70V3319S166PRFGI [IDT]

HIGH-SPEED 3.3V 256/128K x 18 SYNCHRONOUS DUAL-PORT STATIC RAM;
70V3319S166PRFGI
型号: 70V3319S166PRFGI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

HIGH-SPEED 3.3V 256/128K x 18 SYNCHRONOUS DUAL-PORT STATIC RAM

文件: 总23页 (文件大小:259K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED 3.3V  
256/128K x 18  
SYNCHRONOUS  
IDT70V3319/99S  
DUAL-PORT STATIC RAM  
WITH 3.3V OR 2.5V INTERFACE  
LEAD FINISH (SnPb) ARE IN EOL PROCESS - LAST TIME BUY EXPIRES JUNE 15, 2018  
Features:  
True Dual-Port memory cells which allow simultaneous  
access of the same memory location  
High-speed data access  
– Self-timedwriteallowsfastcycletime  
Separate byte controls for multiplexed bus and bus  
matching compatibility  
– Commercial: 3.6ns (166MHz)/4.2ns (133MHz) (max.)  
– Industrial: 4.2ns (133MHz) (max.)  
Selectable Pipelined or Flow-Through output mode  
– Due to limited pin count PL/FT option is not supported  
on the 128-pin TQFP package. Device is pipelined  
outputs only on each port.  
Dual Cycle Deselect (DCD) for Pipelined Output mode  
LVTTL- compatible, single 3.3V ( 150mV) power supply  
for core  
LVTTL compatible, selectable 3.3V ( 150mV) or 2.5V  
( 100mV) power supply for I/Os and control signals on  
each port  
Counter enable and repeat features  
Dual chip enables allow for depth expansion without  
additional logic  
Full synchronous operation on both ports  
– 6ns cycle time, 166MHz operation (6Gbps bandwidth)  
– Fast 3.6ns clock to data out  
– 1.7ns setup to clock and 0.5ns hold on all control, data, and  
address inputs @ 166MHz  
– Data input, address, byte enable and control registers  
Industrial temperature range (-40°C to +85°C) is  
available at 133MHz.  
Available in a 128-pin Thin Quad Flatpack, 208-pin fine  
pitch Ball Grid Array, and 256-pin Ball  
GridArray  
Supports JTAG features compliant to IEEE 1149.1  
– Due to limited pin count, JTAG is not supported on the  
128-pin TQFP package  
Green parts available, see ordering information  
Functional Block Diagram  
UBL  
UBR  
LBL  
LBR  
FT/PIPE  
L
1b 0b  
b
1a 0a  
a
0a 1a  
a
0b 1b  
b
FT/PIPER  
1/0  
1/0  
R/WL  
R/WR  
CE0L  
CE0R  
1
1
CE1R  
CE1L  
B
B
B B  
0
0
W W  
W W  
0
L
1
L
1
0
R
R
1/0  
1/0  
Dout0-8_L  
Dout9-17_L  
Dout0-8_R  
Dout9-17_R  
OE  
L
OER  
,
0a 1a  
0b 1b  
ba  
1b 0b 1a 0a  
ab  
0/1  
FT/PIPE  
L
0/1  
FT/PIPER  
256K x 18  
MEMORY  
ARRAY  
Din_L  
I/O0R - I/O17R  
I/O0L - I/O17L  
Din_R  
,
CLKR  
CLKL  
(1)  
L
(1)  
A
17L  
A
A
17R  
Counter/  
Address  
Reg.  
Counter/  
Address  
Reg.  
A0L  
0R  
ADDR_R  
ADDR_L  
REPEAT  
ADS  
CNTEN  
REPEAT  
ADS  
CNTEN  
R
R
L
R
L
5623 tbl 01  
TDI  
TCK  
TMS  
TRST  
NOTE:  
1. A17 is a NC for IDT70V3399.  
JTAG  
TDO  
JUNE 2018  
1
DSC 5623/11  
©2018 Integrated Device Technology, Inc.  
IDT70V3319/99S  
High-Speed 3.3V 256/128K x 18 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Description:  
TheIDT70V3319/99isahigh-speed256/128Kx18bitsynchronous or bidirectional data flow in bursts. An automatic power down feature,  
Dual-Port RAM. The memory array utilizes Dual-Port memory cells to controlled by CE0 and CE1, permits the on-chip circuitry of each port to  
allowsimultaneousaccessofanyaddressfrombothports.Registerson enter a very low standby power mode.  
control, data, and address inputs provide minimal setup and hold  
The70V3319/99cansupportanoperatingvoltageofeither3.3Vor  
times. The timing latitude provided by this approach allows systems 2.5Vononeorbothports,controllablebytheOPTpins.Thepowersupply  
tobedesignedwithveryshortcycletimes.Withaninputdataregister,the for the core of the device (VDD) remains at 3.3V.  
IDT70V3319/99hasbeenoptimizedforapplicationshavingunidirectional  
Pin Configuration(1,2,3,4,5)  
08/01/02  
1
2
3
4
5
6
7
8
9
11 12 13 14  
10  
15 16 17  
I/O9L  
VSS  
A16L  
A12L  
A
B
C
D
E
F
NC  
VSS  
NC  
A8L  
NC  
VDD  
A0L  
OPTL  
VDDQR  
I/O8R  
NC  
TDO  
CLKL CNTEN  
L
A4L  
A1L  
A2L  
VDD  
NC  
(1)  
VSS  
I/O9R  
VSS  
NC  
A9L  
VSS  
VSS  
OEL  
TDI  
NC  
UBL  
LBL  
CE0L  
ADSL  
VSS  
I/O8L  
NC  
A17L  
A13L  
A14L  
A5L  
A6L  
A3L  
VDDQR PIPE/FT  
L
NC  
VDDQL  
NC  
A10L  
A7L  
VDD  
NC  
CE1L  
VDD  
NC  
I/O7L  
VSS  
NC  
VSS  
R/WL  
I/O10L  
VDDQL  
A15L  
A11L  
I/O7R  
NC  
REPEAT  
L
I/O11L  
NC  
VDDQR I/O10R  
I/O6L  
VSS  
NC  
NC  
I/O6R  
VDDQL I/O11R  
VDDQR  
NC  
VSS  
NC  
VSS  
NC  
VDD  
I/O12L  
NC  
NC  
I/O5L  
VSS  
VDDQL  
NC  
NC  
G
H
J
VDD  
I/O5R  
VDDQR  
VDDQR I/O12R  
VDD  
70V3319/99BF  
BF-208(6)  
VDDQL  
VDD  
VSS  
VSS  
VSS  
VSS  
208-Pin fpBGA  
Top View(7)  
I/O3R  
I/O4R  
I/O14R  
NC  
VSS  
VDDQL  
VSS  
K
L
I/O13R  
VDDQR  
VSS  
I/O14L  
I/O13L  
I/O4L  
NC  
I/O3L  
NC  
VSS  
I/O2R  
NC  
VDDQL  
NC  
VSS  
I/O15R  
NC  
VSS  
I/O15L  
NC  
VSS  
VDDQR  
I/O2L  
NC  
M
N
P
R
T
NC  
VDDQL  
I/O1R  
NC  
I/O16L  
I/O16R  
VDDQR  
I/O17R  
TRST  
A16R  
A8R  
A12R  
NC  
I/O1L  
VSS  
VDD  
CLKR CNTEN  
R
A4R  
(1)  
A17R  
VSS  
NC  
VSS  
TCK  
A13R  
A14R  
A11R  
CE0R  
CE1R  
VDD  
VDDQR  
NC  
NC  
A9R  
A10R  
A7R  
NC  
UBR  
LBR  
I/O0R  
VSS  
ADSR  
R/WR  
VSS  
VSS  
A5R  
A6R  
VSS  
VSS  
VDDQL  
NC  
A1R  
A2R  
I/O17L  
VDDQL TMS  
NC  
PIPE/FT  
R
I/O0L  
NC  
OER REPEAT  
R
A3R  
VDD  
NC  
NC  
A15R  
OPTR  
A0R  
U
5623 drw 02c  
NOTES:  
1. A17 is a NC for IDT70V3399.  
2. All VDD pins must be connected to 3.3V power supply.  
3. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VIH (3.3V), and 2.5V if OPT pin for that port is  
set to VIL (0V).  
4. All VSS pins must be connected to ground supply.  
5. Package body is approximately 15mm x 15mm x 1.4mm with 0.8mm ball pitch.  
6. This package code is used to reference the package diagram.  
7. This text does not indicate orientation of the actual part-marking.  
6.42  
2
IDT70V3319/99S  
High-Speed 3.3V 256/128K x 18 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Pin Configuration(1,2,3,4,5) (con't.)  
70V3319/99BC  
BC-256(6)  
256-Pin BGA  
Top View(7)  
08/01/02  
A1  
A2  
A3  
A6  
A7  
A8  
A9  
A11  
A12  
A13  
A14  
A4  
A5  
A10  
A15  
A16  
(1)  
NC  
TDI  
NC  
A
17L  
A
11L  
A
8L  
9L  
7L  
NC CE1L  
CNTEN  
L
A
5L  
4L  
6L  
A
2L  
A
0L  
A
14L  
OE  
L
NC  
NC  
B1  
B2  
B3  
B6  
B7  
B9  
CE0L  
B11  
B12  
B13  
B4  
B5  
B8  
B10  
B14  
B15  
B16  
NC  
NC TDO  
A
12L  
A
REPEAT  
L
A
A
1L  
NC  
A
15L  
UB  
L
R/W  
L
VDD  
NC  
NC  
C1  
C5  
C6  
C2  
C3  
C4  
C7  
C8  
C9  
C10  
C11  
C12  
C13  
C16  
C14  
C15  
NC  
A
13L  
A
10L  
I/O9L  
VSS  
A
16L  
A
NC  
LBL  
CLK  
L
ADS  
L
A
A
3L  
I/O8L  
OPT  
L
NC  
D1  
D2  
D6  
DDQL  
D9  
DDQL  
D11  
D3  
D5  
VDDQL  
L
D7  
DDQR  
D8  
DDQR  
D10  
D12  
D13  
D14  
D15  
D16  
D4  
NC I/O9R  
V
V
VDDQR  
NC  
V
V
VDDQL  
VDDQR  
VDD  
NC  
NC I/O8R  
PIPE/FT  
E5  
E6  
E7  
E8  
E9  
E10  
E11  
E12  
E13  
E1  
E2  
E3  
E4  
E14  
E16  
E15  
V
DD  
V
DD  
SS  
SS  
V
SS  
V
SS  
SS  
SS  
V
SS  
SS  
SS  
SS  
V
SS  
V
DD  
V
DD  
V
DDQR  
I/O10R I/O10L NC  
V
DDQL  
NC  
I/O7R  
I/O7L  
F7  
F3  
F5  
F6  
F9  
F10  
F1  
F2  
F11  
F13  
F14  
F15  
F16  
F4  
F8  
F12  
V
SS  
I/O11R  
VDD  
V
V
VSS  
I/O11L NC  
VSS  
VDDQR I/O6R  
NC I/O6L  
V
VDD  
VDDQL  
G1  
G2  
G5  
H5  
G4  
G6  
G8  
G9  
G3  
G7  
G10  
G12  
G13 G14  
G15  
G16  
G11  
NC  
V
SS  
SS  
SS  
NC  
VDDQR  
V
V
V
I/O12L  
I/O5L NC  
DDQL  
NC  
VSS  
VSS  
VSS  
V
VSS  
H11  
H12  
H7  
H8  
H9  
H10  
H13  
H16  
H14  
H15  
H3  
H4  
H6  
H1  
H2  
V
SS  
VSS  
I/O5R  
VDDQL  
VSS  
VSS  
V
VSS  
NC  
NC  
V
VSS  
NC  
VDDQR  
NC I/O12R  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
J13  
J10  
J11  
J12  
J14  
J15  
J16  
I/O13L  
I/O14R I/O13R  
VDDQL  
V
V
SS  
VSS  
VSS  
VSS  
VDDQR  
VSS  
VSS  
VSS  
I/O4R  
I/O3R I/O4L  
K6  
K8  
K10  
K12  
K5  
K7  
K9  
K11  
K13  
K2  
K4  
K15  
K16  
K1  
K3  
K14  
VSS  
VSS  
VSS  
VSS  
VDDQR  
NC  
VDDQL  
VSS  
VSS  
VSS  
VSS  
NC I/O3L  
NC  
I/O14L  
NC  
L7  
L8  
L11  
L12  
L13  
L3  
L4  
L5  
L6  
L9  
L10  
L15  
L16  
L1  
L2  
L14  
VSS  
VSS  
VSS  
VDD  
VDDQL  
VDD  
VSS  
VSS  
VSS  
I/O15R  
VDDQR  
NC I/O2R  
I/O15L NC  
I/O2L  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M1  
M2  
M3  
M4  
M16  
M14  
M15  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
I/O16R I/O16L NC  
VDDQR  
VDDQL  
NC  
I/O1R I/O1L  
N8  
N12  
N16  
N4  
N5  
N6  
DDQR  
N7  
N9  
N10  
N11  
N13  
N15  
N1  
N2  
N3  
N14  
VDDQL  
VDDQL  
VDD  
NC  
VDDQR  
V
VDDQL  
VDDQR  
VDDQR  
VDDQL  
PIPE/FT  
R
I/O0R  
NC I/O17R NC  
NC  
P1  
P2  
P3  
P4  
P5  
P7  
P8  
P9  
P10  
P11  
P12  
P14  
P15  
P16  
P6  
P13  
NC I/O17L TMS  
A16R  
A13R  
A7R  
NC  
LBR  
CLK  
R
ADSR  
A6R  
NC  
NC  
I/O0L  
A10R  
A3R  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R16  
R1  
R2  
R3  
R4  
R12  
R13  
R14  
R15  
,
A
15R  
A
12R  
A
9R  
UB  
R
CE0R R/W  
R
REPEAT  
R
NC  
NC  
NC TRST NC  
A
4R  
A1R OPT  
R
NC  
T2  
T3  
T1  
T4  
17R  
T5  
T8  
T9  
T15  
T16  
T6  
T7  
T10  
T11  
T12  
T13  
T14  
(1)  
TCK  
NC  
NC  
A
A
14R  
NC CE1R  
NC  
NC  
A
11R  
A
8R  
OE  
R
CNTEN  
R
A
5R  
A
2R  
A0R  
5623 drw 02d  
,
NOTES:  
1. A17 is a NC for IDT70V3399.  
2. All VDD pins must be connected to 3.3V power supply.  
3. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VIH (3.3V), and 2.5V if OPT pin for that port is  
set to VIL (0V).  
4. All VSS pins must be connected to ground supply.  
5. Package body is approximately 17mm x 17mm x 1.4mm, with 1.0mm ball-pitch.  
6. This package code is used to reference the package diagram.  
7. This text does not indicate orientation of the actual part-marking.  
6.42  
3
IDT70V3319/99S  
High-Speed 3.3V 256/128K x 18 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Pin Configuration(1,2,3,4,5,8,9) (con't.)  
08/06/02  
A
A
OPT  
1L  
0L  
1
2
3
4
5
6
7
8
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
A
14L  
A15L  
L
A
17L  
16L  
(1)  
V
SS  
IO8L  
IO8R  
A
IO9L  
IO9R  
DDQL  
V
V
V
V
SS  
SS  
VSS  
IO10L  
DDQL  
9
10  
IO7L  
IO7R  
IO10R  
V
DDQR  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
VSS  
V
SS  
VDDQR  
IO11L  
IO11R  
IO12L  
IO12R  
V
V
IO6L  
IO6R  
IO5L  
IO5R  
DD  
70V3319/99PRF  
PK-128(6)  
V
V
V
V
DD  
DD  
SS  
DD  
V
V
SS  
SS  
SS  
IO13R  
IO13L  
IO4R  
IO4L  
IO3R  
IO3L  
IO2R  
IO2L  
128-Pin TQFP  
Top View(7)  
IO14R  
IO14L  
IO15R  
IO15L  
V
DDQL  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
VSS  
V
IO16R  
IO16L  
SS  
VDDQL  
IO1R  
IO1L  
V
DDQR  
VSS  
V
SS  
VDDQR  
IO17R  
IO0R  
IO0L  
OPT  
IO17L  
(1)  
17R  
A
R
A
A
A
16R  
A
A
0R  
1R  
15R  
14R  
.
5623 drw 02a  
NOTES:  
1. A17 is a NC for IDT70V3399.  
2. All VDD pins must be connected to 3.3V power supply.  
3. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VIH (3.3V), and 2.5V if OPT pin for that port is set to VIL (0V).  
4. All VSS pins must be connected to ground supply.  
5. Package body is approximately 14mm x 20mm x 1.4mm.  
6. This package code is used to reference the package diagram.  
7. This text does not indicate orientation of the actual part-marking.  
8. PIPE/FT option in PK-128 is not supported due to limitation in pin count. Device is pipelined outputs only on each port.  
9. Due to the limited pin count, JTAG is not supported in the PK-128 package.  
6.42  
4
IDT70V3319/99S  
High-Speed 3.3V 256/128K x 18 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Pin Names  
Left Port  
Right Port  
Names  
Chip Enables(6)  
CE0L  
,
CE1L  
CE0R, CE1R  
R/W  
L
R/W  
R
Read/Write Enable  
Output Enable  
OEL  
OER  
(1)  
(1)  
A
0L - A17L  
A
0R - A17R  
I/O0R - I/O17R  
CLK  
PIPE/FT  
ADS  
CNTEN  
REPEAT  
UB  
LB  
Address  
I/O0L - I/O17L  
CLK  
PIPE/FT  
ADS  
CNTEN  
REPEAT  
UB  
LB  
Data Input/Output  
Clock  
L
R
(5)  
(5)  
L
R
Pipeline/Flow-Through  
Address Strobe Enable  
Counter Enable  
Counter Repeat(4)  
L
R
L
R
L
R
(6)  
Upper Byte Enable (I/O  
9-I/O17)  
L
R
(6)  
Lower Byte Enable (I/O  
0-I/O8)  
L
R
V
DDQL  
V
DDQR  
Power (I/O Bus) (3.3V or 2.5V)(2)  
NOTES:  
(2,3)  
1. A17 is a NC for IDT70V3399.  
OPT  
L
OPTR  
Option for selecting VDDQX  
2. VDD, OPTX, and VDDQX must be set to appropriate operating levels prior to  
applying inputs on the I/Os and controls for that port.  
V
V
DD  
SS  
Power (3.3V)(2)  
3. OPTX selects the operating voltage levels for the I/Os and controls on that port.  
If OPTX is set to VIH (3.3V), then that port's I/Os and controls will operate at 3.3V  
levels and VDDQX must be supplied at 3.3V. If OPTX is set to VIL (0V), then that  
port's I/Os and address controls will operate at 2.5V levels and VDDQX must be  
supplied at 2.5V. The OPT pins are independent of one another—both ports can  
operate at 3.3V levels, both can operate at 2.5V levels, or either can operate  
at 3.3V with the other at 2.5V.  
4. When REPEATX is asserted, the counter will reset to the last valid address loaded  
via ADSX.  
5. PIPE/FT option in PK-128 package is not supported due to limitation in pin count.  
Device is pipelined output mode only on each port.  
Ground (0V)  
TDI  
TDO  
TCK  
Test Data Input  
Test Data Output  
Test Logic Clock (10MHz)  
Test Mode Select  
Reset (Initialize TAP Controller)  
TMS  
TRST  
5623 tbl 01  
6. Chip Enables and Byte Enables are double buffered when PL/FT = VIH, i.e., the  
signals take two cycles to deselect.  
6.42  
5
IDT70V3319/99S  
High-Speed 3.3V 256/128K x 18 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table I—Read/Write and Enable Control(1,2,3)  
Upper Byte  
I/O9-17  
Lower Byte  
I/O0-8  
CLK  
CE  
X
1
R/W  
X
MODE  
Deselected–Power Down  
Deselected–Power Down  
Both Bytes Deselected  
Write to Lower Byte Only  
Write to Upper Byte Only  
Write to Both Bytes  
OE  
X
X
X
X
X
X
L
CE  
0
UB  
X
X
H
H
L
LB  
X
X
H
L
H
X
L
L
L
L
L
L
L
L
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
L
X
H
H
H
H
H
H
H
H
X
L
DIN  
H
L
L
D
IN  
IN  
High-Z  
L
L
D
DIN  
H
L
L
H
H
H
X
High-Z  
DOUT  
Read Lower Byte Only  
Read Upper Byte Only  
Read Both Bytes  
L
H
L
DOUT  
High-Z  
L
L
DOUT  
DOUT  
H
L
L
High-Z  
High-Z  
Outputs Disabled  
5623 tbl 02  
NOTES:  
1. "H" = VIH, "L" = VIL, "X" = Don't Care.  
2. ADS, CNTEN, REPEAT = X.  
3. OE is an asynchronous input signal.  
Truth Table II—Address Counter Control(1,2)  
Previous  
Internal  
Address  
Internal  
Address  
Used  
External  
Address  
MODE  
CLK  
I/O(3)  
I/O(0)  
ADS CNTEN REPEAT(6)  
X
An  
An  
X
X
X
An  
An  
X
X
L(4)  
H
D
Counter Reset to last valid ADS load  
I/O (n) External Address Used  
I/O(p) External Address Blocked—Counter disabled (Ap reused)  
I/O(p+1) Counter Enabled—Internal Address generation  
L(4)  
H
X
D
Ap  
Ap  
Ap  
H
H
D
Ap + 1  
H
L(5)  
H
D
5623 tbl 03  
NOTES:  
1. "H" = VIH, "L" = VIL, "X" = Don't Care.  
2. Read and write operations are controlled by the appropriate setting of R/W, CE0, CE1, UB, LB and OE.  
3. Outputs configured in flow-through output mode: if outputs are in pipelined mode the date out will be delayed by one cycle.  
4. ADS and REPEAT are independent of all other memory control signals including CE0, CE1 and UB, LB.  
5. The address counter advances if CNTEN = VIL on the rising edge of CLK, regardless of all other memory control signals including CE0, CE1, UB, LB.  
6. When REPEAT is asserted, the counter will reset to the last valid address loaded via ADS. This value is not set at power-up: a known location should be loaded  
via ADS during initialization if desired. Any subsequent ADS access during operations will update the REPEAT address location.  
6.42  
6
IDT70V3319/99S  
High-Speed 3.3V 256/128K x 18 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Recommended Operating  
Recommended DC Operating  
Conditions with VDDQ at 2.5V  
Temperature and Supply Voltage(1)  
Ambient  
Symbol  
Parameter  
Core Supply Voltage  
I/O Supply Voltage(3)  
Ground  
Min. Typ.  
Max.  
Unit  
V
Grade  
Commercial  
Temperature  
GND  
0V  
V
+
+
DD  
V
DD  
DDQ  
SS  
3.15 3.3  
3.45  
0OC to +70OC  
3.3V  
3.3V  
150mV  
150mV  
V
2.4  
0
2.5  
2.6  
V
Industrial  
-40OC to +85OC  
0V  
V
0
0
V
5623 tbl 04  
____  
V
V
DDQ + 100mV(2)  
Input High Voltage  
(Address & Control Inputs)  
1.7  
V
V
IH  
NOTES:  
1. This is the parameter TA. This is the "instant on" case temperature.  
____  
____  
V
IH  
IL  
Input High Voltage - I/O(3)  
Input Low Voltage  
1.7  
DDQ + 100mV(2)  
0.7  
V
V
-0.3(1)  
V
5623 tbl 05a  
NOTES:  
1. Undershoot of VIL > -1.5V for pulse width less than 10ns is allowed.  
2. VTERM must not exceed VDDQ + 100mV.  
3. To select operation at 2.5V levels on the I/Os and controls of a given port, the  
OPTpinforthatportmustbesettoVIL (0V), andVDDQX forthatportmustbesupplied  
as indicated above.  
Absolute Maximum Ratings(1)  
Symbol  
Rating  
Commercial  
& Industrial  
Unit  
(2)  
Terminal Voltage  
-0.5 to +4.6  
V
V
TERM  
with Respect to GND  
Recommended DC Operating  
Conditions with VDDQ at 3.3V  
oC  
(3)  
Temperature Under Bias  
-55 to +125  
T
BIAS  
STG  
JN  
OUT  
Storage Temperature  
Junction Temperature  
DC Output Current  
-65 to +150  
+150  
oC  
oC  
Symbol  
Parameter  
Core Supply Voltage  
I/O Supply Voltage(3)  
Ground  
Min. Typ.  
3.15 3.3  
3.15 3.3  
Max.  
Unit  
V
T
V
DD  
DDQ  
SS  
3.45  
T
V
3.45  
V
I
50  
mA  
V
0
0
0
V
5623 tbl 06  
NOTES:  
____  
Input High Voltage  
2.0  
V
V
DDQ + 150mV(2)  
V
V
IH  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may  
cause permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated  
in the operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect reliability.  
2. VTERM must not exceed VDD + 150mV for more than 25% of the cycle time or  
4ns maximum, and is limited to < 20mA for the period of VTERM > VDD + 150mV.  
3. Ambient Temperature Under Bias. No AC Conditions. Chip Deselected.  
(Address & Control Inputs)(3)  
____  
____  
V
IH  
IL  
Input High Voltage - I/O(3)  
Input Low Voltage  
2.0  
DDQ + 150mV(2)  
0.8  
V
V
V
-0.3(1)  
5623 tbl 05b  
NOTES:  
1. Undershoot of VIL > -1.5V for pulse width less than 10ns is allowed.  
2. VTERM must not exceed VDDQ + 150mV.  
3. To select operation at 3.3V levels on the I/Os and controls of a given port, the  
OPT pin for that port must be set to VIH (3.3V), and VDDQX for that port must be  
supplied as indicated above.  
6.42  
7
IDT70V3319/99S  
High-Speed 3.3V 256/128K x 18 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Capacitance(1)(TA = +25°C, F = 1.0MHZ)  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions(2)  
IN = 3dV  
OUT = 3dV  
Max. Unit  
CIN  
V
8
pF  
(3)  
OUT  
C
V
10.5  
pF  
5623 tbl 07  
NOTES:  
1. These parameters are determined by device characterization, but are not  
production tested.  
2. 3dV references the interpolated capacitance when the input and output switch  
from 0V to 3V or from 3V to 0V.  
3. COUT also references CI/O.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VDD = 3.3V ± 150mV)  
70V3319/99S  
Symbol  
|ILI|  
Parameter  
Input Leakage Current(1)  
Output Leakage Currentt(1)  
Test Conditions  
VDDQ = Max., VIN = 0V to VDDQ  
Min.  
Max.  
10  
Unit  
µA  
µA  
V
___  
___  
___  
|ILO|  
10  
CE0 = VIH or CE1 = VIL, VOUT = 0V to VDDQ  
IOL = +4mA, VDDQ = Min.  
VOL (3.3V) Output Low Voltage(2)  
VOH (3.3V) Output High Voltage(2)  
VOL (2.5V) Output Low Voltage(2)  
VOH (2.5V) Output High Voltage(2)  
0.4  
___  
IOH = -4mA, VDDQ = Min.  
2.4  
V
___  
IOL = +2mA, VDDQ = Min.  
0.4  
V
___  
IOH = -2mA, VDDQ = Min.  
2.0  
V
5623 tbl 08  
NOTE:  
1. At VDD < 2.0V leakages are undefined.  
2. VDDQ is selectable (3.3V/2.5V) via OPT pins. Refer to p.5 for details.  
6.42  
8
IDT70V3319/99S  
High-Speed 3.3V 256/128K x 18 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(3) (VDD = 3.3V ± 150mV)  
70V3319/99S166 70V3319/99S133  
Com'l Only Com'l  
& Ind  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(4)  
370  
Max.  
500  
Typ.(4)  
320  
320  
115  
Max. Unit  
IDD  
Dynamic Operating  
Current (Both  
Ports Active)  
mA  
mA  
mA  
mA  
CEL and CER= VIL,  
Outputs Disabled,  
f = fMAX  
S
S
S
S
S
S
400  
480  
160  
195  
290  
350  
____  
____  
(1)  
IND  
ISB1  
ISB2  
ISB3  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
CEL = CER = VIH,  
Outputs Disabled,  
COM'L  
IND  
125  
200  
____  
____  
(1)  
115  
f = fMAX  
(5)  
Standby Current  
(One Port - TTL  
Level Inputs)  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
COM'L  
IND  
250  
350  
220  
220  
____  
____  
(1)  
f=fMAX  
Full Standby Current  
(Both Ports - CMOS  
Level Inputs)  
Both Ports Outputs Disabled  
CEL and CER > VDDQ - 0.2V,  
VIN > VDDQ - 0.2V  
or VIN < 0.2V, f = 0(2)  
COM'L  
IND  
S
S
15  
30  
15  
15  
30  
40  
____  
____  
CE"A" < 0.2V and CE"B" > VDDQ - 0.2V(5)  
VIN > VDDQ - 0.2V or VIN < 0.2V  
(1)  
Active Port, Outputs Disabled, f = fMAX  
ISB4  
Full Standby Current  
(One Port - CMOS  
Level Inputs)  
mA  
COM'L  
IND  
S
S
250  
350  
220  
220  
290  
350  
____  
____  
5623 tbl 09  
NOTES:  
1. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency clock cycle of 1/tCYC, using "AC TEST CONDITIONS" at input  
levels of GND to 3V.  
2. f = 0 means no address, clock, or control lines change. Applies only to input at CMOS level standby.  
3. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
4. VDD = 3.3V, TA = 25°C for Typ, and are not production tested. IDD DC(f=0) = 120mA (Typ).  
5. CEX = VIL means CE0X = VIL and CE1X = VIH  
CEX = VIH means CE0X = VIH or CE1X = VIL  
CEX < 0.2V means CE0X < 0.2V and CE1X > VDDQ - 0.2V  
CEX > VDDQ - 0.2V means CE0X > VDDQ - 0.2V or CE1X - 0.2V  
"X" represents "L" for left port or "R" for right port.  
6.42  
9
IDT70V3319/99S  
High-Speed 3.3V 256/128K x 18 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
2.5V  
AC Test Conditions (VDDQ - 3.3V/2.5V)  
Input Pulse Levels (Address & Controls)  
Input Pulse Levels (I/Os)  
Input Rise/Fall Times  
GND to 3.0V/GND to 2.4V  
GND to 3.0V/GND to 2.4V  
2ns  
833  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
1.5V/1.25V  
DATAOUT  
1.5V/1.25V  
5pF*  
770Ω  
Figures 1 and 2  
5623 tbl 10  
,
3.3V  
590Ω  
5pF*  
50  
50Ω  
,
DATAOUT  
DATAOUT  
1.5V/1.25  
10pF  
(Tester)  
435Ω  
5623 drw 03  
Figure 1. AC Output Test load.  
,
5623 drw 04  
Figure 2. Output Test Load  
(For tCKLZ, tCKHZ, tOLZ, and tOHZ).  
*Including scope and jig.  
10.5pF is the I/O capacitance of this  
device, and 10pF is the AC Test Load  
Capacitance.  
7
6
5
4
3
tCD  
(Typical, ns)  
2
1
,
20.5  
50  
80 100  
200  
30  
-1  
Capacitance (pF)  
5623 drw 05  
Figure 3. Typical Output Derating (Lumped Capacitive Load).  
6.42  
10  
IDT70V3319/99S  
High-Speed 3.3V 256/128K x 18 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the Operating Temperature Range  
(Read and Write Cycle Timing)(2,3) (VDD = 3.3V ± 150mV, TA = 0°C to +70°C)  
70V3319/99S166  
Com'l Only  
70V3319/99S133  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
20  
Max.  
Min.  
25  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
CYC1  
CYC2  
CH1  
CL1  
CH2  
CL2  
SA  
HA  
SC  
HC  
SB  
HB  
SW  
HW  
SD  
HD  
SAD  
HAD  
SCN  
HCN  
SRPT  
HRPT  
OE  
OLZ  
OHZ  
CD1  
CD2  
DC  
CKHZ  
CKLZ  
Clock Cycle Time (Flow-Through)(1)  
Clock Cycle Time (Pipelined)(1)  
Clock High Time (Flow-Through)(1)  
Clock Low Time (Flow-Through)(1)  
Clock High Time (Pipelined)(2)  
Clock Low Time (Pipelined)(1)  
Address Setup Time  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
6
7.5  
7
t
6
t
6
7
t
2.1  
2.1  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
2.6  
2.6  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
t
t
t
Address Hold Time  
t
Chip Enable Setup Time  
Chip Enable Hold Time  
Byte Enable Setup Time  
Byte Enable Hold Time  
R/W Setup Time  
t
t
t
t
t
R/W Hold Time  
t
Input Data Setup Time  
t
Input Data Hold Time  
t
ADS Setup Time  
t
ADS Hold Time  
t
CNTEN Setup Time  
t
CNTEN Hold Time  
t
REPEAT Setup Time  
t
0.5  
0.5  
REPEAT Hold Time  
____  
____  
t
Output Enable to Data Valid  
Output Enable to Output Low-Z  
Output Enable to Output High-Z  
Clock to Data Valid (Flow-Through)(1)  
Clock to Data Valid (Pipelined)(1)  
Data Output Hold After Clock High  
Clock High to Output High-Z  
Clock High to Output Low-Z  
4.0  
4.2  
____  
____  
t
1
1
t
1
3.6  
12  
1
4.2  
15  
____  
____  
t
____  
____  
t
3.6  
4.2  
____  
____  
t
1
1
1
1
1
1
t
3
3
____  
____  
t
Port-to-Port Delay  
Clock-to-Clock Offset  
____  
____  
tCO  
5
6
ns  
5623 tbl 11  
NOTES:  
1. The Pipelined output parameters (tCYC2, tCD2) apply to either or both left and right ports when FT/PIPEX = VIH. Flow-through parameters (tCYC1, tCD1) apply when  
FT/PIPE = VIL for that port.  
2. All input signals are synchronous with respect to the clock except for the asynchronous Output Enable (OE) and FT/PIPE. FT/PIPE should be treated as a  
DC signal, i.e. steady state during operation.  
3. These values are valid for either level of VDDQ (3.3V/2.5V). See page 5 for details on selecting the desired operating voltage levels for each port.  
6.42  
11  
IDT70V3319/99S  
High-Speed 3.3V 256/128K x 18 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Read Cycle for Pipelined Operation  
(FT/PIPE'X' = VIH)(2)  
t
CYC2  
tCH2  
tCL2  
CLK  
CE  
0
tSC  
tHC  
tSC  
tHC  
(3)  
CE1  
t
SB  
tHB  
t
SB  
tHB  
(5)  
UB, LB  
R/W  
tHW  
tSW  
tSA  
t
HA  
ADDRESS(4)  
DATAOUT  
An  
An + 1  
An + 2  
Qn  
An + 3  
(1 Latency)  
tDC  
tCD2  
Qn + 1  
Qn + 2 (5)  
(1)  
tCKLZ  
t
OHZ  
tOLZ  
(1)  
OE  
tOE  
5623 drw 06  
Timing Waveform of Read Cycle for Flow-through Output  
(FT/PIPE"X" = VIL)(2,6)  
tCYC1  
tCH1  
tCL1  
CLK  
CE0  
tSC  
tHC  
tSC  
tHC  
(3)  
CE1  
tSB  
tHB  
tHB  
UB, LB  
tSB  
R/W  
tSW  
tHW  
tSA  
t
HA  
ADDRESS(4)  
DATAOUT  
An  
An + 1  
An + 2  
An + 3  
tDC  
tCD1  
tCKHZ  
Qn  
Qn + 1  
Qn + 2(5)  
tCKLZ  
tDC  
tOHZ  
tOLZ  
(1)  
OE  
tOE  
5623 drw 07  
NOTES:  
1. OE is asynchronously controlled; all other inputs are synchronous to the rising clock edge.  
2. ADS = VIL, CNTEN and REPEAT = VIH.  
3. The output is disabled (High-Impedance state) by CE0 = VIH, CE1 = VIL, UB, LB = VIH following the next rising edge of the clock. Refer to  
Truth Table 1.  
4. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers  
are for reference use only.  
5. If UB, LB was HIGH, then the appropriate Byte of DATAOUT for Qn + 2 would be disabled (High-Impedance state).  
6. "x" denotes Left or Right port. The diagram is with respect to that port.  
6.42  
12  
IDT70V3319/99S  
High-Speed 3.3V 256/128K x 18 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of a Multi-Device Pipelined Read(1,2)  
t
CYC2  
t
CH2  
t
CL2  
CLK  
ADDRESS(B1)  
CE0(B1)  
t
SA  
tHA  
A
6
A5  
A
4
A
3
A
2
A
0
A
1
t
SC  
t
HC  
t
SC  
t
HC  
t
CD2  
t
CD2  
t
CKHZ  
t
CD2  
Q
0
Q
3
Q
1
DATAOUT(B1)  
ADDRESS(B2)  
t
DC  
t
CKLZ  
t
DC  
t
CKHZ  
t
SA  
t
HA  
A
6
A
5
A
4
A
3
A
2
A
0
A
1
t
SC  
t
HC  
CE0(B2)  
t
SC  
t
HC  
t
CD2  
t
CKHZ  
t
CD2  
DATAOUT(B2)  
Q
4
Q2  
tCKLZ  
tCKLZ  
5623 drw 08  
Timing Waveform of a Multi-Device Flow-Through Read(1,2)  
t
CYC1  
tCH1  
tCL1  
CLK  
tSA  
tHA  
A6  
A5  
A4  
A3  
A2  
A0  
A1  
ADDRESS(B1)  
tSC  
tHC  
CE0(B1)  
tSC  
tHC  
(1)  
tCD1  
tCD1  
tCKHZ  
tCD1  
tCD1  
D
0
D
3
D5  
D
1
DATAOUT(B1)  
ADDRESS(B2)  
(1)  
(1)  
(1)  
tDC  
tCKLZ  
tCKLZ  
tDC  
tCKHZ  
tSA  
tHA  
A6  
A
5
A4  
A3  
A2  
A
0
A1  
tSC  
tHC  
CE0(B2)  
tSC  
tHC  
(1)  
(1)  
tCD1  
tCKHZ  
tCD1  
tCKHZ  
D4  
DATAOUT(B2)  
D2  
(1)  
(1)  
tCKLZ  
tCKLZ  
5623 drw 09  
NOTES:  
1. B1 Represents Device #1; B2 Represents Device #2. Each Device consists of one IDT70V3319/99 for this waveform,  
and are setup for depth expansion in this example. ADDRESS(B1) = ADDRESS(B2) in this situation.  
2. UB, LB, OE, and ADS = VIL; CE1(B1), CE1(B2), R/W, CNTEN, and REPEAT = VIH.  
6.42  
13  
IDT70V3319/99S  
High-Speed 3.3V 256/128K x 18 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Left Port Write to Pipelined Right Port Read(1,2,4)  
CLK"A"  
tSW  
tHW  
R/W"A"  
ADDRESS"A"  
DATAIN"A"  
t
SA  
MATCH  
SD HD  
VALID  
tHA  
NO  
MATCH  
t
t
(3)  
CO  
t
CLK"B"  
tCD2  
R/W"B"  
t
SW  
SA  
t
HW  
HA  
t
t
NO  
ADDRESS"B"  
DATAOUT"B"  
MATCH  
MATCH  
VALID  
tDC  
5623 drw 10  
NOTES:  
1. CE0, UB, LB, and ADS = VIL; CE1, CNTEN, and REPEAT = VIH.  
2. OE = VIL for Port "B", which is being read from. OE = VIH for Port "A", which is being written to.  
3. If tCO < minimum specified, then data from Port "B" read is not valid until following Port "B" clock cycle (ie, time from write to valid read on opposite port will be  
tCO + 2 tCYC2 + tCD2). If tCO > minimum, then data from Port "B" read is available on first Port "B" clock cycle (ie, time from write to valid read on opposite port  
will be tCO + tCYC2 + tCD2).  
4. All timing is the same for Left and Right ports. Port "A" may be either Left or Right port. Port "B" is the opposite of Port "A"  
Timing Waveform with Port-to-Port Flow-Through Read(1,2,4)  
CLK "A"  
tSW  
tHW  
R/W "A"  
ADDRESS "A"  
DATAIN "A"  
CLK "B"  
t
SA  
MATCH  
SD HD  
VALID  
tHA  
NO  
MATCH  
t
t
(3)  
tCO  
tCD1  
R/W "B"  
tHW  
tSW  
tHA  
tSA  
NO  
MATCH  
ADDRESS "B"  
DATAOUT "B"  
MATCH  
t
CD1  
VALID  
VALID  
tDC  
tDC  
5623 drw 11  
NOTES:  
1. CE0, UB, LB, and ADS = VIL; CE1, CNTEN, and REPEAT = VIH.  
2. OE = VIL for the Right Port, which is being read from. OE = VIH for the Left Port, which is being written to.  
3. If tCO < minimum specified, then data from Port "B" read is not valid until following Port "B" clock cycle (i.e., time from write to valid read on opposite port will be  
tCO + tCYC + tCD1). If tCO > minimum, then data from Port "B" read is available on first Port "B" clock cycle (i.e., time from write to valid read on opposite port will  
be tCO + tCD1).  
4. All timing is the same for both left and right ports. Port "A" may be either left or right port. Port "B" is the opposite of Port "A".  
6.42  
14  
IDT70V3319/99S  
High-Speed 3.3V 256/128K x 18 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Pipelined Read-to-Write-to-Read  
(OE = VIL)(2)  
tCYC2  
tCH2  
tCL2  
CLK  
CE0  
tSC tHC  
CE1  
tSB  
tHB  
UB, LB  
tSW tHW  
An + 2  
R/  
W
tSW tHW  
(3)  
An + 3  
An + 4  
An  
tSA tHA  
An +1  
An + 2  
ADDRESS  
tSD  
tHD  
DATAIN  
Dn + 2  
tCD2  
tCD2  
(1)  
tCKHZ  
tCKLZ  
Qn + 3  
Qn  
DATAOUT  
READ  
NOP(4)  
WRITE  
READ  
5623 drw 12  
NOTES:  
1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.  
2. CE0, UB, LB, and ADS = VIL; CE1, CNTEN, and REPEAT = VIH. "NOP" is "No Operation".  
3. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers  
are for reference use only.  
4. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity.  
Timing Waveform of Pipelined Read-to-Write-to-Read ( OE Controlled)(2)  
t
CYC2  
tCH2  
tCL2  
CLK  
CE0  
tSC  
tHC  
CE1  
tSB  
tHB  
UB, LB  
tSW tHW  
R/W  
tSW tHW  
(3)  
An + 4  
An  
An +1  
An + 2  
An + 3  
Dn + 3  
An + 5  
ADDRESS  
t
SA  
tHA  
t
SD  
tHD  
DATAIN  
Dn + 2  
tCD2  
tCD2  
tCKLZ  
(1)  
Qn  
Qn + 4  
DATAOUT  
(4)  
tOHZ  
OE  
READ  
WRITE  
READ  
5623 drw 13  
NOTES:  
1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.  
2. CE0, UB, LB, and ADS = VIL; CE1, CNTEN, and REPEAT = VIH.  
3. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference  
use only.  
4. This timing does not meet requirements for fastest speed grade. This waveform indicates how logically it could be done if timing so allows.  
6.42  
15  
IDT70V3319/99S  
High-Speed 3.3V 256/128K x 18 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Flow-Through Read-to-Write-to-Read (OE = VIL)(2)  
t
CYC1  
tCH1  
tCL1  
CLK  
CE0  
tSC  
tHC  
CE1  
tSB  
tHB  
UB, LB  
t
SW tHW  
R/  
W
tSW tHW  
(3)  
An + 4  
An  
An + 3  
An +1  
An + 2  
An + 2  
ADDRESS  
tSA  
tHA  
t
SD  
t
HD  
DATAIN  
Dn + 2  
t
CD1  
tCD1  
tCD1  
tCD1  
(1)  
Qn + 3  
Qn  
READ  
Qn + 1  
DATAOUT  
tDC  
t
DC  
tCKLZ  
t
CKHZ  
NOP(5)  
READ  
WRITE  
6523 drw 14  
Timing Waveform of Flow-Through Read-to-Write-to-Read (OE Controlled)(2)  
tCYC1  
CH1  
t
tCL1  
CLK  
CE0  
t
SC  
tHC  
CE1  
tSB  
tHB  
UB, LB  
tSW tHW  
tSW tHW  
R/  
W
(3)  
An + 5  
An  
An + 4  
An +1  
An + 2  
An + 3  
Dn + 3  
ADDRESS  
t
SA  
tHA  
t
SD tHD  
DATAIN  
Dn + 2  
tOE  
tDC  
t
CD1  
tCD1  
tCD1  
(1)  
Qn + 4  
Qn  
DATAOUT  
tCKLZ  
tDC  
t
OHZ  
OE  
READ  
WRITE  
READ  
5623 drw 15  
NOTES:  
1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.  
2. CE0, UB, LB, and ADS = VIL; CE1, CNTEN, and REPEAT = VIH.  
3. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for  
reference use only.  
4. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity.  
6.42  
16  
IDT70V3319/99S  
High-Speed 3.3V 256/128K x 18 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Pipelined Read with Address Counter Advance(1)  
t
CYC2  
tCH2  
tCL2  
CLK  
tSA  
tHA  
An  
ADDRESS  
tSAD tHAD  
ADS  
tSAD tHAD  
CNTEN  
tSCN tHCN  
tCD2  
Qn + 2(2)  
Qn + 3  
Qx - 1(2)  
Qx  
Qn + 1  
Qn  
DATAOUT  
tDC  
READ  
EXTERNAL  
ADDRESS  
READ  
WITH  
COUNTER  
COUNTER  
HOLD  
READ WITH COUNTER  
5623 drw 16  
Timing Waveform of Flow-Through Read with Address Counter Advance(1)  
t
CYC1  
tCH1  
tCL1  
CLK  
tSA  
tHA  
An  
ADDRESS  
tSAD tHAD  
tSAD  
tHAD  
ADS  
tSCN  
tHCN  
CNTEN  
tCD1  
Qn + 3(2)  
Qx(2)  
Qn + 4  
Qn + 1  
Qn + 2  
Qn  
DATAOUT  
tDC  
READ  
WITH  
READ  
EXTERNAL  
ADDRESS  
READ WITH COUNTER  
COUNTER  
HOLD  
COUNTER  
5623 drw 17  
NOTES:  
1. CE0, OE, UB, LB = VIL; CE1, R/W, and REPEAT = VIH.  
2. If there is no address change via ADS = VIL (loading a new address) or CNTEN = VIL (advancing the address), i.e. ADS = VIH and CNTEN = VIH, then  
the data output remains constant for subsequent clocks.  
6.42  
17  
IDT70V3319/99S  
High-Speed 3.3V 256/128K x 18 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write with Address Counter Advance  
(Flow-through or Pipelined Inputs)(1)  
t
CYC2  
tCH2  
tCL2  
CLK  
tSA  
tHA  
An  
ADDRESS  
INTERNAL(3)  
ADDRESS  
An(7)  
An + 4  
An + 2  
An + 1  
An + 3  
tSAD tHAD  
ADS  
tSCN tHCN  
CNTEN  
tSD tHD  
Dn + 4  
Dn + 1  
Dn + 3  
Dn  
Dn + 1  
Dn + 2  
DATAIN  
WRITE  
EXTERNAL  
ADDRESS  
WRITE  
WITH COUNTER  
WRITE  
COUNTER HOLD  
WRITE WITH COUNTER  
5623 drw 18  
Timing Waveform of Counter Repeat(2)  
tCYC2  
tCH2  
tCL2  
CLK  
tSA tHA  
(4)  
An + 2  
An  
An + 1  
ADDRESS  
INTERNAL(3)  
ADDRESS  
LAST ADS LOAD  
Ax  
LAST ADS +1  
An  
An + 1  
tSW tHW  
R/W  
ADS  
tSAD tHAD  
tSCN tHCN  
CNTEN  
tSRPT  
tHRPT  
REPEAT  
tSD  
tHD  
D0  
DATAIN  
(5)  
QLAST+1  
Qn  
QLAST  
DATAOUT  
EXECUTE(6)  
REPEAT  
READ  
LAST ADS  
ADDRESS  
READ  
ADDRESS n  
READ  
ADDRESS n+1  
WRITE  
READ  
LAST ADS  
LAST ADS  
ADDRESS  
ADDRESS + 1  
5623 drw 19  
NOTES:  
1. CE0, UB, LB, and R/W = VIL; CE1 and REPEAT = VIH.  
CE0, UB, LB = VIL; CE1 = VIH.  
2.  
3. The "Internal Address" is equal to the "External Address" when ADS = VIL and equals the counter output when ADS = VIH.  
4. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference  
use only.  
5. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.  
6. No dead cycle exists during REPEAT operation. A READ or WRITE cycle may be coincidental with the counter REPEAT cycle: Address loaded by last valid  
ADS load will be accessed. Extra cycles are shown here simply for clarification. For more information on REPEAT function refer to Truth Table II.  
7. CNTEN = VIL advances Internal Address from ‘An’ to ‘An +1’. The transition shown indicates the time required for the counter to advance. The ‘An +1’Address is  
written to during this cycle.  
6.42  
18  
IDT70V3319/99S  
High-Speed 3.3V 256/128K x 18 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Functional Description  
Depth and Width Expansion  
The IDT70V3319/99 provides a true synchronous Dual-Port Static  
RAM interface.Registeredinputsprovideminimalset-upandholdtimes  
onaddress, data, andallcriticalcontrolinputs. Allinternalregistersare  
clocked on the rising edge of the clock signal, however, the self-timed  
internalwritepulseisindependentoftheLOWtoHIGHtransitionoftheclock  
signal.  
The IDT70V3319/99 features dual chip enables (refer to Truth  
Table I) in order to facilitate rapid and simple depth expansion with no  
requirements for external logic. Figure 4 illustrates how to control the  
various chip enables in order to expand two devices in depth.  
The IDT70V3319/99 can also be used in applications requiring  
expandedwidth,asindicatedinFigure4.Throughcombiningthecontrol  
signals, the devices can be grouped as necessary to accommodate  
applicationsneeding36-bitsorwider.  
An asynchronous output enable is provided to ease asyn-  
chronousbusinterfacing.Counterenableinputsarealsoprovidedtostall  
the operation of the address counters for fast interleaved  
memoryapplications.  
AHIGHonCE0oraLOWonCE1 foroneclockcyclewillpowerdown  
the internal circuitry to reduce static power consumption. Multiple chip  
enables allow easier banking of multiple IDT70V3319/99s for depth  
expansionconfigurations. TwocyclesarerequiredwithCE0 LOWand  
CE1 HIGHtore-activatetheoutputs.  
(1)  
A18/A17  
IDT70V3319/99  
IDT70V3319/99  
CE0  
CE0  
CE1  
CE1  
VDD  
VDD  
Control Inputs  
Control Inputs  
IDT70V3319/99  
IDT70V3319/99  
CE1  
CE1  
CE0  
CE0  
UB, LB,  
R/W,  
Control Inputs  
Control Inputs  
OE,  
CLK,  
ADS,  
5623 drw 20  
REPEAT,  
CNTEN  
Figure 4. Depth and Width Expansion with IDT70V3319/99  
NOTE:  
1. A17 is for IDT70V3319, A16 is for IDT70V3399.  
6.42  
19  
IDT70V3319/99S  
High-Speed 3.3V 256/128K x 18 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
JTAG Timing Specifications  
t
JCYC  
t
JR  
tJF  
t
JCL  
tJCH  
TCK  
Device Inputs(1)/  
TDI/TMS  
tJDC  
tJS  
tJH  
Device Outputs(2)/  
TDO  
t
JRSR  
tJCD  
TRST  
,
5623 drw 21  
t
JRST  
Figure 5. Standard JTAG Timing  
NOTES:  
1. Device inputs = All device inputs except TDI, TMS, and TRST.  
2. Device outputs = All device outputs except TDO.  
JTAG AC Electrical  
Characteristics(1,2,3,4)  
70V3319/99  
Max.  
Symbol  
Parameter  
JTAG Clock Input Period  
JTAG Clock HIGH  
JTAG Clock Low  
JTAG Clock Rise Time  
JTAG Clock Fall Time  
JTAG Reset  
Min.  
100  
40  
Units  
ns  
____  
____  
____  
t
JCYC  
JCH  
JCL  
JR  
JF  
JRST  
JRSR  
JCD  
JDC  
JS  
JH  
t
ns  
t
40  
ns  
3(1)  
ns  
____  
t
3(1)  
ns  
____  
t
____  
t
50  
ns  
____  
t
JTAG Reset Recovery  
JTAG Data Output  
JTAG Data Output Hold  
JTAG Setup  
50  
ns  
____  
t
25  
ns  
____  
t
0
ns  
____  
____  
t
15  
15  
ns  
t
JTAG Hold  
ns  
5623 tbl 12  
NOTES:  
1. Guaranteed by design.  
2. 30pF loading on external output signals.  
3. Refer to AC Electrical Test Conditions stated earlier in this document.  
4. JTAG operations occur at one speed (10MHz). The base device may run at  
any speed specified in this datasheet.  
6.42  
20  
IDT70V3319/99S  
High-Speed 3.3V 256/128K x 18 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Identification Register Definitions  
Instruction Field  
Value  
Description  
Revision Number (31:28)  
0x0  
Reserved for version number  
0x0314(1)  
0x33  
1
IDT Device ID (27:12)  
Defines IDT part number  
IDT JEDEC ID (11:1)  
Allows unique identification of device vendor as IDT  
Indicates the presence of an ID register  
ID Register Indicator Bit (Bit 0)  
5623 tbl 13  
NOTE:  
1. Device ID for IDT70V3399 is 0x0315.  
Scan Register Sizes  
Register Name  
Bit Size  
Instruction (IR)  
4
1
Bypass (BYR)  
Identification (IDR)  
32  
Boundary Scan (BSR)  
Note (3)  
5623 tbl 14  
System Interface Parameters  
Instruction  
Code  
Description  
EXTEST  
0000  
Forces contents of the boundary scan cells onto the device outputs(1) .  
Places the boundary scan register (BSR) between TDI and TDO.  
BYPASS  
IDCODE  
1111  
Places the by pass registe r (BYR) betwe en TDI and TDO.  
0010  
Loads the ID register (IDR) with the vendor ID code and places the  
register between TDI and TDO.  
0011  
0001  
Places the bypass register (BYR) between TDI and TDO. Forces all  
device output drivers to a High-Z state.  
HIGHZ  
SAMPLE/PRELOAD  
Places the boundary scan register (BSR) between TDI and TDO.  
SAMPLE allows data from device inputs(2) to be captured in the  
boundary scan cells and shifted serially through TDO. PRELOAD allows  
data to be input serially into the boundary scan cells via the TDI.  
RESERVED  
All other codes  
Several combinations are reserved. Do not use codes other than those  
identified above.  
5623 tbl 15  
NOTES:  
1. Device outputs = All device outputs except TDO.  
2. Device inputs = All device inputs except TDI, TMS, and TRST.  
3. The Boundary Scan Descriptive Language (BSDL) file for this device is available on the IDT website (www.idt.com), or by contacting your local  
IDT sales representative.  
6.42  
21  
IDT70V3319/99S  
High-Speed 3.3V 256/128K x 18 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Ordering Information  
A
XXXXX  
A
999  
A
A
A
Device  
Type  
Power Speed  
Package  
Process/  
Temperature  
Range  
Blank  
8
Tube or Tray  
Tape and Reel  
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
Blank  
I
G(1)  
Green  
BF  
PRF  
BC  
208-pin fpBGA (BF-208)  
128-pin TQFP (PK-128)  
256-pin BGA (BC-256)  
166  
133  
Commercial Only  
Commercial & Industrial  
Speed in Megahertz  
Standard Power  
S
70V3319 4Mbit (256K x 18-Bit) Synchronous Dual-Port RAM  
70V3399 2Mbit (128K x 18-Bit) Synchronous Dual-Port RAM  
5623 drw 22  
NOTES:  
1. Greenpartsavailable.Forspecificspeeds,packagesandpowerscontactyourlocalsalesoffice.  
LEADFINISH(SnPb)partsareinEOLprocess.ProductDiscontinuationNotice-PDN#SP-17-02  
IDT Clock Solution for IDT70V3319/99 Dual-Port  
Dual-Port I/O Specitications  
Clock Specifications  
IDT  
PLL  
Clock Device  
IDT Dual-Port  
Part Number  
Input Duty  
Cycle  
Requirement  
Input  
Capacitance  
Maximum  
Frequency Tolerance  
Jitter  
Voltage  
3.3/2.5  
I/O  
70V3319/99  
LVTTL  
8pF  
40%  
166  
75ps  
IDT5V2528  
5623 tbl 16a  
6.42  
22  
IDT70V3319/99S  
High-Speed 3.3V 256/128K x 18 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Datasheet Document History:  
06/02/00:  
07/12/00:  
06/20/01:  
InitialPublicOffering  
Page 1 Addedmuxtofunctionalblockdiagram  
Page 1 AddedJTAGinformationforTQFPpackage  
Page 4 CorrectedTQFPpackagesize  
Page 1 AddedPL/FToption  
Page 20 ChangedmaximumvalueforJTAGACElectricalCharacteristicsfortJCD from20nsto25ns  
Page 9 AddedIndustrialTemperatureDCParameters  
Page 2, 3 & 4 Added date revision for pin configurations  
Page 11 Changed tOE value in AC Electrical Characteristics, please refer to Errata #SMEN-01-05  
Page 1 & 22 Replaced TM logo with ® logo  
07/30/01:  
11/20/01:  
Page 10 ChangedACTestConditionsInputRise/FallTimes  
Consolidatedmultipledevicesintoonedatasheet  
08/06/02:  
Page 1 & 5 Added DCD capability for Pipelined Outputs  
Page 7 Clarified TBIAS and added TJN  
Page 9 ChangedDCElectricalParameters  
Page 11 RemovedClockRise&FallTimefromACElectricalCharacteristicsTable  
RemovedPreliminarystatus  
05/19/03:  
02/08/06:  
Page 11 Added Byte Enable SetupTime & Byte Enable Hold Time to AC Elecctrical Characteristics Table  
Page 22 Added IDT Clock Solution Table  
Page 1 Addedgreenavailabilitytofeatures  
Page 6 Changed footnote 2 for Truth Table I from ADS, CNTEN, REPEAT = VIH to ADS, CNTEN, REPEAT = X  
Page 22 Addedgreenindicatortoorderinginformation  
Page 9 Corrected a typo in the DC Chars table  
Page 22 Removed "IDT" from orderable part number  
Page 22 Added Tape & Reel to the Ordering Information  
ProductDiscontinuationNotice-PDN#SP-17-02  
07/25/08:  
01/19/09:  
10/03/14:  
06/20/18:  
Last time buy expires June 15, 2018  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
408-284-2794  
DualPortHelp@idt.com  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
6.42  
23  

相关型号:

70V3319S166PRFGI8

HIGH-SPEED 3.3V 256/128K x 18 SYNCHRONOUS DUAL-PORT STATIC RAM
IDT

70V3379S4BCG

HIGH-SPEED 3.3V 32K x 18 SYNCHRONOUS PIPELINED DUAL-PORT STATIC RAM
IDT

70V3379S4BCG8

Application Specific SRAM, 32KX18, 4.2ns, CMOS, PBGA256, 17 X 17 MM, 1.40 MM HEIGHT, GREEN, BGA-256
IDT

70V3379S4BCGI

HIGH-SPEED 3.3V 32K x 18 SYNCHRONOUS PIPELINED DUAL-PORT STATIC RAM
IDT

70V3379S4BCGI8

HIGH-SPEED 3.3V 32K x 18 SYNCHRONOUS PIPELINED DUAL-PORT STATIC RAM
IDT

70V3379S4BFG

HIGH-SPEED 3.3V 32K x 18 SYNCHRONOUS PIPELINED DUAL-PORT STATIC RAM
IDT

70V3379S4BFG8

Application Specific SRAM, 32KX18, 4.2ns, CMOS, PBGA208, 15 X 15 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, GREEN, FPBGA-208
IDT

70V3379S4BFGI

HIGH-SPEED 3.3V 32K x 18 SYNCHRONOUS PIPELINED DUAL-PORT STATIC RAM
IDT

70V3379S4BFGI8

HIGH-SPEED 3.3V 32K x 18 SYNCHRONOUS PIPELINED DUAL-PORT STATIC RAM
IDT

70V3379S4PRF8

TQFP-128, Reel
IDT

70V3379S4PRFG

HIGH-SPEED 3.3V 32K x 18 SYNCHRONOUS PIPELINED DUAL-PORT STATIC RAM
IDT

70V3379S4PRFG8

Application Specific SRAM, 32KX18, 4.2ns, CMOS, PQFP128, 14 X 20 MM, 1.40 MM HEIGHT, GREEN, TQFP-128
IDT