71V632S7PFG71V632S7 [IDT]

Cache SRAM, PQFP100, 20 X 14 MM, 1.40 MM HEIGHT, GREEN, PLASTIC, MO-136DJ, TQFP-100;
71V632S7PFG71V632S7
型号: 71V632S7PFG71V632S7
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Cache SRAM, PQFP100, 20 X 14 MM, 1.40 MM HEIGHT, GREEN, PLASTIC, MO-136DJ, TQFP-100

静态存储器
文件: 总19页 (文件大小:308K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
64K x 32  
3.3VSynchronousSRAM  
PipelinedOutputs  
IDT71V632/Z  
BurstCounter,SingleCycleDeselect  
Features  
withfullsupportofthePentiumandPowerPCprocessorinterfaces.  
Thepipelinedburstarchitectureprovidescost-effective3-1-1-1second-  
ary cache performance for processors up to 117MHz.  
The IDT71V632 SRAM contains write, data, address, and control  
registers. InternallogicallowstheSRAMtogenerateaself-timedwrite  
baseduponadecisionwhichcanbeleftuntiltheextremeendofthewrite  
cycle.  
Theburstmodefeatureoffersthehighestlevelofperformancetothe  
system designer, as the IDT71V632 can provide four cycles of data for  
asingleaddresspresentedtotheSRAM.Aninternalburstaddresscounter  
acceptsthefirstcycleaddressfromtheprocessor,initiatingtheaccess  
sequence.Thefirstcycleofoutputdatawillbepipelinedforonecyclebefore  
it is available on the next rising clock edge. If burst mode operation is  
selected(ADV=LOW),thesubsequentthreecyclesofoutputdatawillbe  
availabletotheuseronthenextthreerisingclockedges.Theorderofthese  
threeaddresseswillbedefinedbytheinternalburstcounterandtheLBO  
inputpin.  
64K x 32 memory configuration  
Supports high system speed:  
Commercial:  
– A4 4.5ns clock access time (117 MHz)  
CommercialandIndustrial:  
– 5 5ns clock access time (100 MHz)  
– 6 6ns clock access time (83 MHz)  
– 7 7ns clock access time (66 MHz)  
Single-cycle deselect functionality (Compatible with  
Micron Part # MT58LC64K32D7LG-XX)  
LBO input selects interleaved or linear burst mode  
Self-timed write cycle with global write control (GW), byte  
write enable (BWE), and byte writes (BWx)  
Power down controlled by ZZ input  
Operates with a single 3.3V power supply (+10/-5%)  
Packaged in a JEDEC Standard 100-pin rectangular plastic  
thin quad flatpack (TQFP).  
TheIDT71V632SRAMutilizesIDT'shigh-performance,high-volume  
3.3V CMOS process, and is packaged in a JEDEC Standard 14mm x  
20mm100-pinthinplasticquadflatpack(TQFP)foroptimumboarddensity  
inbothdesktopandnotebookapplications.  
Description  
TheIDT71V632isa3.3Vhigh-speedSRAMorganizedas64Kx32  
PinDescriptionSummary  
A
0
A15  
Address Inputs  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
I/O  
Synchronous  
Synchronous  
Synchronous  
Asynchronous  
Synchronous  
Synchronous  
Synchronous  
N/A  
Chip Enable  
CE  
CS  
0, CS  
1
Chips Selects  
Output Enable  
OE  
GW  
Global Write Enable  
Byte Write Enable  
Individual Byte Write Selects  
Clock  
BWE  
BW1, BW2, BW3, BW  
4
CLK  
ADV  
ADSC  
ADSP  
LBO  
ZZ  
Burst Address Advance  
Address Status (Cache Controller)  
Address Status (Processor)  
Linear / Interleaved Burst Order  
Sleep Mode  
Synchronous  
Synchronous  
Synchronous  
DC  
Asynchronous  
Synchronous  
N/A  
I/O  
0
–I/O31  
DD, VDDQ  
SS, VSSQ  
Data Input/Output  
V
3.3V  
Power  
Power  
V
Array Ground, I/O Ground  
N/A  
3619 tbl 01  
PentiumprocessorisatrademarkofIntelCorp.  
PowerPCisatrademarkofInternationalBusinessMachines,Inc.  
MAY 2010  
1
©2010IntegratedDeviceTechnology,Inc.  
DSC-3619/07  
IDT71V632, 64K x 32, 3.3V Synchronous SRAM  
with Pipelined Outputs and Single Cycle Deselect  
Commercial and Industrial Temperature Ranges  
Pin Definitions(1)  
Symbol  
Pin Function  
I/O  
Active  
Description  
Address Inputs  
I
N/A  
Synchronous Address inputs. The address register is triggered by a combination  
A0A15  
of the rising edge of CLK and ADSC Low or ADSP Low and CE Low.  
Address Status  
(Cache Controller)  
I
LOW  
Synchronous Address Status from Cache Controller.ADSC is an active LOW  
input that is used to load the address registers with new addresses. ADSC is  
NOT GATEDby CE.  
ADSC  
Synchronous Address Status from Processor. ADSP is an active LOW input that  
Address Status  
(Processor)  
I
I
LOW  
LOW  
ADSP  
ADV  
is used to load the address registers with new addresses. ADSP is gated by  
CE.  
Burst Address Advance  
Synchronous Address Advance. ADV is an active LOW input that is used to  
advance the internal burst counter, controlling burst access after the initial  
address is loaded. When this input is HIGH the burst counter is not incremented;  
that is, there is no address advance.  
Byte Write Enable  
I
I
LOW  
LOW  
Synchronous byte write enable gates the byte write inputs BW  
LOW at the rising edge of CLK then BW inputs are passed to the next stage in  
the circuit. A byte write can still be blocked if ADSP is LOW at the rising edge of  
is LOW at the rising edge of CLK then data will  
be written to the SRAM. If BWE is HIGH then the byte write inputs are blocked  
and only GW can initiate a write cycle.  
1
BW  
4
. If BWE is  
BWE  
X
CLK. If ADSP is HIGH and BW  
X
Individual Byte  
Write Enables  
Synchronous byte write enables. BW  
1
controls I/O(7:0), BW2 controls I/O(15:8),  
BW  
CE  
1BW  
4
etc. Any active byte write causes all outputs to be disabled. ADSP LOW  
disables all byte writes. BW  
1BW4 must meet specified setup and hold times  
with respect to CLK.  
Chip Enable  
Clock  
I
I
I
I
LOW  
N/A  
Synchronous chip enable. CE is used with CS  
IDT71V632. CE also gates ADSP.  
0
and CS1 to enable the  
CLK  
This is the clock input. All timing references for the device are made with respect  
to this input.  
Chip Select 0  
Chip Select 1  
HIGH  
LOW  
Synchronous active HIGH chip select. CS  
the chip.  
0
is used with CE and CS  
1
to enable  
CS  
0
Synchronous active LOW chip select. CS  
the chip.  
1
is used with CE and CS  
0
to enable  
CS  
1
Synchronous global write enable. This input will write all four 8-bit data bytes  
when LOW on the rising edge of CLK. GW supercedes individual byte write  
enables.  
Global Write Enable  
I
LOW  
GW  
Data Input/Output  
Linear Burst Order  
I/O  
I
N/A  
Synchronous data input/output (I/O) pins. Both the data input path and data output  
path are registered and triggered by the rising edge of CLK.  
I/O0–I/O31  
LOW  
Asynchronous burst order selection DC input. When LBO is HIGH the Interleaved  
(Intel) burst sequence is selected. When LBO is LOW the Linear (PowerPC) burst  
sequence is selected. LBO is a static DC input and must not change state while  
the device is operating.  
LBO  
OE  
Output Enable  
I
LOW  
Asynchronous output enable. When OE is LOW the data output drivers are  
enabled on the I/O pins if the chip is also selected. When OE is HIGH the I/O  
pins are in a high-impedence state.  
V
DD  
DDQ  
SS  
SSQ  
Power Supply  
Power Supply  
Ground  
N/A  
N/A  
N/A  
N/A  
N/A  
I
N/A  
N/A  
N/A  
N/A  
N/A  
HIGH  
3.3V core power supply inputs.  
3.3V I/O power supply inputs.  
Core ground pins.  
V
V
V
Ground  
I/O ground pins.  
NC  
ZZ  
No Connect  
Sleep Mode  
NC pins are not electrically connected to the chip.  
Asynchronous sleep mode input. ZZ HIGH will gate the CLK internally and power  
down the IDT71V632 to its lowest power consumption level. Data retention is  
guaranteed in Sleep Mode.  
3619 tbl 02  
NOTE:  
1. All synchronous inputs must meet specified setup and hold times with respect to CLK.  
6.42  
2
IDT71V632, 64K x 32, 3.3V Synchronous SRAM  
with Pipelined Outputs and Single Cycle Deselect  
Commercial and Industrial Temperature Ranges  
FunctionalBlockDiagram  
LBO  
ADV  
INTERNAL  
ADDRESS  
CE  
CLK  
2
Burst  
Logic  
64K x 32  
BIT  
MEMORY  
ARRAY  
Binary  
Counter  
16  
ADSC  
A0*  
Q0  
Q1  
CLR  
.
A1*  
ADSP  
2
CLK EN  
A0, A1  
A2–A15  
ADDRESS  
REGISTER  
A
0
–A15  
GW  
BWE  
32  
32  
16  
Byte 1  
Write Register  
Byte 1  
Write Driver  
BW  
BW  
1
8
8
Byte 2  
Write Register  
Byte 2  
Write Driver  
2
Byte 3  
Write Register  
Byte 3  
Write Driver  
BW  
BW  
3
4
8
8
Byte 4  
Write Register  
Byte 4  
Write Driver  
OUTPUT  
REGISTER  
CE  
Q
D
CS0  
CS  
Enable  
Register  
CLK EN  
DATA INPUT  
REGISTER  
1
Powerdown  
ZZ  
D
Q
Enable  
Delay  
Register  
OE  
OUTPUT  
BUFFER  
OE  
–I/O31  
32  
I/O0  
3619 drw 01  
6.42  
3
IDT71V632, 64K x 32, 3.3V Synchronous SRAM  
with Pipelined Outputs and Single Cycle Deselect  
Commercial and Industrial Temperature Ranges  
AbsoluteMaximumRatings(1)  
RecommendedOperating  
TemperatureandSupplyVoltage  
Symbol  
Rating  
Value  
Unit  
Grade  
Temperature  
0°C to +70°C  
–40°C to +85°C  
V
SS  
V
DD  
VDDQ  
(2)  
Terminal Voltage with  
Respect to GND  
–0.5 to +4.6  
V
V
TERM  
Commercial  
Industrial  
0V  
0V  
3.3V+10/-5% 3.3V+10/-5%  
(3)  
TERM  
Terminal Voltage with  
Respect to GND  
–0.5 to VDD+0.5  
V
V
3.3V+10/-5% 3.3V+10/-5%  
3619 tbl 03  
T
A
Operating Temperature  
Temperature Under Bias  
Storage Temperature  
Power Dissipation  
0 to +70  
–55 to +125  
–55 to +125  
1.0  
oC  
oC  
oC  
W
T
BIAS  
STG  
RecommendedDCOperating  
Conditions  
T
P
T
I
OUT  
DC Output Current  
50  
mA  
Symbol  
Parameter  
Min.  
3.135  
3.135  
0
Max.  
3.63  
3.63  
0
Unit  
V
3619 tbl 05  
V
DD  
DDQ  
SS,  
IH  
IH  
IL  
Core Supply Voltage  
I/O Supply Voltage  
Ground  
NOTES:  
V
V
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may  
cause permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated  
in the operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect reliability.  
2. VDD, VDDQ and Input terminals only.  
V
VSSQ  
V
V
Input High Voltage — Inputs  
Input High Voltage — I/O  
Input Low Voltage  
2.0  
5.0(1)  
V
V
2.0  
V
DDQ+0.3(2)  
V
3. I/O terminals.  
V
–0.3(3)  
0.8  
V
3619 tbl 04  
NOTES:  
1. VIH (max) = 6.0V for pulse width less than tCYC/2, once per cycle.  
2. VIH (max) = VDDQ + 1.0V for pulse width less than tCYC/2, once per cycle.  
3. VIL (min) = –1.0V for pulse width less than tCYC/2, once per cycle.  
Capacitance  
(TA = +25°C, f = 1.0MHz, TQFP package)  
Symbol  
Parameter(1)  
Input Capacitance  
I/O Capacitance  
Conditions  
IN = 3dV  
OUT = 3dV  
Max. Unit  
CIN  
V
6
7
pF  
CI/O  
V
pF  
3619 tbl 06  
NOTE:  
1. This parameter is guaranteed by device characterization, but not production  
tested.  
6.42  
4
IDT71V632, 64K x 32, 3.3V Synchronous SRAM  
with Pipelined Outputs and Single Cycle Deselect  
Commercial and Industrial Temperature Ranges  
PinConfiguration  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
1
80  
NC  
I/O15  
I/O14  
NC  
I/O16  
I/O17  
2
79  
3
78  
4
77  
VDDQ  
VDDQ  
5
V
SSQ  
I/O18  
I/O19  
I/O20  
I/O21  
76  
75  
74  
73  
VSSQ  
6
I/O13  
I/O12  
I/O11  
I/O10  
7
8
9
72  
71  
70  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VSSQ  
VSSQ  
VDDQ  
VDDQ  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
I/O22  
I/O23  
I/O  
I/O  
9
8
VSS  
V
DD/NC(1)  
NC  
VDD  
PK100-1  
NC  
V
DD  
ZZ(2)  
V
SS  
I/O24  
I/O25  
I/O7  
I/O6  
VDDQ  
V
V
DDQ  
SSQ  
VSSQ  
I/O26  
I/O27  
I/O28  
I/O29  
I/O5  
I/O4  
I/O  
I/O  
3
2
VSSQ  
V
V
SSQ  
DDQ  
VDDQ  
I/O30  
I/O31  
NC  
I/O  
I/O  
1
0
NC  
31  
33 34 35 36  
38 39 40 41 42 43 44 45 46 47 48 49 50  
37  
32  
3619 drw 02  
TopViewTQFP  
NOTES:  
1. Pin 14 can either be directly connected to VDD or not connected.  
2. Pin 64 can be left unconnected and the device will always remain in active mode.  
6.42  
5
IDT71V632, 64K x 32, 3.3V Synchronous SRAM  
with Pipelined Outputs and Single Cycle Deselect  
Commercial and Industrial Temperature Ranges  
SynchronousTruthTable(1,2)  
Address  
Used  
CE  
CS  
1
ADSP ADSC ADV  
GW  
X
X
X
X
X
X
X
H
H
H
H
L
BWE BW  
X
OE(3)  
X
X
X
X
X
L
Operation  
CS  
0
CLK  
I/O  
Deselected Cycle, Power Down  
Deselected Cycle, Power Down  
Deselected Cycle, Power Down  
Deselected Cycle, Power Down  
Deselected Cycle, Power Down  
Read Cycle, Begin Burst  
None  
H
L
X
X
L
X
H
X
H
X
L
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
H
L
X
X
X
X
X
X
X
X
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
None  
None  
L
L
None  
L
X
L
X
X
L
None  
L
L
External  
External  
External  
External  
External  
External  
External  
Next  
L
H
H
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
L
DOUT  
Read Cycle, Begin Burst  
L
L
L
H
L
Hi-Z  
Read Cycle, Begin Burst  
L
L
H
H
H
H
H
H
H
H
H
X
X
X
X
H
H
X
X
H
H
H
H
X
X
X
X
H
H
X
X
DOUT  
Read Cycle, Begin Burst  
L
L
L
H
H
L
L
DOUT  
Read Cycle, Begin Burst  
L
L
L
L
H
X
X
L
Hi-Z  
Write Cycle, Begin Burst  
L
L
L
L
D
IN  
IN  
OUT  
Write Cycle, Begin Burst  
L
L
L
X
H
H
X
X
H
H
X
X
L
X
X
X
H
H
X
X
H
H
L
D
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Write Cycle, Continue Burst  
Write Cycle, Continue Burst  
Write Cycle, Continue Burst  
Write Cycle, Continue Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
X
X
X
X
H
H
H
H
X
X
H
H
X
X
X
X
H
H
H
H
X
X
H
H
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
D
Next  
L
H
L
Hi-Z  
Next  
L
DOUT  
Next  
L
H
L
Hi-Z  
Next  
L
DOUT  
Next  
L
H
L
Hi-Z  
Next  
L
DOUT  
Next  
L
H
X
X
X
X
L
Hi-Z  
Next  
L
D
IN  
IN  
IN  
IN  
OUT  
Next  
L
X
L
X
L
D
Next  
L
H
L
D
Next  
L
X
H
H
X
X
H
H
X
X
L
X
X
X
H
H
X
X
H
H
L
D
Current  
Current  
Current  
Current  
Current  
Current  
Current  
Current  
Current  
Current  
Current  
Current  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
D
H
L
Hi-Z  
DOUT  
H
L
Hi-Z  
DOUT  
H
L
Hi-Z  
DOUT  
H
X
X
X
X
Hi-Z  
D
IN  
IN  
IN  
IN  
3619 tbl 07  
X
L
X
L
D
H
L
D
X
X
D
NOTES:  
1. L = VIL, H = VIH, X = Don’t Care.  
2. ZZ = LOW for this table.  
3. OE is an asynchronous input.  
6.42  
6
IDT71V632, 64K x 32, 3.3V Synchronous SRAM  
with Pipelined Outputs and Single Cycle Deselect  
Commercial and Industrial Temperature Ranges  
Synchronous Write Function Truth Table(1)  
GW  
H
H
L
BWE  
H
L
BW  
X
H
X
L
1
BW  
X
H
X
L
2
BW  
X
H
X
L
3
BW  
X
H
X
L
4
Operation  
Read  
Read  
Write all Bytes  
Write all Bytes  
Write Byte 1(2)  
Write Byte 2(2)  
Write Byte 3(2)  
Write Byte 4(2)  
X
L
H
H
H
H
H
L
L
H
L
H
H
L
H
H
H
L
L
H
H
H
L
H
H
L
H
3619 tbl 08  
NOTES:  
1. L = VIL, H = VIH, X = Don’t Care.  
2. Multiple bytes may be selected during the same cycle.  
AsynchronousTruthTable(1)  
Operation(2)  
ZZ  
I/O Status  
Data Out (I/O - I/O31  
High-Z  
Power  
OE  
Read  
Read  
Write  
L
L
0
)
Active  
Active  
H
X
X
X
L
L
High-Z — Data In (I/O  
0
- I/O31  
)
Active  
Deselected  
Sleep  
L
High-Z  
Standby  
Sleep  
H
High-Z  
3619 tbl 09  
NOTES:  
1. L = VIL, H = VIH, X = Don’t Care.  
2. Synchronous function pins must be biased appropriately to satisfy operation requirements.  
InterleavedBurstSequenceTable(LBO=VDD)  
Sequence 1  
Sequence 2  
Sequence 3  
Sequence 4  
A1  
0
A0  
0
A1  
0
A0  
1
A1  
1
A0  
0
A1  
1
A0  
1
First Address  
Second Address  
Third Address  
0
1
0
0
1
1
1
0
1
0
1
1
0
0
0
1
Fourth Address(1)  
1
1
1
0
0
1
0
0
3619 tbl 10  
NOTE:  
1. Upon completion of the Burst sequence the counter wraps around to its initial state.  
Linear Burst Sequence Table (LBO=VSS)  
Sequence 1  
Sequence 2  
Sequence 3  
Sequence 4  
A1  
0
A0  
0
A1  
0
A0  
1
A1  
1
A0  
0
A1  
1
A0  
1
First Address  
Second Address  
Third Address  
Fourth Address(1)  
NOTE:  
0
1
1
0
1
1
0
0
1
0
1
1
0
0
0
1
1
1
0
0
0
1
1
0
3619 tbl 11  
1. Upon completion of the Burst sequence the counter wraps around to its initial state.  
6.42  
7
IDT71V632, 64K x 32, 3.3V Synchronous SRAM  
with Pipelined Outputs and Single Cycle Deselect  
Commercial and Industrial Temperature Ranges  
DC Electrical Characteristics Over the Operating Temperature and  
Supply Voltage Range(VDD = 3.3V +10/-5%)  
Symbol  
Parameter  
Test Conditions  
DD = Max., VIN = 0V to VDD  
DD = Max., VIN = 0V to VDD  
Min.  
Max.  
5
Unit  
µA  
µA  
µA  
V
|ILI  
|
Input Leakage Current  
V
(1)  
|ILZZ  
|
ZZ and LBO Input Leakage Current  
V
30  
5
|ILO  
|
Output Leakage Current  
CE > VIH or OE > VIH, VOUT = 0V to VDD, VDD = Max.  
OL = 5mA, VDD = Min.  
OH = –5mA, VDD = Min.  
V
OL (3.3V) Output Low Voltage  
OH (3.3V) Output High Voltage  
NOTE:  
I
0.4  
V
I
2.4  
V
3619 tbl 12  
1. The LBO pin will be internally pulled to VDD if it is not actively driven in the application and the ZZ pin will be internally pulled to VSS if not actively driven.  
DC Electrical Characteristics Over the Operating Temperature and  
Supply Voltage Range(1) (VHD = VDDQ – 0.2V, VLD = 0.2V)  
SA4(3,4)  
S5  
S6  
S7  
Symbol  
Parameter  
Test Conditions  
Com'l.  
Ind.  
Com'l.  
Ind.  
Com'l.  
Ind.  
Com'l.  
Ind. Unit  
I
DD  
Operating Power  
Supply Current  
Device Selected, Outputs Open,  
220  
70  
200  
200  
180  
180  
160  
160  
mA  
mA  
mA  
V
DD = Max., VIN > VIH or < VIL,  
(2)  
f = fMAX  
ISB  
Standby Power  
Supply Current  
Device Deselected, Outputs Open,  
65  
15  
10  
65  
15  
10  
60  
15  
10  
60  
15  
10  
55  
15  
10  
55  
V
DD = Max., VIN > VIH or < VIL,  
(2)  
f = fMAX  
ISB1  
Full Standby Power  
Supply Current  
Device Deselected, Outputs Open,  
15  
15  
V
DD = Max., VIN > VHD or < VLD,  
f = 0(2)  
Full Sleep Mode  
Power Supply Current  
ZZ > VHD, VDD = Max.  
10  
10  
mA  
IZZ  
3619 tbl 13  
NOTES:  
1. All values are maximum guaranteed values.  
2. At f = fMAX, inputs are cycling at the maximum frequency of read cycles of 1/tCYC while ADSC = LOW; f=0 means no input lines are changing.  
3. SA4 speed grade corresponds to a tCD of 4.5 ns.  
4. 0°C to +70°C temperature range only.  
+3.3V  
AC Test Loads  
317Ω  
VDDQ/2  
I/O  
50Ω  
5pF*  
351Ω  
I/O  
Z0 = 50Ω  
Figure 1. AC Test Load  
3619 drw 04  
3619 drw 03  
6
5
4
3
2
1
* Including scope and jig capacitance.  
Figure 2. High-Impedence Test Load  
(for tOHZ, tCHZ, tOLZ, and tDC1)  
ΔtCD  
(Typical, ns)  
AC Test Conditions  
Input Pulse Levels  
0 to 3.0V  
2ns  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Timing Reference Levels  
AC Test Load  
1.5V  
20 30 50  
80 100  
200  
Capacitance (pF)  
1.5V  
3619 drw 05  
See Figures 1 and 2  
Figure 3. Lumped Capacitive Load, Typical Derating  
3619 tbl 14  
6.42  
8
IDT71V632, 64K x 32, 3.3V Synchronous SRAM  
with Pipelined Outputs and Single Cycle Deselect  
Commercial and Industrial Temperature Ranges  
AC Electrical Characteristics  
(VDD, VDDQ = 3.3V +10/-5%, Commercial and Industrial Temperature Ranges)  
71V632SA4(5,6)  
71V632S5  
71V632S6  
71V632S7  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
CLOCK PARAMETERS  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
CYC  
Clock Cycle Time  
8.5  
3.5  
3.5  
10  
4
12  
4.5  
4.5  
15  
5
ns  
ns  
ns  
(1)  
CH  
t
Clock High Pulse Width  
Clock Low Pulse Width  
(1)  
CL  
t
4
5
OUTPUT PARAMETERS  
____  
____  
____  
____  
t
CD  
Clock High to Valid Data  
4.5  
5
6
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
____  
tCDC  
Clock High to Data Change  
Clock High to Output Active  
Clock High to Data High-Z  
Output Enable Access Time  
Output Enable Low to Data Active  
Output Enable High to Data High-Z  
1.5  
0
1.5  
0
2
0
2
0
(2)  
CLZ  
____  
____  
____  
____  
t
(2)  
tCHZ  
1.5  
4
1.5  
5
2
5
2
6
____  
____  
____  
____  
tOE  
4
5
5
6
(2)  
(2)  
____  
____  
____  
____  
tOLZ  
0
0
0
0
____  
____  
____  
____  
tOHZ  
4
4
5
6
SETUP TIMES  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
SA  
SS  
SD  
SW  
SAV  
SC  
Address Setup Time  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
ns  
ns  
ns  
ns  
ns  
ns  
t
Address Status Setup Time  
Data in Setup Time  
t
t
Write Setup Time  
t
Address Advance Setup Time  
Chip Enable/Select Setup Time  
t
HOLD TIMES  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
HA  
HS  
HD  
HW  
HAV  
HC  
Address Hold Time  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
t
Address Status Hold Time  
Data In Hold Time  
t
t
Write Hold Time  
t
Address Advance Hold Time  
Chip Enable/Select Hold Time  
t
SLEEP MODE AND CONFIGURATION PARAMETERS  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
ZZPW  
ZZ Pulse Width  
100  
100  
34  
100  
100  
40  
100  
100  
50  
100  
100  
50  
ns  
ns  
(3)  
ZZR  
t
ZZ Recovery Time  
Configuration Set-up Time  
(4)  
CFG  
t
ns  
3619 tbl 15  
NOTES:  
1. Measured as HIGH above 2.0V and LOW below 0.8V.  
2. Transition is measured ±200mV from steady-state.  
3. Device must be deselected when powered-up from sleep mode.  
4. tCFG is the minimum time required to configure the device based on the LBO input. LBO is a static input and must not change during normal operation.  
5. The 71V632SA4 speed grade corresponds to a tCD of 4.5ns.  
6. 0°C to +70°C temperature range only.  
6.42  
9
IDT71V632, 64K x 32, 3.3V Synchronous SRAM  
with Pipelined Outputs and Single Cycle Deselect  
Commercial and Industrial Temperature Ranges  
Timing Waveform of Pipelined Read Cycle(1,2)  
6.42  
10  
tCYC  
CLK  
t
SS  
tCL  
tCH  
tHS  
(2)  
ADSP  
t
SA  
tHA  
Ax  
Az  
Ay  
ADDRESS  
tSW  
tHW  
GW  
ADV  
OE  
tSD  
tHD  
tOE  
tOLZ  
t
CD  
I1(Ay)  
DATAIN  
tOHZ  
tCDC  
t
CLZ  
DATAOUT  
O1(Ax)  
O1(Az)  
O2(Az)  
O3(Az)  
Pipelined  
Write  
Single Read  
Pipelined Burst Read  
3619 drw 07  
NOTES:  
1. Device is selected through entire cycle; CE and CS1 are LOW, CS0 is HIGH.  
2. ZZ input is LOW and LBO is Don’t Care for this cycle.  
3. O1(Ax) represents the first output from the external address Ax. I1 (Ay) represents the first input from the external address Ay. O1(Az) represents the first output from the external addresss Az; O2(Az)  
represents the next output data in the burst sequence of the base address Az, etc. where A0 and A1 are advancing for the four word burst in the sequence defined by the state of the LBO input.  
tCYC  
CLK  
ADSP  
t
SS  
t
tCL  
tCH  
HS  
ADSC  
t
SA  
HA  
t
ADDRESS  
Ay  
Ax  
Az  
t
HW  
BWE is ignored when ADSP initiates burs  
t
t
SW  
GW  
t
SC tHC  
CE, CS  
1
(Note 3)  
tHAV  
tSAV  
ADV  
(ADV suspends burst)  
OE  
tHD  
tSD  
DATAIN  
I1(Ay)  
I2(Az)  
I1(Ax)  
I3(Az)  
I4(Ay)  
I1(Az)  
I2(Ay)  
I2(Ay)  
I3(Ay)  
tOHZ  
DATAOUT  
O4(Aw)  
O3(Aw)  
Burst Write  
Burst Read  
Burst Write  
Single  
Write  
3619 drw 08  
NOTES:  
1. ZZ input is LOW, BWE is HIGH, and LBO is Don’t Care for this cycle.  
2. O4(Aw) represents the final output data in the burst sequence of the base address Aw. I1(Ax) represents the first input from the external address Ax. I1(Ay) represents the first input from the external address  
Ay; I2(Ay) represents the next input data in the burst sequence of the base address Ay, etc. where A0 and A1 are advancing for the four word burst in the sequence defined by the state of the LBO input.  
In the case of input I2(Ay) this data is valid for two cycles because ADV is high and has suspended the burst.  
3. CS0 timing transitions are identical but inverted to the CE and CS1 signals. For example, when CE and CS1 are LOW on this waveform, CS0 is HIGH.  
tCYC  
CLK  
ADSP  
t
SS  
t
tCL  
tCH  
HS  
ADSC  
t
SA  
HA  
t
Ay  
ADDRESS  
Ax  
Az  
t
t
HW  
BWE is ignored when ADSP initiates burs  
t
SW  
BWE  
t
HW  
SW  
BWx is ignored when ADSP initiates burs  
t
t
BWx  
t
SCtHC  
CE, CS  
1
(Note 3)  
tSAV  
ADV  
OE  
(ADV suspends burst)  
tHD  
tSD  
I1(Ay)  
I3(Ay)  
I2(Az)  
I3(Az)  
DATAIN  
DATAOUT  
I1(Ax)  
I4(Ay)  
I2(Ay)  
I2(Ay)  
I1(Az)  
tOHZ  
O3(Aw)  
O4(Aw)  
Burst  
Read  
Extended  
Burst Write  
Single  
Write  
Burst Write  
3619 drw 09  
NOTES:  
1. ZZ input is LOW, GW is HIGH, and LBO is Don’t Care for this cycle.  
2. O4(Aw) represents the final output data in the burst sequence of the base address Aw. I1(Ax) represents the first input from the external address Ax. I1(Ay) represents the first input from the external address  
Ay; I2(Ay) represents the next input data in the burst sequence of the base address Ay, etc. where A0 and A1 are advancing for the four word burst in the sequence defined by the state of the LBO input.  
In the case of input I2(Ay) this data is valid for two cycles because ADV is high and has suspended the burst.  
3. CS0 timing transitions are identical but inverted to the CE and CS1 signals. For example, when CE and CS1 are LOW on this waveform, CS0 is HIGH.  
IDT71V632, 64K x 32, 3.3V Synchronous SRAM  
with Pipelined Outputs and Single Cycle Deselect  
Commercial and Industrial Temperature Ranges  
Timing Waveform of Sleep (ZZ) and Power-Down Modes(1,2,3)  
6.42  
14  
IDT71V632, 64K x 32, 3.3V Synchronous SRAM  
with Pipelined Outputs and Single Cycle Deselect  
Commercial and Industrial Temperature Ranges  
Non-Burst Read Cycle Timing Waveform  
CLK  
ADSP  
ADSC  
Av  
Aw  
Ax  
Ay  
Az  
ADDRESS  
GW, BWE, BWx  
CE, CS  
1
CS0  
OE  
(Av)  
(Aw)  
(Ax)  
(Ay)  
DATAOUT  
,
3619 drw 11  
NOTES:  
1. ZZ input is LOW, ADV is HIGH and LBO is Don’t Care for this cycle.  
2. (AX) represents the data for address AX, etc.  
3. For read cycles, ADSP and ADSC function identically and are therefore interchangeable.  
6.42  
15  
IDT71V632, 64K x 32, 3.3V Synchronous SRAM  
with Pipelined Outputs and Single Cycle Deselect  
Commercial and Industrial Temperature Ranges  
Non-Burst Write Cycle Timing Waveform  
CLK  
ADSP  
ADSC  
Av  
Aw  
Ax  
Ay  
Az  
ADDRESS  
GW  
CE, CS  
1
CS0  
(Av)  
(Aw)  
(Ax)  
(Ay)  
(Az)  
DATAIN  
,
3619 drw 12  
NOTES:  
1. ZZ input is LOW, ADV and OE are HIGH, and LBO is Don’t Care for this cycle.  
2. (AX) represents the data for address AX, etc.  
3. Although only GW writes are shown, the functionality of BWE and BWx together is the same as GW.  
4. For write cycles, ADSP and ADSC have different limitations.  
6.42  
16  
IDT71V632, 64K x 32, 3.3V Synchronous SRAM  
with Pipelined Outputs and Single Cycle Deselect  
Commercial and Industrial Temperature Ranges  
100-pin Thin Quad Plastic Flatpack (TQFP) Package Diagram Outline  
6.42  
17  
IDT71V632, 64K x 32, 3.3V Synchronous SRAM  
with Pipelined Outputs and Single Cycle Deselect  
Commercial and Industrial Temperature Ranges  
OrderingInformation  
71V632  
X
S
PF  
Z
X
X
Process/  
Tempera-  
ture Range  
Device  
Type  
Power Speed  
Package  
Blank Commercial (0°C to +70°C)  
I
Industrial (–40°C to +85°C)  
G
Restricted hazardous substance device  
PF  
Plastic Thin Quad Flatpack, 100 pin (PK100-1)  
Synchronous Access Time in nanoseconds  
A4*  
5
6
7
Blank First or current generation die step.  
Z
Current generation die step optional.  
* Commercial only.  
PART NUMBER  
71V632SA4PF  
71V632S5PF  
71V632S6PF  
71V632S7PF  
SPEED IN MEGAHERTZ  
117 MHz  
t
CD PARAMETER  
CLOCK CYCLE TIME  
4.5 ns  
5 ns  
8.5 ns  
10 ns  
12 ns  
15 ns  
100 MHz  
83 MHz  
6 ns  
66 MHz  
7 ns  
3619 drw 13  
6.42  
18  
IDT71V632, 64K x 32, 3.3V Synchronous SRAM  
with Pipelined Outputs and Single Cycle Deselect  
Commercial and Industrial Temperature Ranges  
DatasheetDocumentHistory  
9/9/99  
Updatedtonewformat  
Revisedspeedofferingsto66–117MHz  
Addednon-burstreadandwritecycletimingdiagrams  
AddedDatasheetDocumentHistory  
Pg. 1, 8, 9, 17  
Pg. 15, 16  
Pg. 18  
09/30/99  
04/04/00  
08/09/00  
08/17/01  
02/28/07  
10/16/08  
05/27/10  
Pg. 1, 4, 8, 9, 17  
Pg. 17  
Addedindustrialtemperaturerangeofferings  
Added100pinTQFPpackageDiagramOutline  
Notrecommendedfornewdesigns  
RemovedNotrecommendedfornewdesignsfromthebackgroundonthedatasheet  
AddedZgenerationdiesteptodatasheetorderinginformation.  
Removed “IDT” from prderable part number.  
Pg.18  
Pg.18  
Pg. 17  
Added"Restrictedhazardoussubstancedevice"totheorderinginformation  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
ipchelp@idt.com  
800-345-7015  
800-345-7015 or  
408-284-8200  
fax: 408-284-2775  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
6.42  
19  

相关型号:

71V632S7PFGI

64KX32 CACHE SRAM, 7ns, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
ROCHESTER

71V632S7PFGI71V632S7

Cache SRAM, PQFP100, 20 X 14 MM, 1.40 MM HEIGHT, GREEN, PLASTIC, MO-136DJ, TQFP-100
IDT

71V632S7PFI8

Cache SRAM, 64KX32, 7ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
IDT

71V632SA4PF

3.3V Synchronous SRAM Pipelined Outputs Burst Counter, Single Cycle Deselect
IDT

71V632SA4PFG

Standard SRAM, 64KX32, 4.5ns, CMOS, PQFP100
IDT

71V632SA4PFG71V632SA4

Cache SRAM, PQFP100, 20 X 14 MM, 1.40 MM HEIGHT, GREEN, PLASTIC, MO-136DJ, TQFP-100
IDT

71V632ZS5PF8

Cache SRAM, 64KX32, 5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, MO-136DJ, TQFP-100
IDT

71V632ZS5PFG

Standard SRAM, 64KX32, 5ns, CMOS, PQFP100
IDT

71V632ZS5PFG71V632ZS5

Cache SRAM, PQFP100, 20 X 14 MM, 1.40 MM HEIGHT, GREEN, PLASTIC, MO-136DJ, TQFP-100
IDT

71V632ZS5PFG8

Standard SRAM, 64KX32, 5ns, CMOS, PQFP100
IDT

71V632ZS5PFGI

Standard SRAM, 64KX32, 5ns, CMOS, PQFP100
IDT

71V632ZS5PFGI71V632ZS5

Cache SRAM, PQFP100, 20 X 14 MM, 1.40 MM HEIGHT, GREEN, PLASTIC, MO-136DJ, TQFP-100
IDT