cycle is inhibited on port "B" during contention on port "A".  
5. To ensure that a write cycle is completed on port "B" after contention on port "A".  
6. 'X' in part numbers indicates power rating (S or L).  
13  
IDT 70V27S/L  
High-Speed 3.3V 32K x 16 Dual-Port Static RAM  
Commercial and Industrial Temperature Range  
TimingWaveformof WritewithPort-to-PortReadandBUSY(2,5) (M/S =VIH)(4)  
tWC  
ADDR"A"  
R/W"A"  
MATCH  
tWP  
tDW  
tDH  
DATAIN "A"  
VALID  
(1)  
t
APS  
ADDR"B"  
MATCH  
tBAA  
tBDA  
tBDD  
BUSY"B"  
tWDD  
DATAOUT "B"  
VALID  
(3)  
tDDD  
3603 drw 11  
NOTES:  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S = VIL (SLAVE).  
2. CEL = CER = VIL (refer to Chip Enable Truth Table).  
3. OE = VIL for the reading port.  
4. If M/S = VIL (SLAVE), then BUSY is an input. Then for this example BUSY "A"= VIH and BUSY "B"= input is shown above.  
5. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".  
Timing Waveform Write with BUSY (M/S = VIL)  
tWP  
R/W"A"  
(3)  
t
WB  
BUSY"B"  
(1)  
t
WH  
(2)  
R/W"B"  
,
,
3603 drw 12  
NOTES:  
1. tWH must be met for both BUSY input (SLAVE) and output (MASTER).  
2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.  
3. tWB is only for the "Slave" version.  
14  
IDT 70V27S/L  
High-Speed 3.3V 32K x 16 Dual-Port Static RAM  
Commercial and Industrial Temperature Range  
Waveform of BUSY Arbitration Controlled by CE Timing(M/S = VIH)(1,3)  
ADDR"A"  
and "B"  
ADDRESSES MATCH  
CE"A"  
(2)  
tAPS  
CE"B"  
tBAC  
tBDC  
BUSY"B"  
3603 drw 13  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(M/S = VIH)(1)  
ADDRESS "N"  
ADDR"A"  
ADDR"B"  
BUSY"B"  
(2)  
APS  
t
MATCHING ADDRESS "N"  
t
BAA  
tBDA  
3603 drw 14  
NOTES:  
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from port “A”.  
2. If tAPS is not satisfied, the busy signal will be asserted on one side or another but there is no guarantee on which side busy will be asserted.  
3. Refer to Chip Enable Truth Table.  
AC Electrical Characteristics Over the  
Operating TemperatureandSupplyVoltageRange(1)  
70V27X15  
70V27X20  
70V27X25  
Com'l Only  
Com'l & Ind  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
0
ns  
ns  
ns  
ns  
t
0
0
0
____  
____  
____  
t
15  
25  
20  
20  
25  
35  
____  
____  
____  
t
Interrupt Reset Time  
3603 tbl 15a  
70V27X35  
Com'l & Ind  
70V27X55  
Com'l Only  
Symbol  
INTERRUPT TIMING  
Parameter  
Min.  
Max.  
Min. Max.  
Unit  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
ns  
ns  
ns  
t
0
0
____  
____  
t
30  
35  
40  
45  
____  
____  
t
Interrupt Reset Time  
ns  
3603 tbl 15b  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L).  
15  
IDT 70V27S/L  
High-Speed 3.3V 32K x 16 Dual-Port Static RAM  
Commercial and Industrial Temperature Range  
Waveform of Interrupt Timing(1,5)  
tWC  
INTERRUPT SET ADDRESS (2)  
ADDR"A"  
CE"A"  
(4)  
(3)  
tAS  
tWR  
R/W"A"  
INT"B"  
(3)  
tINS  
3603 drw 15  
tRC  
INTERRUPT CLEAR ADDRESS (2)  
ADDR"B"  
CE"B"  
(3)  
t
AS  
OE"B"  
(3)  
t
INR  
INT"B"  
3603 drw 16  
NOTES:  
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from port “A”.  
2. See Interrupt Truth Table.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
5. Refer to Chip Enable Truth Table.  
Truth Table IV — Interrupt Flag(1,4)  
Left Port  
Right Port  
R/W  
L
A
14L-A0L  
7FFF  
X
R/W  
R
A
14R-A0R  
Function  
CE  
L
OE  
L
INT  
L
CE  
R
OE  
R
INTR  
L(2)  
H(3)  
X
L
L
X
X
L
X
X
X
X
X
L
X
X
Set Right INT  
Reset Right INT  
Set Left INT Flag  
Reset Left INT  
R Flag  
X
X
X
L
7FFF  
7FFE  
X
R Flag  
L(3)  
H(2)  
X
X
X
X
L
L
X
L
L
7FFE  
X
X
X
X
L Flag  
3603 tbl 16  
NOTES:  
1. Assumes BUSYL = BUSYR =VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
4. Refer to Chip Enable Truth Table.  
16  
IDT 70V27S/L  
High-Speed 3.3V 32K x 16 Dual-Port Static RAM  
Commercial and Industrial Temperature Range  
Truth Table V — Address BUSY Arbritration(4)  
Inputs  
Outputs  
A
0L-A14L  
(1)  
(1)  
A
0R-A14R  
Function  
Normal  
CE  
L
CE  
R
BUSY  
L
BUSYR  
X
H
X
L
X
X
H
L
NO MATCH  
MATCH  
H
H
H
H
Normal  
MATCH  
H
H
Normal  
MATCH  
(2)  
(2)  
Write Inhibit(3)  
3603 tbl 17  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSY outputs on the IDT70V27 are  
push-pull, not open drain outputs. On slaves the BUSY input internally inhibits writes.  
2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address  
and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs can not be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored  
when BUSYR outputs are driving LOW regardless of actual logic level on the pin.  
4. Refer to Chip Enable Truth Table.  
Truth Table VI — Example of Semaphore Procurement Sequence(1,2)  
Functions  
D0 - D15 Left  
D0 - D15 Right  
Status  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
3603 tbl 18  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT70V27.  
2. There are eight semaphore flags written to via I/O0 and read from all the I/O's (I/O0-I/O15). These eight semaphores are addressed by A0 - A2.  
FunctionalDescription  
7FFE when CEL = OEL = VIL, R/W is a "don't care". Likewise, the right  
portinterruptflag(INTR)isassertedwhentheleftportwritestomemory  
location 7FFF (HEX) and to clear the interrupt flag (INTR), the  
rightportmustreadthememorylocation7FFF.Themessage(16bits)at  
7FFEor7FFFisuser-definedsinceitisanaddressableSRAMlocation.  
Iftheinterruptfunctionisnotused,addresslocations7FFEand7FFFare  
notusedasmailboxes,butaspartoftherandomaccessmemory.Refer  
toTruthTableIVfortheinterruptoperation.  
TheIDT70V27providestwoportswithseparatecontrol,addressand  
I/Opinsthatpermitindependentaccessforreadsorwritestoanylocation  
in memory. The IDT70V27 has an automatic power down feature  
controlledbyCE0 andCE1. TheCE0 andCE1 controltheon-chippower  
downcircuitrythatpermitstherespectiveporttogointoastandbymode  
whennotselected(CEHIGH).Whenaportisenabled,accesstotheentire  
memoryarrayispermitted.  
Interrupts  
BusyLogic  
Iftheuserchoosestheinterruptfunction,amemorylocation(mailbox  
ormessagecenter)isassignedtoeachport. Theleftportinterruptflag  
(INTL) is asserted when the right port writes to memory location 7FFE  
(HEX),whereawriteisdefinedas CER =R/WR =VIL pertheTruthTable  
IV. Theleftportclearstheinterruptthroughaccessofaddresslocation  
BusyLogicprovidesahardwareindicationthatbothportsoftheRAM  
haveaccessedthesamelocationatthesametime.Italsoallowsoneofthe  
twoaccessestoproceedandsignalstheothersidethattheRAMisBusy”.  
TheBUSYpincanthenbeusedtostalltheaccessuntiltheoperationon  
17  
IDT 70V27S/L  
High-Speed 3.3V 32K x 16 Dual-Port Static RAM  
Commercial and Industrial Temperature Range  
theothersideiscompleted.Ifawriteoperationhasbeenattemptedfrom  
thesidethatreceivesaBUSYindication,thewritesignalisgatedinternally  
topreventthewritefromproceeding.  
Semaphores  
The IDT70V27 is a fast Dual-Port 32K x 16 CMOS Static RAM with  
anadditional8addresslocationsdedicatedtobinarysemaphoreflags.  
TheseflagsalloweitherprocessorontheleftorrightsideoftheDual-Port  
RAMtoclaimaprivilegeovertheotherprocessorforfunctionsdefinedby  
thesystemdesigner’ssoftware.Asanexample,thesemaphorecanbe  
usedbyoneprocessortoinhibittheotherfromaccessingaportionofthe  
Dual-Port RAM or any other shared resource.  
TheuseofBUSYlogicisnotrequiredordesirableforallapplications.  
InsomecasesitmaybeusefultologicallyORtheBUSYoutputstogether  
and use anyBUSYindication as an interrupt source to flag the event of  
anillegalorillogicaloperation.IfthewriteinhibitfunctionofBUSYlogicis  
notdesirable,theBUSYlogiccanbedisabledbyplacingthepartinslave  
modewiththeM/Spin.OnceinslavemodetheBUSYpinoperatessolely  
asawriteinhibitinputpin.Normaloperationcanbeprogrammedbytying  
the BUSY pins HIGH. If desired, unintended write operations can be  
prevented to a port by tying the BUSY pin for that port LOW.  
TheBUSYoutputsontheIDT70V27RAMinmastermode,arepush-  
pulltypeoutputsanddonotrequirepullupresistorstooperate. Ifthese  
RAMs are being expanded in depth, then the BUSY indication for the  
resulting array requires the use of an external AND gate.  
The Dual-Port RAM features a fast access time, and both ports are  
completelyindependentofeachother.Thismeansthattheactivityonthe  
leftportinnowayslowstheaccesstimeoftherightport. Bothportsare  
identicalinfunctiontostandardCMOSStaticRAMandcanbereadfrom,  
orwrittento,atthesametimewiththeonlypossibleconflictarisingfromthe  
simultaneous writing of, or a simultaneous READ/WRITE of, a non-  
semaphorelocation.Semaphoresareprotectedagainstsuchambiguous  
situationsandmaybeusedbythesystemprogramtoavoidanyconflicts  
inthenon-semaphoreportionoftheDual-PortRAM.Thesedeviceshave  
anautomaticpower-downfeaturecontrolledbyCE theDual-PortRAM  
enable,andSEM,thesemaphoreenable.The CEandSEMpinscontrol  
on-chip power down circuitry that permits the respective port to go into  
standbymodewhennotselected. Thisistheconditionwhichisshownin  
Truth Table II where CE and SEM are both HIGH.  
Width Expansion with BUSY Logic  
Master/SlaveArrays  
A15  
SystemswhichcanbestusetheIDT70V27containmultipleprocessors  
or controllers and are typically very high-speed systems which are  
softwarecontrolledorsoftwareintensive.Thesesystemscanbenefitfrom  
a performance increase offered by the IDT70V27's hardware sema-  
phores,whichprovidealockoutmechanismwithoutrequiringcomplex  
programming.  
Softwarehandshakingbetweenprocessorsoffersthemaximumin  
systemflexibilitybypermittingsharedresourcestobeallocatedinvarying  
configurations.TheIDT70V27doesnotuseitssemaphoreflagstocontrol  
anyresourcesthroughhardware,thusallowingthesystemdesignertotal  
flexibilityinsystemarchitecture.  
CE  
0
CE0  
MASTER  
Dual Port RAM  
SLAVE  
Dual Port RAM  
BUSY  
R
BUSY  
R
BUSY  
L
BUSYL  
CE1  
CE1  
MASTER  
Dual Port RAM  
SLAVE  
Dual Port RAM  
BUSY  
R
BUSY  
L
BUSY  
L
BUSYR  
BUSY  
R
BUSY  
L
,
3603 drw 17  
Figure 3. Busy and chip enable routing for both width and depth  
expansion with IDT70V27 RAMs.  
An advantage of using semaphores rather than the more common  
methodsofhardwarearbitrationisthatwaitstatesareneverincurredin  
either processor. This can prove to be a major advantage in very high-  
speedsystems.  
WhenexpandinganIDT70V27RAMarrayinwidthwhileusingBUSY  
logic, one master part is used to decide which side of the RAM array  
willreceiveaBUSYindication,andtooutputthatindication.Anynumber  
ofslavestobeaddressedinthesameaddressrangeasthemaster,use  
thebusysignalasawriteinhibitsignal.ThusontheIDT70V27RAMthe  
BUSYpinisanoutputifthepartisusedasamaster(M/Spin=VIH),and  
theBUSY pin is an input if the part is used as a slave (M/S pin = VIL) as  
shown in Figure 3.  
How the Semaphore Flags Work  
Thesemaphorelogicisasetofeightlatcheswhichareindependent  
oftheDual-PortRAM.Theselatchescanbeusedtopassaflag,ortoken,  
fromoneporttotheothertoindicatethatasharedresourceisinuse.The  
semaphores provide a hardware assist for a use assignment method  
calledTokenPassingAllocation.Inthismethod,thestateofasemaphore  
latchisusedasatokenindicatingthatsharedresourceisinuse.Iftheleft  
processorwantstousethisresource,itrequeststhetokenbysettingthe  
latch.Thisprocessorthenverifiesitssuccessinsettingthelatchbyreading  
it. If it was successful, it proceeds to assume control over the shared  
resource.Ifitwasnotsuccessfulinsettingthelatch,itdeterminesthatthe  
rightsideprocessorhassetthelatchfirst, hasthetokenandisusingthe  
sharedresource.Theleftprocessorcantheneitherrepeatedlyrequest  
thatsemaphore’sstatusorremoveitsrequestforthatsemaphoretoperform  
anothertaskandoccasionallyattemptagaintogaincontrolofthetokenvia  
thesetandtestsequence.Oncetherightsidehasrelinquishedthetoken,  
theleftsideshouldsucceedingainingcontrol.  
Iftwoormoremasterpartswereusedwhenexpandinginwidth,asplit  
decisioncouldresultwithonemasterindicatingBUSYononesideofthe  
arrayandanothermasterindicatingBUSYononeothersideofthearray.  
Thiswouldinhibitthewriteoperationsfromoneportforpartofawordand  
inhibitthewriteoperationsfromtheotherportfortheotherpartoftheword.  
TheBUSYarbitration,onamaster,isbasedonthechipenableand  
address signals only. It ignores whether an access is a read or write. In  
a master/slave array, both address and chip enable must be valid long  
enoughforaBUSYflagtobeoutputfromthemasterbeforetheactualwrite  
pulsecanbeinitiatedwitheithertheR/Wsignalorthebyteenables. Failure  
toobservethistimingcanresultinaglitchedinternalwriteinhibitsignaland  
corrupteddataintheslave.  
18  
IDT 70V27S/L  
High-Speed 3.3V 32K x 16 Dual-Port Static RAM  
Commercial and Industrial Temperature Range  
Thesemaphoreflagsareactivelow.Atokenisrequestedbywriting  
azerointoasemaphorelatchandisreleasedwhenthesamesidewrites  
aonetothatlatch.  
usedinstead,systemcontentionproblemscouldhaveoccurredduringthe  
gap between the read and write cycles.  
Itisimportanttonotethatafailedsemaphorerequestmustbefollowed  
byeitherrepeatedreadsorbywritingaoneintothesamelocation.The  
TheeightsemaphoreflagsresidewithintheIDT70V27inaseparate  
memoryspacefromtheDual-PortRAM.Thisaddressspaceisaccessed  
byplacingalowinputontheSEMpin(whichactsasachipselectforthe  
semaphore flags) and using the other control pins (Address, OE, and  
R/W)astheywouldbeusedinaccessingastandardStaticRAM. Each  
oftheflagshasauniqueaddresswhichcanbeaccessedbyeitherside  
throughaddresspinsA0A2.Whenaccessingthesemaphores,noneof  
theotheraddresspinshasanyeffect.  
L PORT  
SEMAPHORE  
R PORT  
SEMAPHORE  
REQUEST FLIP FLOP  
REQUEST FLIP FLOP  
0
D
0
D
D
D
Q
Q
WRITE  
WRITE  
Whenwritingtoasemaphore,onlydatapinD0 isused.Ifalowlevel  
iswrittenintoanunusedsemaphorelocation,thatflagwillbesettoazero  
onthatsideandaoneontheotherside(seeTableVI).Thatsemaphore  
can now only be modified by the side showing the zero. When a one is  
writtenintothesamelocationfromthesameside,theflagwillbesettoa  
one for both sides (unless a semaphore request from the other side is  
pending)andthencanbewrittentobybothsides.Thefactthattheside  
whichisabletowriteazerointoasemaphoresubsequentlylocksoutwrites  
fromtheothersideiswhatmakessemaphoreflagsusefulininterprocessor  
communications. (Athoroughdiscussionontheuseofthisfeaturefollows  
shortly.)Azerowrittenintothesamelocationfromtheothersidewillbe  
storedinthesemaphorerequestlatchforthatsideuntilthesemaphoreis  
freedbythefirstside.  
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso  
thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining  
azeroreadsasallzeros.Thereadvalueislatchedintooneside’soutput  
registerwhenthatside'ssemaphoreselect(SEM)andoutputenable(OE)  
signalsgoactive.Thisservestodisallowthesemaphorefromchanging  
stateinthemiddleofareadcycleduetoawritecyclefromtheotherside.  
Becauseofthislatch,arepeatedreadofasemaphoreinatestloopmust  
cause either signal (SEM or OE) to go inactive or the output will never  
change.  
AsequenceWRITE/READmustbeusedbythesemaphoreinorder  
to guarantee that no system level contention will occur. A processor  
requestsaccesstosharedresourcesbyattemptingtowriteazerointoa  
semaphorelocation.Ifthesemaphoreisalreadyinuse,thesemaphore  
requestlatchwillcontainazero,yetthesemaphoreflagwillappearasa  
one, a fact which the processor will verify by the subsequent read (see  
TableVI).Asanexample,assumeaprocessorwritesazerototheleftport  
atafreesemaphorelocation.Onasubsequentread,theprocessorwill  
verifythatithaswrittensuccessfullytothatlocationandwillassumecontrol  
overtheresourceinquestion.Meanwhile,ifaprocessorontherightside  
attemptstowriteazerotothesamesemaphoreflagitwillfail, aswillbe  
verifiedbythefactthataonewillbereadfromthatsemaphoreontheright  
sideduringthesubsequentread. HadasequenceofREAD/WRITEbeen  
SEMAPHORE  
READ  
SEMAPHORE  
READ  
3603 drw 18  
Figure 4. IDT70V27 Semaphore Logic  
reasonforthisiseasilyunderstoodbylookingatthesimplelogicdiagram  
ofthesemaphoreflaginFigure4.Twosemaphorerequestlatchesfeed  
into a semaphore flag. Whichever latch is first to present a zero to the  
semaphoreflagwillforceitssideofthesemaphoreflaglowandtheother  
side high. This condition will continue until a one is written to the same  
semaphorerequestlatch.Shouldtheotherside’ssemaphorerequestlatch  
havebeenwrittentoazerointhemeantime,thesemaphoreflagwillflip  
overtotheothersideassoonasaoneiswrittenintothefirstside’srequest  
latch.Thesecondside’sflagwillnowstaylowuntilitssemaphorerequest  
latchiswrittentoaone.Fromthisitiseasytounderstandthat,ifasemaphore  
is requested and the processor which requested it no longer needs the  
resource, the entire system can hang up until a one is written into that  
semaphorerequestlatch.  
The critical case of semaphore timing is when both sides request a  
single token by attempting to write a zero into it at the same time. The  
semaphorelogicisspeciallydesignedtoresolvethisproblem.Ifsimulta-  
neousrequestsaremade,thelogicguaranteesthatonlyonesidereceives  
thetoken.Ifonesideisearlierthantheotherinmakingtherequest,thefirst  
sidetomaketherequestwillreceivethetoken.Ifbothrequestsarriveat  
thesametime,theassignmentwillbearbitrarilymadetooneportorthe  
other.  
One caution that should be noted when using semaphores is that  
semaphoresalonedonotguaranteethataccesstoaresourceissecure.  
Aswithanypowerfulprogrammingtechnique,ifsemaphoresaremisused  
or misinterpreted, a software error can easily happen.  
Initializationofthesemaphoresisnotautomaticandmustbehandled  
viatheinitializationprogramatpower-up.Sinceanysemaphorerequest  
flagwhichcontainsazeromustberesettoaone,allsemaphoresonboth  
sidesshouldhaveaonewrittenintothematinitializationfrombothsides  
to assure that they will be free when needed.  
19  
IDT 70V27S/L  
High-Speed 3.3V 32K x 16 Dual-Port Static RAM  
Commercial and Industrial Temperature Range  
OrderingInformation  
XXXXX  
A
999  
A
A
A
A
Device  
Type  
Power  
Speed  
Package  
Process/  
Temperature  
Range  
Blank  
8
Tube or Tray  
Tape and Reel  
Blank  
I(1)  
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
G(2)  
Green  
144-pin fpBGA (BF144-1)  
100-pin TQFP (PN100-1)  
BF  
PF  
Commercial Only  
Commercial & Industrial  
Commercial Only  
Commercial & Industrial  
Commercial Only  
15  
20  
25  
35  
55  
Speed in nanoseconds  
S
L
Standard Power  
Low Power  
512K (32K x 16) 3.3V Dual-Port RAM  
70V27  
3603drw19  
NOTES:  
1. Industrial temperature range is available on selected TQFP packages in low power.  
For other speeds, packages and powers contact your sales office.  
2. Green parts available. For specific speeds, packages and powers contact your local sales office.  
DatasheetDocumentHistory  
12/03/98:  
InitiatedDocumentHistory  
Convertedtonewformat  
Typographicalandcosmeticchanges  
AddedfpBGAinformation  
Added 15ns and 20ns speed grades  
UpdatedDCElectricalCharacteristics  
Addedadditionalnotestopinconfigurations  
Fixed typo in Table III  
Changedpackagebodyheightfrom1.1mmto1.4mm  
Changed660mWto660µW  
Replaced IDT logo  
04/02/99:  
08/01/99:  
08/30/99:  
04/25/00:  
Page 5  
Page 3  
Page 1  
Page 2  
Madepincorrection  
Changed±200mVto0mVinnotes  
Datasheet Document History continued on page 21  
20  
IDT 70V27S/L  
High-Speed 3.3V 32K x 16 Dual-Port Static RAM  
Commercial and Industrial Temperature Range  
DatasheetDocumentHistory(cont'd)  
01/12/01:  
08/02/04:  
Page 1  
Page 6  
Fixed page numbering; copyright  
Increasedstoragetemperatureparameter  
ClarifiedTA Parameter  
DCElectricalparameters–changedwordingfrom"open"to"disabled"  
RemovedPreliminarystatus  
RemovedGU-108packageoffering  
Addeddaterevisionforpinconfigurations  
ChangednamingconventionfromVCC toVDD andfromGNDtoVSS  
UpdatedCapacitancetable  
Page 7 & 8  
Page 1, 4 & 20  
Page 2 & 3  
Page 2 - 7  
Page 5  
Page 6  
Page 6 - 7  
Added I- temp for low power for 20ns speed to DC Electrical Characteristics  
Removed I-temp for 25ns & 55ns speeds and removed I-temp for 35ns standard power  
fromDCElectricalCharacteristics  
Page 7  
Page 8, 10, 13  
& 15  
ChangedInputRise/FallTimesfrom5nsto3ns  
RemovedI-tempfor25ns&55nsspeedsfromACElectricalCharacteristicsforRead,  
Write,BusyandInterrupt  
Page 6 - 8, 10,  
13 & 15  
RemovedI-tempnotefromalltablefootnotes  
01/20/06:  
Page 1  
Addedgreenavailabilitytofeatures  
Page 20  
Page 20  
Page 20  
Page 20  
Addedgreenindicatortoorderinginformation  
Addeddiesteppingindcatortoorderinginformation  
Removed "IDT" from orderable part number  
AddedT&RindicatortoandremovedWsteppingfromorderinginformation  
Corrected miscellaneoustypo's  
09/21/06:  
10/23/08:  
09/27/12:  
Page 2,17 & 19  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
408-284-2794  
DualPortHelp@idt.com  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
21  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY