71P74804S200BQG [IDT]

CABGA-165, Tray;
71P74804S200BQG
型号: 71P74804S200BQG
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

CABGA-165, Tray

时钟 静态存储器 内存集成电路
文件: 总21页 (文件大小:274K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
18Mb Pipelined  
QDR™II SRAM  
Burst of 4  
IDT71P74804  
IDT71P74604  
Features  
Description  
The IDT QDRIITM Burst of four SRAMs are high-speed synchro-  
nous memories with independent, double-data-rate (DDR), read and  
write data ports. This scheme allows simultaneous read and write  
access for the maximum device throughput, with four data items passed  
with each read or write. Four data word transfers occur per clock  
cycle, providing quad-data-rate (QDR) performance. Comparing this  
with standard SRAM common I/O (CIO), single data rate (SDR) de-  
vices, a four to one increase in data access is achieved at equivalent  
clock speeds. Considering that QDRII allows clock speeds in excess of  
standard SRAM devices, the throughput can be increased well beyond  
four to one in most applications.  
18Mb Density (1Mx18, 512kx36)  
Separate, Independent Read and Write Data Ports  
Supports concurrent transactions  
-
Dual Echo Clock Output  
4-Word Burst on all SRAM accesses  
MultiplexedAddress Bus One Read or One Write request per  
clock cycle  
DDR (Double Data Rate) Data Bus  
-
-
Four word burst data per two clock cycles on each port  
Four word transfers per clock cycle  
Depth expansion through Control Logic  
HSTL (1.5V) inputs that can be scaled to receive signals from  
1.4V to 1.9V.  
Using independent ports for read and write data access, simplifies  
system design by eliminating the need for bi-directional buses. All buses  
associated with the QDRII are unidirectional and can be optimized for  
signal integrity at very high bus speeds. The QDRII has scalable output  
impedance on its data output bus and echo clocks, allowing the user to  
tune the bus for low noise and high performance.  
The QDRII has a single SDR address bus with read addresses  
and write addresses multiplexed. The read and write addresses inter-  
leave with each occurring a maximum of every other cycle. In the event  
that no operation takes place on a cycle, the subsequest cycle may  
begin with either a read or write. During write operations, the writing of  
individual bytes may be blocked through the use of byte write control  
signals.  
Scalable output drivers  
-
Can drive HSTL, 1.8V TTL or any voltage level from 1.4V  
to 1.9V.  
-
Output Impedance adjustable from 35to 70Ω  
1.8V Core Voltage (VDD)  
165-ball, 1.0mm pitch, 13mm x 15mm fBGA Package  
JTAG Interface  
Functional Block Diagram  
(Note1)  
DATA  
D
REG  
WRITE DRIVER  
(Note2)  
(Note2)  
ADD  
SA  
REG  
(Note 4)  
(Note 4)  
(Note1)  
18M  
MEMORY  
ARRAY  
Q
R
CTRL  
LOGIC  
W
(Note3)  
BWx  
CQ  
K
CLK  
GEN  
K
CQ  
C
SELECT OUTPUT CONTROL  
C
6111 drw16  
Notes  
1) Represents 18 data signal lines for x18 and 36 signal lines for x36.  
2) Represents 18 address signal lines for x18 and 17 address signal lines for x36.  
3) Represents 2 signal lines for x18 and 4 signal lines for x36.  
4) Represents 36 signal lines for x18 and 72 signal lines for x36.  
SEPTEMBER 2008  
1
DSC-6111/02  
©2008 Integrated Device Technology, Inc. QDR SRAMs and Quad Data Rate RAMs comprise a new family of products developed by Cypress Semiconductor, IDT, and Micron Technology, Inc.  
IDT71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 4  
Commercial Temperature Range  
The QDRII has echo clocks, which provide the user with a clock (or K, K if C, C are disabled). The rising edge of C generates the rising  
that is precisely timed to the data output, and tuned with matching imped- edge of CQ, and the falling edge of CQ. The rising edge ofC generates  
ance and signal quality. The user can use the echo clock for down- the rising edge ofCQ and the falling edge of CQ. This scheme improves  
stream clocking of the data. Echo clocks eliminate the need for the user the correlation of the rising and falling edges of the echo clock and will  
to produce alternate clocks with precise timing, positioning, and signal  
qualities to guarantee data capture. Since the echo clocks are gener-  
ated by the same source that drives the data output, the relationship to  
the data is not significantly affected by voltage, temperature and process,  
as would be the case if the clock were generated by an outside source.  
All interfaces of the QDRII SRAM are HSTL, allowing speeds be-  
yond SRAM devices that use any form of TTL interface. The interface  
can be scaled to higher voltages (up to 1.9V) to interface with 1.8V  
systems if necessary. The device has a VDDQ and a separate Vref,  
allowing the user to designate the interface operational voltage, inde-  
pendent of the device core voltage of 1.8V VDD. The output impedance  
control allows the user to adjust the drive strength to adapt to a wide  
range of loads and transmission lines.  
improve the duty cycle of the individual signals.  
The echo clock is very closely aligned with the data, guaranteeing  
that the echo clock will remain closely correlated with the data, within the  
tolerances designated.  
Read and Write Operations  
QDRII devices internally store the 4 words of the burst as a single,  
wide word and will retain their order in the burst. There is no ability to  
address to the single word level or reverse the burst order; however, the  
byte write signals can be used to prevent writing any individual bytes, or  
combined to prevent writing one word of the burst.  
Read and write operations may be interleaved with each occurring  
on every other clock cycle. In the event that two reads or two writes are  
requested on adjacent clock cycles, the operation in progress will com-  
plete and the second request will be ignored. In the event that both a  
read and write are requested simultaneously, the read operation will win  
and the write operation will be ignored.  
Read operations are initiated by holding the read port select (R) low,  
and presenting the read address to the address port during the rising  
edge of K which will latch the address. The data will then be read and will  
appear at the device output at the designated time in correspondence  
The device is capable of sustaining full bandwidth on both the input  
and output ports simultaneously. All data is in four word bursts, with  
addressing capability to the burst level.  
Clocking  
The QDRII SRAM has two sets of input clocks, namely the K, K  
clocks and the C, C clocks. In addition, the QDRII has an output echo”  
clock, CQ, CQ.  
The K andKclocks are the primary device input clocks. The K clock  
is, used to clock in the control signals (R, WandBWx), the address, first  
and third words of the data burst during a write operation. The K clock  
is used to clock in the control signals (BWx) and the second and fourth  
words of the data burst during a write operation. The K andK clocks are  
with the C and C clocks.  
Write operations are initiated by holding the write port select (W) low  
and presenting the designated write address to the address bus. The  
QDRII SRAM will receive the address on the rising edge of clock K. On  
also used internally by the SRAM. In the event that the user disables the the following rising edge of K clock, the QDRII SRAM will receive the first  
C and C clocks, the K andK clocks will be used to clock the data out of  
the output register and generate the echo clocks.  
data item of the four word burst on the data bus. Along with the data, the  
byte write (BWx) inputs will be accepted, indicating which bytes of the  
data inputs should be written to the SRAM. On the following rising edge  
of K, the next word of the write burst and BWx will be accepted. The  
subsequent K and K rising edges will receive the last two words of the  
four word burst, with their BWx enables.  
Output Enables  
The QDRII SRAM automatically enables and disables the Q[X:0]  
outputs. When a valid read is in progress, and data is present at the  
output, the output will be enabled. If no valid data is present at the output  
(read not active), the output will be disabled (high impedance). The  
echo clocks will remain valid at all times and cannot be disabled or turned  
off. During power-up the Q outputs will come up in a high impedance  
The C andC clocks may be used to clock the data out of the output  
register during read operations and to generate the echo clocks. C and  
C must be presented to the SRAM within the timing tolerances. The  
output data from the QDRII will be closely aligned to the C and C input,  
through the use of an internal DLL. When C is presented to the QDRII  
SRAM, the DLL will have already internally clocked the first data word to  
arrive at the device output simultaneously with the arrival of theC clock.  
The C and second data word of the burst will also correspond. The third  
and fourth data words will follow on the next clock cycle of C and C,  
respectively.  
Single Clock Mode  
The QDRII SRAM may be operated with a single clock pair. C and  
C may be disabled by tying both signals high, forcing the outputs and  
echo clocks to be controlled instead by the K and K clocks.  
DLL Operation  
state.  
Programmable Impedance  
An external resistor, RQ, must be connected between the ZQ pin on  
the SRAM and Vss to allow the SRAM to adjust its output drive imped-  
ance. The value of RQ must be 5X the value of the intended drive  
impedance of the SRAM. The allowable range of RQ to guarantee  
impedance matching with a tolerance of +/- 10% is between 175 ohms  
and 350 ohms, with VDDQ = 1.5V. The output impedance is adjusted  
every 1024 clock cycles to correct for drifts in supply voltage and tem-  
perature. If the user wishes to drive the output impedance of the SRAM  
to it’s lowest value, the ZQ pin may be tied to VDDQ.  
The DLL in the output structure of the QDRII SRAM can be used to  
closely align the incoming clocks C and C with the output of the data,  
generating very tight tolerances between the two. The user may disable  
the DLLby holding Doff low. With the DLLoff, the C andC (or K and K  
if C and C are not used) will directly clock the output register of the  
SRAM. With the DLL off, there will be a propagation delay from the time  
the clock enters the device until the data appears at the output.  
Echo Clock  
The echo clocks, CQ andCQ, are generated by the C and C clocks  
6.242  
IDT71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
Advance Information  
IDT71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
Commercial Temperature Range  
18 Mb QDR II SRAM Burst of 4  
Pin Definitions  
Symbol  
Pin Function  
Description  
Data input signals, sampled on the rising edge of K and K clocks during valid write operations  
1M x 18 -- D[17:0]  
D[X:0]  
Input Synchronous  
512K x 36 -- D[35:0]  
Byte Write Select 0, 1, 2, and 3 are active LOW. Sampled on the rising edge of the K and again on the rising edge of K clocks  
during write operations. Used to select which byte is written into the device during the current portion of the write operations.  
Bytes not written remain unaltered. All the byte writes are sampled on the same edge as the data. Deselecting a Byte Write  
Select will cause the corresponding byte of data to be ignored and not written in to the device.  
BW  
BW  
0
, BW  
1
Input Synchronous  
Input Synchronous  
2, BW  
3
1M x 18 -- BW  
0
controls D[8:0] and BW  
1
controls D[17:9]  
512K x 36 -- BW  
0
controls D[8:0], BW  
1
controls D[17:9], BW2 controls D[26:18] and BW3 controls D[35:27]  
Address inputs are sampled on the rising edge of K clock during active read or write operations. These address inputs are  
multiplexed so a read and write can be initiated on alternate clock cycles. These inputs are ignored when the appropriate port is  
deselected.  
SA  
Data Output signals. These pins drive out the requested data during a Read operation. Valid data is driven out on the rising edge  
Q[X:0]  
W
Output Synchronous of both the C and C clocks during Read operations or K and K when operating in single clock mode. When the Read port is  
deselected, Q[X:0] are automatically three-stated.  
Write Control Logic active Low. Sampled on the rising edge of the positive input clock (K). When asserted active, a write operation  
is initiated. Deasserting will deselect the Write port, causing D[X:0] to be ignored. If a write operation has successfully been  
initiated, it will continue to completion, ignoring the W on the following clock cycle. This allows the user to continuously hold W low  
while bursting data into the SRAM.  
Input Synchronous  
Read Control Logic, active LOW. Sampled on the rising edge of Positive Input Clock (K). When active, a read operation is  
initiated. Deasserting will cause the Read port to be deselected. When deselected, the pending access is allowed to  
Input Synchronous complete and the output drivers are automatically three-stated following the next rising edge of the C clock. Each read access  
consists of a burst of four sequential transfer. If a read operation has successfully been initiated, it will continue to completion,  
ignoring the R on the following clock cycle. This allows the user to continuously hold R low while bursting data from the SRAM.  
R
Positive Output Clock Input. C is used in conjunction with C to clock out the Read data from the device. C and C can be used  
C
together to deskew the flight times of various devices on the board back to the controller. See application example for further  
Input Clock  
details.  
Negative Output Clock Input. C is used in conjunction with C to clock out the Read data from the device. C and C can be used  
together to deskew the flight times of various devices on the board back to the controller. See application example for further  
details.  
Input Clock  
C
Positive Input Clock Input. The rising edge of K is used to capture synchronous inputs to the device and to drive out data  
through Q[X:0] when in single clock mode. All accesses are initiated on the rising edge of K.  
K
K
Input Clock  
Input Clock  
Negative Input Clock Input. K is used to capture synchronous inputs being presented to the device and to drive out data  
through Q[X:0] when in single clock mode.  
Synchronous Echo clock outputs. The rising edges of these outputs are tightly matched to the synchronous data outputs and  
can be used as a data valid indication. These signals are free running and do not stop when the output data is three-stated.  
CQ, CQ  
Output Clock  
Input  
Output Impedance Matching Input. This input is used to tune the device outputs to the system data bus impedance. Q[X:0]  
output impedance is set to 0.2 x RQ, where RQ is a resistor connected between ZQ and ground. Alternately, this pin can be  
connected directly to VDDQ, which enables the minimum impedance mode. This pin cannot be connected directly to GND or left  
unconnected.  
ZQ  
6111 tbl 02a  
6.42  
3
IDT71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 4  
Commercial Temperature Range  
Pin Definitions continued  
Symbol Pin Function  
Description  
DLL Turn Off. When low this input will turn off the DLL inside the device. The AC timings with the  
DLL turned off will be different from those listed in this data sheet. There will be an increased  
propagation delay from the incidence of C and C to Q, or K and K to Q as configured. The  
propagation delay is not a tested parameter, but will be similar to the propagation delay of other  
SRAM devices in this speed grade.  
Input  
Doff  
TDO  
TCK  
TDI  
Output  
Input  
Input  
Input  
TDO pin for JTAG.  
TCK pin for JTAG.  
TDI pin for JTAG. An internal resistor will pull TDI to VDD when the pin is unconnected.  
TMS pin for JTAG. An internal resistor will pull TMS to VDD when the pin is unconnected.  
TMS  
NC  
No Connect No connects inside the package. Can be tied to any voltage level  
Input Reference Voltage input. Static input used to set the reference level for HSTL inputs and Outputs  
VREF  
Reference as well as AC measurement points.  
Power  
V
DD  
Power supply inputs to the core of the device. Should be connected to a 1.8V power supply.  
Supply  
Ground  
VSS  
Ground for the device. Should be connected to ground of the system.  
Power  
Supply  
Power supply for the outputs of the device. Should be connected to a 1.5V power supply for  
HSTL or scaled to the desired output voltage.  
VDDQ  
6111 tbl 02b  
6.442  
IDT71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
Advance Information  
IDT71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
Commercial Temperature Range  
18 Mb QDR II SRAM Burst of 4  
Pin Configuration IDT71P74804 (1M x 18)  
1
CQ  
NC  
NC  
NC  
NC  
NC  
NC  
Doff  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
2
3
4
W
5
6
K
7
8
R
9
10  
11  
V
SS/  
NC/  
SA (1)  
V
SS/  
NC  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
CQ  
A
B
C
D
E
F
BW  
1
SA (3)  
SA (2)  
Q9  
D9  
SA  
NC  
SA  
K
SA  
NC  
Q8  
BW  
0
NC  
D10  
VSS  
NC  
SA  
VSS  
Q7  
D8  
D11  
Q10  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
D7  
NC  
Q11  
VDDQ  
VSS  
VSS  
VSS  
VDDQ  
D6  
Q6  
Q12  
D12  
VDDQ  
VDD  
VSS  
VDD  
VDDQ  
NC  
NC  
Q5  
D13  
Q13  
VDDQ  
VDD  
VSS  
VDD  
VDDQ  
D5  
G
H
J
VREF  
VDDQ  
VDDQ  
VDD  
VSS  
VDD  
VDDQ  
V
DDQ  
NC  
NC  
NC  
NC  
NC  
NC  
SA  
VREF  
ZQ  
NC  
NC  
D14  
VDDQ  
VDD  
VSS  
VDD  
VDDQ  
Q4  
D4  
Q14  
VDDQ  
VDD  
VSS  
VDD  
VDDQ  
D3  
Q3  
K
L
Q15  
D15  
VDDQ  
VSS  
VSS  
VSS  
VDDQ  
NC  
Q2  
NC  
D16  
VSS  
VSS  
VSS  
VSS  
VSS  
Q1  
D2  
M
N
P
R
D17  
Q16  
VSS  
SA  
SA  
SA  
SA  
C
SA  
SA  
SA  
VSS  
NC  
D1  
NC  
Q17  
SA  
SA  
SA  
SA  
D0  
Q0  
TCK  
SA  
TMS  
TDI  
C
6111 tbl 12b  
165-ball FBGA Pinout  
TOP VIEW  
NOTES:  
1. A3 is reserved for the 36Mb expansion address.  
2. A10 is reserved for the 72Mb expansion address. This must be tied or driven to VSS on the 1M x 18 QDRII Burst of 4 (71P74804) devices.  
3. A2 is reserved for the 144Mb expansion address. This must be tied or driven to VSS on the 1M x 18 QDRII Burst of 4 (71P74804) devices.  
6.42  
5
IDT71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 4  
Commercial Temperature Range  
Pin Configuration IDT71P74604 (512K x 36)  
1
2
3
4
W
5
BW  
BW  
6
K
7
8
R
9
10  
11  
V
SS  
/
NC/  
NC/  
VSS  
CQ  
A
B
C
D
E
F
CQ  
2
3
BW  
1
SA (4)  
SA (2)  
SA (1)  
SA (3)  
Q27  
Q18  
D18  
SA  
K
SA  
D17  
Q17  
Q8  
BW  
0
D
27  
Q
28  
D
19  
V
SS  
SA  
NC  
SA  
V
SS  
D
16  
Q
7
D8  
D28  
D20  
Q19  
VSS  
VSS  
VSS  
VSS  
VSS  
Q16  
D15  
D7  
Q29  
D29  
Q20  
VDDQ  
VSS  
VSS  
VSS  
VDDQ  
Q15  
D6  
Q6  
Q30  
Q21  
D21  
VDDQ  
VDD  
VSS  
VDD  
VDDQ  
D14  
Q14  
Q5  
D
30  
D
22  
Q
22  
V
DDQ  
V
DD  
V
SS  
V
DD  
V
DDQ  
Q
13  
D
13  
D5  
G
H
J
VREF  
VDDQ  
VDDQ  
VDD  
VSS  
VDD  
VDDQ  
VDDQ  
VREF  
ZQ  
Doff  
D31  
Q31  
D23  
VDDQ  
VDD  
VSS  
VDD  
VDDQ  
D12  
Q
4
D4  
Q
32  
D
32  
Q
23  
V
DDQ  
V
DD  
V
SS  
V
DD  
V
DDQ  
Q
12  
D
3
Q3  
K
L
Q33  
Q24  
D24  
VDDQ  
VSS  
VSS  
VSS  
VDDQ  
D11  
Q11  
Q2  
D
33  
Q
34  
D
25  
V
SS  
V
SS  
V
SS  
SA  
C
V
SS  
V
SS  
D
10  
Q
1
D2  
M
N
P
R
D34  
D26  
Q25  
VSS  
SA  
SA  
SA  
SA  
SA  
SA  
VSS  
Q10  
D9  
D1  
Q35  
D35  
Q26  
SA  
SA  
SA  
SA  
Q
9
D0  
Q0  
TDO  
TCK  
SA  
SA  
TMS  
TDI  
C
6111 tbl 12c  
165-ball FBGA Pinout  
TOP VIEW  
NOTES:  
1. A9 is reserved for the 36Mb expansion address.  
2. A3 is reserved for the 72Mb expansion address.  
3. A10 is reserved for the 144Mb expansion address. This must be tied or driven to VSS on the 512K x 36 QDRII Burst of 4 (71P74604) devices.  
4. A2 is reserved for the 288Mb expansion address. This must be tied or driven to VSS on the 512K x 36 QDRII Burst of 4 (71P74604) devices.  
6.642  
IDT71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
Advance Information  
IDT71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
Commercial Temperature Range  
18 Mb QDR II SRAM Burst of 4  
Absolute Maximum Ratings(1) (2)  
Capacitance (TA = +25°C, f = 1.0MHz)(1)  
Symbol  
Parameter  
Conditions  
Max.  
Unit  
Symbol  
Rating  
Value  
Unit  
C
IN  
Input Capacitance  
5
6
7
pF  
V
TERM  
Supply Voltage on VDD with  
Respect to GND  
–0.5 to +2.9  
V
V
DD = 1.8V  
CCLK  
Clock Input Capacitance  
Output Capacitance  
pF  
VDDQ = 1.5V  
VTERM  
Supply Voltage on VDDQ with  
Respect to GND  
–0.5 to VDD +0.3  
–0.5 to VDD +0.3  
–0.5 to VDDQ +0.3  
V
V
V
CO  
pF  
6111 tbl 06  
NOTE:  
VTERM  
Voltage on Input terminals with  
respect to GND  
1. Tested at characterization and retested after any design or process  
change that may affect these parameters.  
VTERM  
Voltage on Output and I/O  
terminals with respect to GND.  
T
BIAS  
Temperature Under Bias  
Storage Temperature  
–55 to +125  
–65 to +150  
+ 20  
°C  
°C  
Recommended DC Operating and  
Temperture Conditions  
TSTG  
IOUT  
Continuous Current into Outputs  
mA  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
6111 tbl 05  
Power Supply  
Voltage  
NOTES:  
V
DD  
1.7  
1.8  
1.9  
V
1. Stresses greater than those listed under ABSOLUTE MAXIMUM  
RATINGSmaycausepermanentdamagetothedevice. Thisisastress  
ratingonlyandfunctionaloperationofthedeviceattheseoranyother  
conditions above those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating  
conditionsforextendedperiodsmayaffectreliability.  
VDDQ  
I/O Supply Voltage  
Ground  
1.4  
0
1.5  
0
1.9  
0
V
V
VSS  
Input Reference  
Voltage  
VREF  
0.68  
0
V
DDQ/2  
0.95  
+70  
V
2. VDDQ must not exceed VDD during normal operation.  
Ambient  
Temperature  
o
c
TA  
25  
(1)  
6111 tbl 04  
NOTE:  
Write Descriptions(1,2)  
1. During production testing, the case temperarure equals the ambient  
temperature.  
Signal  
BW0  
BW  
1
BW2  
BW3  
Write Byte 0  
Write Byte 1  
Write Byte 2  
Write Byte 3  
L
X
X
X
X
L
X
X
X
X
L
X
X
X
X
L
6111 tbl 09  
NOTES:  
1) All byte write (BWx) signals are sampled on  
the rising edge of K and again on K. The data that is present on the  
data bus in the designated byte will be latched into the input if  
the corresponding BWxis held low. The rising edge of K  
will sample the first and third bytes of the four word burst and  
the rising edge of K will sample the second and fourth bytes  
of the four word burst.  
2) The availability of the BWx on designated devices is de  
scribed in the pin description table.  
3) The QDRII Burst of four SRAM has data forwarding. Aread request  
that is initiated on the cycle following a write request to the same  
address will produce the newly written data in response to the read  
request.  
6.42  
7
IDT71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 4  
Commercial Temperature Range  
Application Example  
6.842  
IDT71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
Advance Information  
IDT71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
Commercial Temperature Range  
18 Mb QDR II SRAM Burst of 4  
DC Electrical Characteristics Over the Operating Temperature and  
Supply Voltage Range(VDD = 1.8 ± 100mV, VDDQ = 1.4V to 1.9V)  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Unit  
Note  
µA  
Input Leakage Current  
Output Leakage Current  
I
IL  
V
DD = Max VIN = VSS to VDDQ  
-2  
-2  
+2  
+2  
Output Disabled  
µA  
IOL  
250MH  
Z
-
-
-
-
-
-
-
-
-
1100  
950  
850  
850  
750  
650  
375  
335  
300  
V
I
DD = Max,  
OUT = 0mA (outputs open),  
Cycle Time > tKHKH Min  
Operating Current  
(x36): DDR  
I
DD  
200MHz  
167MHz  
mA  
1
1
2
250MH  
Z
VDD = Max,  
Operating Current  
(x18): DDR  
IDD  
IOUT = 0mA (outputs open),  
200MHz  
167MHz  
mA  
mA  
Cycle Time > tKHKH Min  
250MH  
Z
Device Deselected (in NOP state)  
IOUT = 0mA (outputs open),  
Standby Current: NOP  
ISB1  
200MHz  
167MHz  
f=Max,  
All Inputs <0.2V or > VDD -0.2V  
Output High Voltage  
Output Low Voltage  
Output High Voltage  
Output Low Voltage  
RQ = 250Ω, IOH = -15mA  
RQ = 250Ω, IOL = 15mA  
V
DDQ/2-0.12  
DDQ/2-0.12  
DDQ-0.2  
SS  
V
DDQ/2+0.12  
DDQ/2+0.12  
DDQ  
V
V
V
V
3,7  
4,7  
5
V
OH1  
OL1  
OH2  
OL2  
V
V
V
IOH = -0.1mA  
V
V
V
IOL = 0.1mA  
V
0.2  
6
V
6111 tbl 10c  
NOTES:  
1. Operating Current is measured at 100% bus utilization.  
2. Standby Current is only after all pending read and write burst operations are completed.  
3. Outputs are impedance-controlled. IOH = -(VDDQ/2)/(RQ/5) and is guaranteed by device characterization for 175< RQ < 350Ω. This  
parameter is tested at RQ = 250Ω, which gives a nominal 50output impedance.  
4. Outputs are impedance-controlled. IOL = (VDDQ/2)/(RQ/5) and is guaranteed by device characterization for 175< RQ < 350Ω. This  
parameter is tested at RQ = 250Ω, which gives a nominal 50output impedance.  
5. This measurement is taken to ensure that the output has the capability of pulling to the VDDQ rail, and is not intended to be used as an  
impedance measurement point.  
6. This measurement is taken to ensure that the output has the capability of pulling to Vss, and is not intended to be used as an impedance  
measurement point.  
7. Programmable Impedance Mode.  
6.42  
9
IDT71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 4  
Commercial Temperature Range  
Input Electrical Characteristics Over the Operating Temperature and  
Supply Voltage Range (VDD = 1.8 ± 100mV, VDDQ = 1.4V to 1.9V)  
Parameter  
Input High Voltage, DC  
Input Low Voltage, DC  
Input High Voltage, AC  
Input Low Voltage, AC  
NOTES:  
Symbol  
Min  
Max  
Unit Notes  
V
IH (DC  
IL (DC)  
IH (AC)  
IL (AC)  
)
V
REF +0.1  
V
DDQ +0.3  
V
V
V
V
1,2  
1,3  
4,5  
V
-0.3  
V
REF -0.1  
V
V
REF +0.2  
-
V
-
V
REF -0.2  
4,5  
6111 tbl 10d  
1. These are DC test criteria. DC design criteria is VREF + 50mV. TheAC VIH/VILlevels are defined separately for measuring timing  
parameters.  
2. VIH (Max) DC = VDDQ+0.3, VIH (Max) AC = VDD +0.5V (pulse width <20% tKHKH (min))  
3. VIL (Min) DC = -0.3V, VIL (Min) AC = -0.5V (pulse width <20% tKHKH (min))  
4. This conditon is forAC function test only, not forAC parameter test.  
5. To maintain a valid level, the transitioning edge of the input must:  
a) Sustain a constant slew rate from the currentAC level through the targetAC level, VIL(AC) or VIH(AC)  
b) Reach at least the targetAC level.  
c)After the AC target level is reached, continue to maintain at least the target DC level, VIL(DC) or VIH(DC)  
Overshoot Timing  
Undershoot Timing  
20% tKHKH (MIN)  
VIH  
VDD +0.5  
VDD +0.25  
VSS  
VDD  
VSS-0.25V  
V
SS-0.5V  
VIL  
6111 drw 22  
6111 drw 21  
20% tKHKH (MIN)  
61.402  
IDT71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
Advance Information  
IDT71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
Commercial Temperature Range  
18 Mb QDR II SRAM Burst of 4  
AC Test Conditions  
Parameter  
Core Power Supply Voltage  
Output Power Supply Voltage  
Input High Level  
Symbol  
Value  
1.7-1.9  
Unit  
V
V
DD  
DDQ  
IH  
IL  
V
1.4-1.9  
V
V
(VDDQ/2)+ 0.5  
(VDDQ/2)- 0.5  
V
Input Low Level  
V
V
Input Reference Level  
Input Rise/Fall Time  
VREF  
TR/TF  
V
DDQ/2  
0.3/0.3  
DDQ/2  
V
ns  
Output Timing Reference Level  
V
V
6111tbl 11a  
NOTE:  
1. Parameters are tested with RQ=250Ω  
Input Waveform  
(VDDQ/2) + 0.5V  
Test points  
VDDQ/2  
V
DDQ/2  
(VDDQ/2) - 0.5V  
6111 drw 07  
Output Waveform  
Test points  
VDDQ/2  
VDDQ/2  
6111 drw 08  
AC Test Load  
VDDQ  
/2  
DDQ/2  
V
RL = 50  
REF  
V
OUTPUT  
=50  
Z0  
Device  
Under  
Test  
RQ  
= 250  
ZQ  
6111 drw 04  
6.42  
11  
IDT71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 4  
Commercial Temperature Range  
(3,7)  
AC Electrical Characteristics (VDD = 1.8 ± 100mV, VDDQ = 1.4V to 1.9V,TA = 0 TO 70°C)  
250MHz  
200MHz  
167MHz  
Min.  
Max  
Min.  
Max  
Min.  
Max  
Symbol  
Parameter  
Unit  
Notes  
Clock Parameters  
t
KHKH  
KC var  
KHKL  
KLKH  
KHKH  
KHKH  
KHCH  
KC lock  
Clock Cycle Time (K,K,C,C)  
Clock Phase Jitter (K,K,C,C)  
Clock High Time (K,K,C,C)  
Clock LOW Time (K,K,C,C)  
Clock to clock (KK,CC)  
Clock to clock (KK,CC)  
Clock to data clock (KC,KC)  
DLL lock time (K, C)  
4.00  
-
8.40  
5.00  
-
8.40  
6.00  
-
8.40  
ns  
ns  
t
0.20  
0.20  
0.20  
1,5  
8
t
1.60  
1.60  
1.80  
1.80  
0.00  
1024  
30  
-
2.00  
2.00  
2.20  
2.20  
0.00  
1024  
30  
-
2.40  
2.40  
2.70  
2.70  
0.00  
1024  
30  
-
ns  
t
-
-
-
ns  
8
t
-
-
-
ns  
9
t
-
-
-
ns  
9
t
1.80  
2.30  
2.80  
ns  
t
-
-
-
-
-
-
cycles  
ns  
2
t
KC reset K static to DLL reset  
Output Parameters  
t
CHQV  
CHQX  
CHCQV  
CHCQX  
CQHQV  
CQHQX  
CHQZ  
CHQX1  
C,C HIGH to output valid  
C,C HIGH to output hold  
C,C HIGH to echo clock valid  
C,C HIGH to echo clock hold  
CQ,CQ HIGH to output valid  
CQ,CQ HIGH to output hold  
C HIGH to output High-Z  
C HIGH to output Low-Z  
-
-0.45  
-
0.45  
-
-0.45  
-
0.45  
-
-0.50  
-
0.50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3
3
3
3
t
-
0.45  
-
-
0.45  
-
-
0.50  
-
t
t
-0.45  
-
-0.45  
-
-0.50  
-
t
0.30  
-
0.35  
-
0.40  
-
t
-0.30  
-
-0.35  
-
-0.40  
-
t
0.45  
-
0.45  
-
0.50  
-
3,4,5  
3,4,5  
t
-0.45  
-0.45  
-0.50  
Set-Up Times  
t
AVKH  
Address valid to K,K rising edge  
R,W inputs valid to K,K rising edge  
0.50  
0.50  
-
-
0.60  
0.60  
-
-
0.70  
0.70  
-
-
ns  
ns  
6
tIVKH  
Data-in and BWx valid to K, K rising  
edge  
tDVKH  
0.35  
-
0.40  
-
0.50  
-
ns  
Hold Times  
t
KHAX  
KHIX  
KHDX  
K,K rising edge to address hold  
K,K rising edge to R,W inputs hold  
0.50  
0.50  
-
-
0.60  
0.60  
-
-
0.70  
0.70  
-
-
ns  
ns  
6
t
K, K rising edge to data-in and BWx  
hold  
t
0.35  
-
0.40  
-
0.50  
-
ns  
6111 tbl 11  
NOTES:  
1. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.  
2. Vdd slew rate must be less than 0.1V DC per 50 ns for DLL lock retention. DLL lock time begins once Vdd and input clock are stable.  
3. If C,C are tied High, K,K become the references for C,C timing parameters.  
4. To avoid bus contention, at a given voltage and temperature tCHQX1 is bigger than tCHQZ. The specs as shown do not imply bus contention  
because tCHQX1 is a MIN parameter that is worse case at totally different test conditions (0°C, 1.9V) than tCHQZ, which is a MAX parameter  
(worst case at 70°C, 1.7V) It is not possible for two SRAMs on the same board to be at such different voltage and temperature.  
5. This parameter is guaranteed by device characterization, but not production tested.  
6. All address inputs must meet the specified setup and hold times for all latching clock edges.  
7. During production testing, the case temperature equals TA.  
8. Clock High Time (tKHKL) and Clock Low Time (tKLKH) should be within 40% to 60% of the cycle time (tKHKH).  
9. Clock to clock time (tKHKH) and Clock to clock time (tKHKH) should be within 45% to 55% of the cycle time (tKHKH).  
61.422  
IDT71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
Advance Information  
IDT71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
Commercial Temperature Range  
18 Mb QDR II SRAM Burst of 4  
Timing Waveform of Combined Read and Write Cycles  
NOP  
7
Write A1  
Read A2  
4
Write A3  
NOP  
6
NOP  
1
Read A0  
3
2
5
K
tKHKL  
tKHKH  
tKLKH  
tKHKH  
K
R
tIVKH  
tKHIX  
tIVKH  
tKHIX  
W
A3  
A1  
A2  
SA  
D
A0  
tKHDX  
tKHDX  
tDVKH  
tAVKH tKHAX  
tDVKH  
D10  
D12 D13  
D32 D33  
D11  
Q01  
D30 D31  
Qx2  
Q02  
Q03  
Q20  
Q21  
Q22  
Q23  
Qx3  
Q00  
Q
tCHQX  
tCHQV  
tCHQZ  
tCQHQV  
tKHCH  
tCQHQX  
tCHQX1  
tCHQV  
tCHQX  
C
tKHKH  
tKHKH  
tKHCH  
tKLKH  
tKHKL  
.
C
tCHCQV  
tCHCQX  
CQ  
tCHCQV  
tCHCQX  
CQ  
6111 drw09  
6.42  
13  
IDT71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 4  
Commercial Temperature Range  
IEEE 1149.1 TEST ACCESS PORT AND BOUNDARY SCAN-JTAG  
This part contains an IEEE standard 1149.1 Compatible TestAc-  
cess Port (TAP). The package pads are monitored by the Serial Scan  
circuitry when in test mode. This is to support connectivity testing during  
manufacturingandsystemdiagnostics. InconformancewithIEEE1149.1,  
the SRAM contains aTAPcontroller, Instruction register, Bypass Regis-  
ter and ID register. TheTAPcontroller has a standard 16-state machine  
that resets internally upon power-up; therefore, the TRST signal is not  
required. It is possible to use this device without utilizing the TAP. To  
disable theTAPcontroller without interfacing with normal operation of the  
SRAM, TCK must be tied to VSS to preclude a mid level input. TMS and  
TDI are designed so an undriven input will produce a response identical  
to the application of a logic 1, and may be left unconnected, but they may  
also be tied to VDD through a resistor. TDO should be left unconnected.  
JTAG Block Diagram  
JTAG Instruction Coding  
IR2 IR1 IR0  
Instruction  
EXTEST  
TDO Output  
Notes  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Boundary Scan Register  
Identification register  
Boundary Scan Register  
Do Not Use  
IDCODE  
2
1
5
4
5
5
A,D  
S
SAMPLE-Z  
RESERVED  
K,K  
C,C  
SRAM  
CORE  
Q
SAMPLE/PRELOAD Boundary Scan register  
CQ  
CQ  
RESERVED  
RESERVED  
BYPASS  
Do Not Use  
Do Not Use  
TDI  
BYPASS Reg.  
TDO  
Bypass Register  
3
Identification Reg.  
6111tbl 13  
NOTES:  
Instruction Reg  
Control Signal  
TAP Controller  
.
1. Places Qs in Hi-Z in order to sample all input data regardless of  
other SRAM inputs.  
2. TDI is sampled as an input to the first ID register to allow for the  
serial shift of the external TDI data.  
s
TMS  
TCK  
3. Bypass register is initialized to Vss when BYPASS instruction is  
invoked. The Bypass Register also holds serially loaded TDI  
when existing the Shift DR states.  
6111 drw 18  
4. SAMPLE instruction does not place output pins in Hi-Z.  
5. This instruction is reserved for future use.  
TAP Controller State Diagram  
Test Logic Reset  
1
0
1
1
1
Run Test Idle  
Select DR  
0
Select IR  
0
0
1
1
1
Capture DR  
0
Capture IR  
0
Shift DR  
1
Shift IR  
1
0
0
0
1
Exit 1 DR  
0
Exit 1 IR  
0
Pause DR  
1
Pause IR  
1
0
0
0
Exit 2 DR  
1
Exit 2 IR  
1
0
1
Update DR  
0
Update IR  
1
6111 drw 17  
61.442  
IDT71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
Advance Information  
IDT71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
Commercial Temperature Range  
18 Mb QDR II SRAM Burst of 4  
Scan Register Definition  
Part  
Instrustion  
Register  
Bypass  
ID  
Register  
Boundry  
Scan  
Register  
512Kx36  
1Mx18  
3 bits  
3 bits  
1 bit  
1 bit  
32 bits  
32 bits  
107 bits  
107 bits  
6111 tbl14  
Identification Register Definitions  
INSTRUCTION FIELD  
ALL DEVICES  
DESCRIPTION  
PART NUMBER  
Revision Number (31:29)  
0x0  
Revision Number  
0x0280  
0x0281  
512Kx36  
1Mx18  
QDRII BURST OF 4 71P74604S  
71P74804S  
Device ID (28:12)  
Allows unique identification of SRAM  
vendor.  
IDT JEDEC ID CODE (11:1)  
0x033  
1
ID Register Presence Indicator (0)  
Indicates the presence of an ID register.  
6111 tbl 15  
6.42  
15  
IDT71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 4  
Commercial Temperature Range  
Boundary Scan Exit Order  
ORDER  
PIN ID  
ORDER  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
PIN ID  
10D  
9E  
ORDER  
73  
PIN ID  
2C  
3E  
2D  
2E  
1E  
2F  
1
6R  
2
6P  
74  
3
6N  
10C  
11D  
9C  
75  
4
7P  
76  
5
7N  
77  
6
7R  
9D  
78  
7
8R  
11B  
11C  
9B  
79  
3F  
8
8P  
80  
1G  
1F  
9
9R  
81  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
11P  
10P  
10N  
9P  
10B  
11A  
Internal  
9A  
82  
3G  
2G  
1J  
83  
84  
85  
2J  
10M  
11N  
9M  
9N  
8B  
86  
3K  
3J  
7C  
87  
6C  
88  
2K  
1K  
2L  
3L  
1M  
1L  
3N  
3M  
1N  
2M  
3P  
8A  
89  
11L  
11M  
9L  
7A  
90  
7B  
91  
6B  
92  
10L  
11K  
10K  
9J  
6A  
93  
5B  
94  
5A  
95  
4A  
96  
9K  
5C  
97  
10J  
11J  
11H  
10G  
9G  
4B  
98  
3A  
99  
2N  
2P  
1H  
1A  
100  
101  
102  
103  
104  
105  
106  
107  
1P  
2B  
11F  
11G  
9F  
3R  
4R  
4P  
3B  
1C  
1B  
10F  
11E  
10E  
5P  
3D  
3C  
5N  
5R  
1D  
6111 tbl 16  
6111 tbl 17  
6111 tbl 18  
61.462  
IDT71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
Advance Information  
IDT71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
Commercial Temperature Range  
18 Mb QDR II SRAM Burst of 4  
JTAG DC Operating Conditions  
Parameter  
Output Power Supply  
Symbol  
Min  
1.4  
1.7  
1.3  
-0.3  
-5  
Ty p  
Max  
1.9  
Unit  
V
Note  
V
DDQ  
DD  
IH  
IL  
IL  
IL  
OL  
OH  
OL  
-
1.8  
-
Power Supply Voltage  
V
1.9  
V
Input High Level  
V
V
DD+0.3  
V
Input Low Level  
V
-
0.5  
V
TCK Input Leakage Current  
TMS, TDI Input Leakage Current  
TDO Output Leakage Current  
Output High Voltage (IOH = -1mA)  
Output Low Voltage (IOL = 1mA)  
I
-
+5  
µA  
µA  
µA  
V
I
-15  
-5  
-
+15  
+5  
I
-
1
1
V
V
DDQ - 0.2  
-
VDDQ  
V
VSS  
-
0.2  
V
6111 tbl 19  
NOTE:  
1. The output impedance of TDO is set to 50 ohms (nominal process) and does not vary with  
the external resistor connected to ZQ.  
JTAG AC Test Conditions  
Parameter  
Symbol  
Value  
1.8  
Unit  
V
Note  
Input High Level  
Input Low Level  
V
IH  
VIL  
0
V
Input Rise/Fall Time  
TR/TF  
1.0/1.0  
0.9  
ns  
V
Input and Output Timing Reference Level  
NOTE:  
1
6111 tbl 20  
1. For SRAM outputs seeAC test load on page 13.  
JTAG Input Test Waveform  
JTAG AC Test Load  
0.9 V  
1.8 V  
Test points  
0.9 V  
0.9 V  
0 V  
6111 drw 23  
50Ω  
Z0 = 50Ω  
TDO  
,
6111 drw 24  
JTAG Output Test Waveform  
Test points  
0.9 V  
0.9 V  
6111 drw 23a  
6.42  
17  
IDT71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 4  
Commercial Temperature Range  
JTAG AC Characteristics  
Parameter  
Symbol  
Min  
50  
20  
20  
5
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note  
TCK Cycle Time  
t
CHCH  
CHCL  
CLCH  
MVCH  
CHMX  
DVCH  
CHDX  
SVCH  
CHSX  
CLQV  
-
-
TCK High Pulse Width  
TCK Low Pulse Width  
TMS Input Setup Time  
TMS Input Hold Time  
TDI Input Setup Time  
TDI Input Hold Time  
t
t
-
t
-
t
5
-
t
5
-
t
5
-
SRAM Input Setup Time  
SRAM Input Hold Time  
Clock Low to Output Valid  
t
5
-
t
5
-
t
0
10  
6111 tbl21  
JTAG Timing Diagram  
TCK  
tCHCH  
t
CHCL  
t
CLCH  
tMVCH  
t
CHMX  
TMS  
t
DVCH  
t
CHDX  
TDI/  
SRAM  
Inputs  
tSVCH  
t
CHSX  
SRAM  
Outputs  
tCLQV  
TDO  
6111 drw 19  
61.482  
IDT71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
Advance Information  
IDT71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
Commercial Temperature Range  
18 Mb QDR II SRAM Burst of 4  
Package Diagram Outline for 165-Ball Fine Pitch Grid Array  
6.42  
19  
IDT71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 4  
Commercial Temperature Range  
Ordering Information  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
ipchelp@idt.com  
800-345-7015  
800-345-7015 or  
408-284-8200  
fax: 408-284-2775  
www.idt.com  
“QDR SRAMs and Quad Data Rate RAMs comprise a new family of products developed by Cypress Semiconductor, IDT, and Micron Technology, Inc. “  
62.402  
IDT71P74804 (1M x 18 x -Bit) 71P74604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 4  
Commercial Temperature Range  
RevisionHistory  
REVISION  
DATE  
PAGES  
p. 1-22  
p. 1-22  
p. 12  
DESCRIPTION  
0
1
2
07/20/05  
12/07/07  
09/23/08  
ReleasedFinaldatasheet  
Removed 71P4204 and 71P4104 speed grades.  
Change 250MHz and 200MHz max tKHKH from 6.30 and 7.88 to 8.40ns.  

相关型号:

71P74804S200BQG8

CABGA-165, Reel
IDT

71P74804S250BQ

CABGA-165, Tray
IDT

71P74804S250BQ8

CABGA-165, Reel
IDT

71P74804S250BQG

1MX18 QDR SRAM, 0.45ns, PBGA165, 13 X 15 MM, 1 MM PITCH, GREEN, FBGA-165
ROCHESTER

71P74804S250BQG

CABGA-165, Tray
IDT

71P74804S250BQG8

CABGA-165, Reel
IDT

71P74804S300BQ

CABGA-165, Tray
IDT

71P74804S333BQ

CABGA-165, Tray
IDT

71P79104S167BQ

Standard SRAM, 2MX9, 0.5ns, CMOS, PBGA165
IDT

71P79104S167BQI

Standard SRAM, 2MX9, 0.5ns, CMOS, PBGA165
IDT

71P79104S200BQ

Standard SRAM, 2MX9, 0.45ns, CMOS, PBGA165
IDT

71P79104S200BQI

Standard SRAM, 2MX9, 0.45ns, CMOS, PBGA165
IDT