723614L20PF8 [IDT]

TQFP-120, Reel;
723614L20PF8
型号: 723614L20PF8
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

TQFP-120, Reel

文件: 总32页 (文件大小:308K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CMOS SyncBiFIFOTM WITH  
BUS-MATCHING AND BYTE SWAPPING  
64 x 36 x 2  
IDT723614  
Programmable Almost-Full and Almost-Empty flags  
Microprocessor interface control logic  
EFA, FFA, AEA, and AFA flags synchronized by CLKA  
EFB, FFB, AEB, and AFB flags synchronized by CLKB  
Passive parity checking on each port  
Parity generation can be selected for each port  
Supports clock frequencies up to 67 MHz  
Fast access times of 10 ns  
Available in 132-pin plastic quad flat package (PQF) or space-  
saving 120-pin thin quad flat package (TQFP)  
Industrial temperature range (–40°C to +85°C) is available  
Green parts available, see ordering information  
FEATURES:  
Free-running CLKA and CLKB can be asynchronous or  
coincident (simultaneous reading and writing of data on a  
single clock edge is permitted)  
Two independent clocked FIFOs (64 x 36 storage capacity each)  
buffering data in opposite directions  
Mailbox bypass Register for each FIFO  
Dynamic Port B bus sizing of 36 bits (long word), 18 bits (word),  
and 9 bits (byte)  
Selection of Big- or Little-Endian format for word and byte bus  
sizes  
Three modes of byte-order swapping on port B  
FUNCTIONALBLOCKDIAGRAM  
CLKA  
CSA  
W/RA  
ENA  
Port-A  
Control  
Logic  
MBF1  
MBA  
PEFB  
Parity  
Gen/Check  
Mail 1  
Register  
PGB  
RAM  
ARRAY  
36  
64 x 36  
RST  
Device  
Control  
ODD/  
EVEN  
Read  
Pointer  
Write  
Pointer  
EFB  
AEB  
FFA  
AFA  
Status Flag  
Logic  
FIFO1  
36  
FS0  
FS1  
Programmable Flag  
Offset Register  
B
0-B35  
A
0
- A35  
FIFO2  
FFB  
AFB  
EFA  
AEA  
Status Flag  
Logic  
Write  
Pointer  
Read  
Pointer  
36  
RAM  
ARRAY  
64 x 36  
PGA  
Mail 2  
Register  
Parity  
Gen/Check  
PEFA  
MBF2  
CLKB  
CSB  
W/RB  
ENB  
Port-B  
Control  
Logic  
BE  
SIZ0  
SIZ1  
SW0  
SW1  
3146 drw01  
IDTandtheIDTlogoareregisteredtrademarksofIntegratedDeviceTechnology,Inc. SyncBIFIFOisatrademarkofIntegratedDeviceTechnology,Inc.  
JANUARY 2009  
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES  
1
DSC-3146/3  
©
2009 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice.  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
IDT723614CMOSSYNCBIFIFOWITHBUS-MATCHING  
AND BYTE SWAPPING 64 x 36 x 2  
withachoiceofbig-orlittle-endianconfigurations.Threemodesofbyte-order  
swappingarepossiblewithanybussizeselection.Communicationbetween  
eachportcanbypasstheFIFOsviatwo36-bitmailboxregisters. Eachmailbox  
registerhasaflagtosignalwhennewmailhasbeenstored.Parityischecked  
passively on each port and may be ignored if not desired. Parity generation  
canbeselectedfordatareadfromeachport.Twoormoredevicescanbeused  
inparalleltocreatewiderdatapaths.  
DESCRIPTION:  
TheIDT723614isamonolithic,high-speed,low-powerCMOSbidirectional  
clockedFIFOmemory.Itsupportsclockfrequenciesupto67MHzandhasread  
accesstimesasfastas10ns.Twoindependent64x36dual-portSRAMFIFOs  
on board the chip buffer data in opposite directions. Each FIFO has flags to  
indicateemptyandfullconditionsandtwoprogrammableflags(Almost-Fulland  
Almost-Empty)toindicatewhenaselectednumberofwordsisstoredinmemory.  
FIFOdataonportBcanbeinputandoutputin36-bit,18-bit,and9-bitformats  
PINCONFIGURATIONS  
GND  
AEA  
EFA  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
GND  
AEB  
EFB  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
A
A
A
0
1
2
B
B
B
0
1
2
GND  
GND  
A
A
A
A
3
4
5
6
B
B
B
B
V
B
B
B
3
4
5
6
CC  
7
8
V
CC  
A
A
A
7
8
9
9
GND  
GND  
A
10  
11  
B
B
V
B
B
B
10  
11  
CC  
12  
13  
14  
A
V
CC  
98  
A
12  
13  
14  
97  
A
96  
A
GND  
95  
GND  
94  
A
A
A
A
A
A
15  
16  
17  
18  
19  
20  
B
B
B
B
B
B
15  
16  
17  
18  
19  
20  
93  
92  
91  
90  
89  
88  
GND  
GND  
87  
A21  
A22  
A23  
B21  
B22  
B23  
86  
85  
84  
3146 drw02  
NOTES:  
1. Electrical pin 1 in center of beveled edge.  
2. Uses Yamaichi socket IC51-1324-828.  
PQFP (PQ132-1, ORDER CODE: PQF)  
TOP VIEW  
JANUARY14,2009  
2
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
IDT723614CMOSSYNCBIFIFOWITHBUS-MATCHING  
AND BYTE SWAPPING 64 x 36 x 2  
ThisdeviceisaclockedFIFO,whichmeanseachportemploysasynchro-  
nousinterface.AlldatatransfersthroughaportaregatedtotheLOW-to-HIGH  
transitionofacontinuous(free-running)portclockbyenablesignals.Theclocks  
for each port are independent of one another and can be asynchronous or  
coincident. The enables for each port are arranged to provide a simple  
bidirectionalinterfacebetweenmicroprocessorsand/orbusescontrolledbya  
synchronousinterface.  
The Full Flag (FFA, FFB) and Almost-Full flag (AFA, AFB) of a FIFO are  
two-stagesynchronizedtotheportclockthatwritesdatatoitsarray. TheEmpty  
Flag(EFA,EFB)andAlmost-Empty(AEA,AEB)flagofaFIFOaretwostage  
synchronizedtotheportclockthatreadsdatafromitsarray.  
The IDT723614 is characterized for operation from 0°C to 70°C.  
PINCONFIGURATIONS(CONTINUED)  
A
A
A
23  
22  
21  
1
B
22  
21  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
2
B
3
GND  
GND  
4
B
B
B
B
B
B
B
B
B
B
B
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
A
A
A
A
A
A
A
A
A
A
A
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
GND  
GND  
B
B
B
V
B
B
B
B
9
8
7
CC  
6
5
4
3
A
A
A
9
8
7
VCC  
A
A
A
A
6
5
4
3
GND  
GND  
B2  
B1  
B0  
A
A
A
2
1
0
EFB  
AEB  
AFB  
EFA  
AEA  
3146 drw03  
NOTE:  
1. Pin 1 identifier in corner.  
TQFP (PN120-1, ORDER CODE: PF)  
TOP VIEW  
COMMERCIALANDINDUSTRIAL  
JANUARY14,2009  
3
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
IDT723614CMOSSYNCBIFIFOWITHBUS-MATCHING  
AND BYTE SWAPPING 64 x 36 x 2  
PIN DESCRIPTION  
Symbol  
A0-A35  
AEA  
Name  
I/O  
I/O  
O
Description  
PortAData  
36-bitbidirectionaldataportforsideA.  
ProgrammableAlmost-EmptyflagsynchronizedtoCLKA.ItisLOWwhenthenumberof36-bit  
PortAAlmost-Empty  
Flag  
(PortA) words in FIFO2 is less than or equal to the value in the offset register, X.  
Programmable Almost-EmptyflagsynchronizedtoCLKB. Itis LOWwhenthe numberof36-bit  
(PortB) words in FIFO1 is less than or equal to the value in the offset register, X.  
ProgrammableAlmost-FullflagsynchronizedtoCLKA.ItisLOWwhenthenumberof36-bitempty  
(PortA) locations inFIFO1is less thanorequaltothe value inthe offsetregister, X.  
ProgrammableAlmost-FullflagsynchronizedtoCLKB.ItisLOWwhenthenumberof36-bitempty  
(PortB) locations inFIFO2is less thanorequaltothe value inthe offsetregister, X.  
AEB  
AFA  
AFB  
PortBAlmost-Empty  
Flag  
O
PortAAlmost-Full  
Flag  
O
PortBAlmost-Full  
Flag  
O
B0-B35  
Port B Data  
I/O  
I
36-bitbidirectionaldataportforsideB.  
BE  
Big-endianselect  
Selects the bytes on portBusedduringbyte orworddata transfer. ALOWonBE selects the most  
mostsignificantbytesonB0-B35foruse,andaHIGHselectstheleastsignificantbytes.  
CLKA  
CLKB  
Port A Clock  
PortBClock  
I
I
CLKA is a continuous clock that synchronizes all data transfers through port A and can be  
asynchronous or coincident to CLKB. EFA, FFA, AFA, and AEA are synchronized to the  
LOW-to-HIGHtransitionofCLKA.  
CLKB is a continuous clock that synchronizes all data transfers through port B and can be  
asynchronous orcoincidenttoCLKA. PortBbyte swappinganddata portsizingoperations are  
alsosynchronoustotheLOW-to-HIGHtransitionofCLKB.EFB,FFB,AFB,andAEBaresynchro-  
nizedtotheLOW-to-HIGHtransitionofCLKB.  
CSA  
CSB  
EFA  
PortAChipSelect  
PortBChipSelect  
PortAEmptyFlag  
I
I
CSAmustbe LOWtoenable a LOW-to-HIGHtransitionofCLKAtoreadorwrite data onportA.  
The A0-A35 outputs are in the high-impedance state when CSA is HIGH.  
CSBmustbe LOWtoenable a LOW-to-HIGHtransitionofCLKBtoreadorwrite data onportB.  
The B0-B35 outputs are in the high-impedance state when CSB is HIGH.  
O
EFAis synchronizedtothe LOW-to-HIGHtransitionofCLKA. WhenEFAis LOW,FIFO2is  
(PortA) empty, and reads from its memory are disabled. Data can be read from FIFO2 to the output  
register when EFA is HIGH. EFA is forced LOW when the device is reset and is set HIGH by  
thesecondLOW-to-HIGHtransitionofCLKAafterdataisloadedintoemptyFIFO2memory.  
EFB  
PortBEmptyFlag  
(PortB)  
O
EFBis synchronizedtothe LOW-to-HIGHtransitionofCLKB. WhenEFBis LOW,the FIFO1is  
empty, andreads fromits memoryare disabled. Data canbe readfromFIFO1tothe output  
register when EFB is HIGH. EFB is forced LOW when the device is reset and is set HIGH by the  
secondLOW-to-HIGHtransitionofCLKBafterdataisloadedintoemptyFIFO1memory.  
ENA  
ENB  
FFA  
Port A Enable  
Port B Enable  
Port A Full Flag  
I
I
ENA must be HIGH to enable a LOW-to-HIGH transition of CLKA to read or write data on port A.  
ENB must be HIGH to enable a LOW-to-HIGH transition of CLKB to read or write data on port B.  
FFAis synchronizedtothe LOW-to-HIGHtransitionofCLKA. WhenFFAis LOW, FIFO1is full,  
O
(PortA) and writes to its memory are disabled. FFA is forced LOW when the device is reset and is set  
HIGHbythesecondLOW-to-HIGHtransitionofCLKAafterreset.  
FFB  
Port B Full Flag  
O
FFBis synchronizedtothe LOW-to-HIGHtransitionofCLKB. WhenFFBis LOW, FIFO2is full,  
(PortB) and writes to its memory are disabled. FFB is forced LOW when the device is reset and is set  
HIGHbythesecondLOW-to-HIGHtransitionofCLKBafterreset.  
FS1, FS0 Flag-OffsetSelects  
I
I
The LOW-to-HIGHtransitionofRST latches the values ofFS0andFS1, whichselects one of  
fourpresetvalues fortheAlmost-FullflagandAlmost-Emptyflagoffset.  
MBA  
Port A Mailbox  
Select  
A HIGH level on MBA chooses a mailbox register for a port A read or write operation. When the  
A0-A35outputs are active, a HIGHlevelonMBAselects data fromthe mail2registerforoutput,  
andaLOWlevelselectsFIFO2outputregisterdataforoutput.  
MBF1  
Mail1RegisterFlag  
O
O
MBF1is setLOWbyaLOW-to-HIGHtransitionofCLKAthatwrites datatothemail1register.  
Writes to the mail1 register are inhibited while MBF1 is set LOW. MBF1 is set HIGH by a LOW-to-  
HIGH transition of CLKB when a port B read is selected and both SIZ1 and SIZ0 are HIGH.  
MBF1 is set HIGH when the device is reset.  
MBF2is setLOWbyaLOW-to-HIGHtransitionofCLKBthatwrites datatothemail2register.  
Writes to the mail2 register are inhibited while MBF2 is set LOW. MBF2 is set HIGH by a LOW-to-  
HIGH transition of CLKA when a port A read is selected and MBA is HIGH. MBF2 is set HIGH  
when the device is reset.  
MBF2  
Mail2RegisterFlag  
JANUARY14,2009  
4
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
IDT723614CMOSSYNCBIFIFOWITHBUS-MATCHING  
AND BYTE SWAPPING 64 x 36 x 2  
PIN DESCRIPTION (CONTINUED)  
Symbol  
Name  
I/O  
Description  
ODD/  
EVEN  
Odd/EvenParity  
Select  
I
Odd parity is checked on each port when ODD/EVEN is HIGH, and even parity is checked when  
ODD/EVEN is LOW. ODD/EVENalsoselects the type ofparitygeneratedforeachportifparity  
generation is enabled for a read operation.  
PEFA  
Port A Parity Error  
Flag  
O
When any byte applied to terminals A0-A35 fails parity, PEFA is LOW. Bytes are organized as  
(PortA) A0-A8,A9-A17,A18-A26,andA27-A35,withthe mostsignificantbitofeachbyte servingas the  
paritybit.The type ofparitycheckedis determinedbythe state ofthe ODD/EVENinput.  
The parity trees used to check the A0-A35 inputs are shared by the mail2 register to generate  
parityifparitygenerationis selectedbyPGA. Therefore, ifa mail2readparitygenerationis setup  
by having W/RA LOW, MBA HIGH, and PGA HIGH, the PEFA flag is forced HIGH regardless of the  
A0-A35inputs.  
PEFB  
Port B Parity Error  
Flag  
O
When any valid byte applied to terminals B0-B35 fails parity, PEFB is LOW. Bytes are organized  
(PortB) as B0-B8, B9-B17, B18-B26, B27-B35 with the most significant bit of each byte serving as the parity  
bit. A byte is valid when it is used by the bus size selected for Port B. The type of parity checked is  
determined by the state of the ODD/EVEN input.  
The parity trees used to check the B0-B35 inputs are shared by the mail 1 register to generate parity if  
parity generation is selected by PGB. Therefore, if a mail1 read with parity generation is setup by  
having W/RB LOW, SIZ1 and SIZ0 HIGH, and PGB HIGH, the PEFB flag is forced HIGH regardless  
ofthestateoftheB0-B35inputs.  
PGA  
PGB  
RST  
Port A Parity  
Generation  
I
I
I
Parity is generated for data reads from port A when PGA is HIGH. The type of parity generated is  
selectedbythe state ofthe ODD/EVENinput. Bytes are organizedas A0-A8, A9-A17, A18-A26,  
andA27-A35.Thegeneratedparitybits areoutputinthemostsignificantbitofeachbyte.  
Port B Parity  
Generation  
Parity is generated for data reads from port B when PGB is HIGH. The type of parity generated is  
selected by the state of the ODD/EVEN input. Bytes are organized as B0-B8, B9-B17, B18-B26,  
andB27-B35. The generatedparitybits are outputinthe mostsignificantbitofeachbyte.  
Reset  
To resetthedevice,fourLOW-to-HIGHtransitionsofCLKAandfourLOW-to-HIGHtransitionsof  
CLKBmustoccurwhile RST is LOW. This sets the AFA, AFB, MBF1, and MBF2 flags HIGH and  
the EFA,EFB,AEA,AEB,FFA,andFFBflags LOW. The LOW-to-HIGHtransitionofRSTlatches  
thestatusoftheFS1andFS0inputstoselectAlmost-FullandAlmost-Emptyflagoffsets.  
SIZ0, SIZ1 PortBBus Size  
Selects  
I
A LOW-to-HIGH transition of CLKB latches the states of SIZ0, SIZ1, and BE, and the following  
(PortB) LOW-to-HIGH transition of CLKB implements the latched states as a port B bus size. Port B bus sizes  
can be long word, word, or byte. A high on both SIZ0 and SIZ1 accesses the mailbox registers for  
a port B 36-bit write or read.  
SW0, SW1 Port B byte Swap  
Select  
I
At the beginning of each long word transfer, one of four modes of byte-order swapping is selected by  
(Port B) SW0 and SW1. The four modes are no swap, byte swap, word swap, and byte-word swap. Byte-  
order swapping is possible with any bus-size selection.  
W/RA  
W/RB  
PortAWrite/Read  
Select  
I
A HIGH selects a write operationanda LOWselects a readoperationonfora LOW-to-HIGHportA  
transitionofCLKA. TheA0-A35outputs areinthehigh-impedancestatewhenW/RAis HIGH.  
A HIGH selects a write operationanda LOWselects a readoperationonfora LOW-to-HIGHportB  
B transitionofCLKB. The B0-B35outputs are inthe high-impedance state whenW/RBis HIGH.  
PortBWrite/Read  
Select  
I
COMMERCIALANDINDUSTRIAL  
5
JANUARY14,2009  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
IDT723614CMOSSYNCBIFIFOWITHBUS-MATCHING  
AND BYTE SWAPPING 64 x 36 x 2  
ABSOLUTEMAXIMUMRATINGSOVEROPERATINGFREE-AIRTEMPERATURE  
RANGE(UNLESSOTHERWISENOTED)(1)  
Symbol  
Rating  
Commercial  
–0.5to7  
Unit  
V
VCC  
SupplyVoltageRange  
(2)  
VI  
InputVoltageRange  
–0.5 to VCC+0.5  
–0.5 to VCC+0.5  
±20  
V
VO(2)  
OutputVoltageRange  
V
IIK  
Input Clamp Current, (VI < 0 or VI > VCC)  
Output Clamp Current, (VO < 0 or VO > VCC)  
Continuous OutputCurrent, (VO =0toVCC)  
ContinuousCurrentThroughVCC orGND  
StorageTemperatureRange  
mA  
mA  
mA  
mA  
°C  
IOK  
IOUT  
ICC  
±50  
±50  
±500  
TSTG  
–65to150  
NOTES:  
1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device  
at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended  
periods may affect device reliability.  
2. The input and output voltage ratings may be exceeded provided the input and output current ratings are observed.  
RECOMMENDEDOPERATING  
CONDITIONS  
Symbol  
VCC  
VIH  
Parameter  
Min. Max. Unit  
SupplyVoltage  
4.5  
2
5.5  
V
V
HIGH Level Input Voltage  
LOW-LevelInputVoltage  
HIGH-LevelOutputCurrent  
LOW-LevelOutputCurrent  
OperatingFree-airTemperature  
VIL  
0.8  
–4  
8
V
IOH  
mA  
mA  
°C  
IOL  
TA  
0
70  
ELECTRICALCHARACTERISTICSOVERRECOMMENDEDOPERATING  
FREE-AIR TEMPERATURE RANGE (UNLESS OTHERWISE NOTED)  
Parameter  
Test Conditions  
Min.  
Typ.(1)  
Max.  
Unit  
V
VOH  
VOL  
II  
VCC = 4.5V,  
VCC = 4.5 V,  
VCC = 5.5 V,  
VCC = 5.5 V,  
VCC = 5.5 V,  
VI = 0,  
IOH = –4 mA  
IOL = 8 mA  
VI = VCC or 0  
VO = VCC or 0  
IO = 0 mA,  
f = 1 MHz  
2.4  
0.5  
±50  
±50  
1
V
µA  
µA  
mA  
pF  
IOZ  
(2)  
ICC  
VI = VCC or GND  
CIN  
4
8
COUT  
VO = 0,  
f = 1 MHZ  
pF  
NOTES:  
1 . All typical values are at VCC = 5 V, TA = 25°C.  
2. For additional ICC information, see the following page.  
JANUARY14,2009  
6
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
IDT723614CMOSSYNCBIFIFOWITHBUS-MATCHING  
AND BYTE SWAPPING 64 x 36 x 2  
400  
350  
V
CC = 5.5V  
f
= 1/2 f  
data  
T = 25° C  
s
A
V
V
CC = 5V  
C = 0 pF  
L
300  
CC = 4.5V  
250  
200  
150  
100  
50  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
3146 drw04  
fs Clock Frequency MHz  
Figure 1. Typical Characteristics: Supply Current vs Clock Frequency  
CALCULATINGPOWERDISSIPATION  
The ICC(f) current for the graph in Figure 1 was taken while simultaneously reading and writing the FIFO on the IDT723614 with CLKA and CLKB set  
to fS. All data inputs and data outputs change state during each clock cycle to consume the highest supply current. Data outputs were disconnected to  
normalize the graph to a zero-capacitance load. Once the capacitive lead per data-output channel is known, the power dissipation can be calculated with  
the equation below.  
WithICC(f) takenfromFigure 1, the maximumpowerdissipation(PT)ofthe IDT723614canbe calculatedby:  
2
PT = VCC x ICC(f) + Σ(CL x VOH x fo)  
where:  
CL  
fo  
VOH  
=
=
=
output capacitance load  
switching frequency of an output  
output high level voltage  
When no reads or writes are occurring on the IDT723614, the power dissipated by a single clock (CLKA or CLKB) input running at frequency fs is  
calculated by:  
PT=VCC x fS x 0.290 mA/MHz  
COMMERCIALANDINDUSTRIAL  
7
JANUARY14,2009  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
IDT723614CMOSSYNCBIFIFOWITHBUS-MATCHING  
AND BYTE SWAPPING 64 x 36 x 2  
DC ELECTRICAL CHARACTERISTICS OVER RECOMMENDED RANGES OF  
SUPPLY VOLTAGE AND OPERATING FREE-AIR TEMPERATURE  
(Commercial: VCC = 5.0V ±10%, TA = 0°C to +70°C; Industrial; VCC = 5.0V 10%,TA = 40°C to +85°C)  
Commercial  
Com'l & Ind'l(1)  
IDT723614L20  
IDT723614L15  
Symbol  
fS  
Parameter  
Min.  
Max.  
Min.  
Max.  
50  
Unit  
MHz  
ns  
Clock Frequency, CLKA or CLKB  
66.7  
tCLK  
tCLKH  
tCLKL  
tDS  
Clock Cycle Time, CLKA or CLKB  
15  
6
20  
8
Pulse Duration, CLKA and CLKB HIGH  
PulseDuration,CLKAandCLKBLOW  
SetupTime, A0-A35before CLKAandB0-B35before CLKB↑  
ns  
6
8
ns  
4
5
ns  
tENS  
Setup Time, CSA, W/RA, ENA and MBA before CLKA; CSB, W/RB and ENB  
beforeCLKB↑  
5
5
ns  
tSZS  
tSWS  
tPGS  
Setup Time, SIZ0, SIZ1, and BE before CLKB↑  
4
5
4
5
7
5
ns  
ns  
ns  
SetupTime,SW0andSW1beforeCLKB↑  
SetupTime, ODD/EVENandPGAbefore CLKA;ODD/EVENandPGBbefore  
(2)  
CLKB↑  
(3)  
tRSTS  
tFSS  
tDH  
SetupTime,RSTLOWbeforeCLKAorCLKB↑  
5
5
1
1
6
6
1
1
ns  
ns  
ns  
ns  
Setup Time, FS0 and FS1 before RST HIGH  
HoldTime,A0-A35afterCLKAandB0-B35afterCLKB↑  
tENH  
Hold Time, CSA, W/RA, ENA and MBA after CLKA; CSB, W/RB, and ENB  
afterCLKB↑  
tSZH  
tSWH  
tPGH  
Hold Time, SIZ0, SIZ1, and BE after CLKB↑  
2
0
0
2
0
0
ns  
ns  
ns  
HoldTime,SW0andSW1afterCLKB↑  
HoldTime,ODD/EVENandPGAafterCLKA;ODD/EVENandPGBafter  
(2)  
CLKB↑  
(3)  
tRSTH  
tFSH  
HoldTime, RSTLOWafterCLKAorCLKB↑  
5
4
6
4
ns  
ns  
ns  
ns  
Hold Time, FS0 and FS1 after RST HIGH  
tSKEW1(4) Skew Time, between CLKAand CLKBfor EFA, EFB, FFA, and FFB  
tSKEW2(4) Skew Time, between CLKAand CLKBfor AEA, AEB, AFA, and AFB  
NOTES:  
8
8
14  
16  
1. Industrial temperature range product for 20ns speed grade is available as a standard device. All other speed grades are available by special order.  
2. Only applies for a clock edge that does a FIFO read.  
3. Requirement to count the clock edge as one of at least four needed to reset a FIFO.  
4. Skew time is not a timing constraint for proper device operation and is only included to illustrate the timing relationship between CLKA cycle and CLKB cycle.  
JANUARY14,2009  
8
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
IDT723614CMOSSYNCBIFIFOWITHBUS-MATCHING  
AND BYTE SWAPPING 64 x 36 x 2  
SWITCHING CHARACTERISTICS OVER RECOMMENDED RANGES OF  
SUPPLY VOLTAGE AND OPERATING FREE-AIR TEMPERATURE, CL = 30PF  
(Commercial: VCC = 5.0V ±10%, TA = 0°C to +70°C; Industrial; VCC = 5.0V 10%,TA = 40°C to +85°C)  
Commercial  
Com'l & Ind'l(1)  
IDT723614L20  
IDT723614L15  
Symbol  
tA  
Parameter  
Min.  
2
Max.  
Min.  
2
Max.  
12  
Unit  
ns  
Access Time,CLKAtoA0-A35andCLKBtoB0-B35  
Propagation Delay Time, CLKAto FFA and CLKBto FFB  
PropagationDelayTime, CLKAtoEFAandCLKBtoEFB  
PropagationDelayTime, CLKAtoAEAandCLKBtoAEB  
PropagationDelayTime, CLKAtoAFAandCLKBtoAFB  
10  
10  
10  
10  
10  
9
tWFF  
tREF  
tPAE  
tPAF  
tPMF  
2
2
12  
ns  
2
2
12  
ns  
2
2
12  
ns  
2
2
12  
ns  
Propagation Delay Time, CLKAto MBF1 LOW or MBF2 HIGH and CLKBto  
MBF2 LOW or MBF1 HIGH  
1
1
12  
ns  
tPMR  
PropagationDelayTime, CLKAtoB0-B35(2) andCLKBtoA0-A35(3)  
3
2
1
3
3
2
11  
11  
11  
10  
11  
11  
3
2
1
3
3
2
13  
12  
ns  
ns  
ns  
ns  
ns  
ns  
tPPE(4) Propagationdelaytime,CLKBtoPEFB  
tMDV  
tPDPE  
tPOPE  
Propagation Delay Time, MBA to A0-A35 valid and SIZ1, SIZ0 to B0-B35 valid  
Propagation Delay Time, A0-A35 valid to PEFA valid; B0-B35 valid to PEFB valid  
Propagation Delay Time, ODD/EVEN to PEFAand PEFB  
11. 5  
11  
12  
(5)  
tPOPB Propagation Delay Time, ODD/EVEN to parity bits (A8, A17, A26, A35) and  
12  
(B8, B17, B26, B35)  
tPEPE  
Propagation Delay Time, CSA, ENA, W/RA, MBA, or PGA to PEFA; CSB, ENB,  
W/RB, SIZ1, SIZ0, or PGB to PEFB  
1
3
11  
12  
1
3
12  
13  
ns  
ns  
(5)  
tPEPB  
Propagation Delay Time, CSA, ENA, W/RA, MBA, or PGA to parity bits (A8, A17,  
A26, A35); CSB, ENB, W/RB, SIZ1, SIZ0, or PGB to parity bits (B8, B17, B26, B35)  
tRSF  
tEN  
Propagation Delay Time, RST to (MBF1, MBF2) HIGH  
1
2
15  
10  
1
2
20  
12  
ns  
ns  
Enable Time, CSAandW/RALOWtoA0-A35active andCSBLOWandW/RB  
HIGHtoB0-B35active  
tDIS  
Disable Time, CSA or W/RA HIGH to A0-A35 at high-impedance and CSB HIGH or  
W/RBLOWtoB0-B35athigh-impedance  
1
8
1
9
ns  
NOTES:  
1. Industrial temperature range product for 20ns speed grade is available as a standard device. All other speed grades are available by special order.  
2. Writing data to the mail1 register when the B0-B35 outputs are active and SIZ1, SIZ0 are HIGH.  
3. Writing data to the mail2 register when the A0-A35 outputs are active and MBA is HIGH.  
4. Only applies when a new port B bus size is implemented by the rising CLKB edge.  
5. Only applies when reading data from a mail register.  
COMMERCIALANDINDUSTRIAL  
JANUARY14,2009  
9
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
IDT723614CMOSSYNCBIFIFOWITHBUS-MATCHING  
AND BYTE SWAPPING 64 x 36 x 2  
B, EFBis setLOWwhenthefourthbyteorsecondwordofthelastlongword  
is read.  
SIGNALDESCRIPTIONS  
The read pointer of a FIFO is incremented each time a new word is  
clocked to the output register. The state machine that controls an Empty  
Flag monitors a write-pointer and read-pointer comparator that indicates  
whentheFIFOSRAMstatusisempty,empty+1,orempty+2. Awordwritten  
to a FIFO can be read to the FIFO output register in a minimum of three  
cycles of the Empty Flag synchronizing clock. Therefore, an Empty Flag is  
LOW if a word in memory is the next data to be sent to the FIFO output  
register and two cycles of the port clock that reads data from the FIFO have  
notelapsedsincethetimethewordwaswritten. TheEmptyFlagoftheFIFO  
is set HIGH by the second LOW-to-HIGH transition of the synchronizing  
clock, and the new data word can be read to the FIFO output register in the  
following cycle.  
RESET  
The IDT723614 is reset by taking the Reset (RST) input LOW for at least  
four port A clock (CLKA) and four port B clock (CLKB) LOW-to-HIGH  
transitions. The Reset input can switch asynchronously to the clocks. A  
device resetinitializes the internalreadandwrite pointers ofeachFIFOand  
forces the Full Flags (FFA, FFB) LOW, the Empty Flags (EFA, EFB) LOW,  
the Almost-Empty flags (AEA, AEB) LOW and the Almost-Full flags (AFA,  
AFB) HIGH. A reset also forces the Mailbox Flags (MBF1, MBF2) HIGH.  
After a reset, FFA is set HIGH after two LOW-to-HIGH transitions of CLKA  
and FFB is set HIGH after two LOW-to-HIGH transitions of CLKB. The  
device must be reset after power up before data is written to its memory.  
A LOW-to-HIGH transition on the RST input loads the Almost-Full and  
Almost-EmptyOffsetregister(X)withthevaluesselectedbytheFlagSelect  
(FS0, FS1) inputs. The values that can be loaded into the registers are  
shown in Table 1.  
A LOW-to-HIGH transition on an Empty Flag synchronizing clock begins  
thefirstsynchronizationcycleofawriteiftheclocktransitionoccursattimetSKEW1  
orgreaterafterthewrite. Otherwise,thesubsequentclockcyclecanbethefirst  
synchronization cycle (see Figure 14 and 15).  
FIFO WRITE/READ OPERATION  
FULL FLAG (FFA, FFB)  
The state of port A data A0-A35 outputs is controlled by the port A Chip  
Select(CSA)andtheportAWrite/Readselect(W/RA). TheA0-A35outputs  
areinthehigh-impedancestatewheneitherCSAorW/RAis HIGH.TheA0-  
A35 outputs are active when both CSA and W/RA are LOW. Data is loaded  
into FIFO1 from the A0-A35 inputs on a LOW-to-HIGH transition of CLKA  
when CSA is LOW, W/RA is HIGH, ENA is HIGH, MBA is LOW, and FFA  
is HIGH. Datais readfromFIFO2totheA0-A35outputs byaLOW-to-HIGH  
transition of CLKA when CSA is LOW, W/RA is LOW, ENA is HIGH, MBA  
is LOW, and EFA is HIGH (see Table 2).  
The portBcontrolsignals are identicaltothose ofportA. The state ofthe  
port B data (B0-B35) outputs is controlled by the port B Chip Select (CSB)  
andtheportBWrite/Readselect(W/RB). TheB0-B35outputsareinthehigh-  
impedancestatewheneitherCSBorW/RBisHIGH. TheB0-B35outputsare  
activewhenbothCSBandW/RBareLOW.DataisloadedintoFIFO2fromthe  
B0-B35inputson aLOW-to-HIGHtransitionofCLKBwhenCSBisLOW,W/RB  
is HIGH, ENB is HIGH, EFB is HIGH, and either SIZ0 or SIZ1 is LOW. Data  
isreadfromFIFO1totheB0-B35outputsbyaLOW-to-HIGHtransitionofCLKB  
whenCSBisLOW,W/RBisLOW,ENBisHIGH, EFBisHIGH,andeitherSIZ0  
or SIZ1 is LOW (see Table 3).  
The Full Flag of a FIFO is synchronized to the port clock that writes data  
to its array. When the Full Flag is HIGH, a memory location is free in the  
SRAMtoreceive newdata. Nomemorylocations are free whenthe fullflag  
is LOW and attempted writes to the FIFO are ignored.  
Each time a word is written to a FIFO, the write pointer is incremented.  
The state machine that controls a Full Flag monitors a write-pointer and  
read-pointer comparator that indicates when the FIFO SRAM status is full,  
full-1, or full-2. From the time a word is read from a FIFO, the previous  
memory location is ready to be written in a minimum of three cycles of the  
FullFlagsynchronizingclock. Therefore, a FullFlagis LOWifless thantwo  
cycles of the Full Flag synchronizing clock have elapsed since the next  
memorywritelocationhas beenread. ThesecondLOW-to-HIGHtransition  
ontheFullFlagsynchronizationclockafterthereadsetstheFullFlagHIGHand  
thedatacanbewritteninthefollowingclockcycle.  
A LOW-to-HIGH transition on a Full Flag synchronizing clock begins the  
first synchronization cycle of a read if the clock transition occurs at time  
tSKEW1 orgreateraftertheread. Otherwise,thesubsequentclockcyclecan  
be the first synchronization cycle (see Figure 16 and 17).  
The setup and hold time constraints to the port clocks for the port Chip  
Selects (CSA, CSB) and Write/Read selects (W/RA, W/RB) are only for  
enabling write and read operations and are not related to high-impedance  
control of the data outputs. If a port enable is LOW during a clock cycle, the  
port Chip Select and Write/Read select can change states during the setup  
and hold time window of the cycle.  
ALMOST-EMPTY FLAGS (AEA, AEB)  
The Almost-Empty flag of a FIFO is synchronized to the port clock that  
reads datafromits array. Thestatemachinethatcontrols anAlmost-Empty  
flag monitors a write-pointer and a read-pointer comparator that indicates  
when the FIFO SRAM status is almost-empty, almost-empty+1, or almost-  
empty+2. The almost-emptystate is definedbythe value ofthe Almost-Full  
and Almost-Empty Offset register (X). This register is loaded with one of  
four preset values during a device reset (see Reset above). An Almost-  
Empty flag is LOW when the FIFO contains X or less long words in memory  
and is HIGH when the FIFO contains (X+1) or more long words.  
Two LOW-to-HIGH transitions of the Almost-Empty flag synchronizing  
clock are required after a FIFO write for the Almost-Empty flag to reflect the  
new level of fill. Therefore, the Almost-Empty flag of a FIFO containing  
(X+1) or more long words remains LOW if two cycles of the synchronizing  
clock have not elapsed since the write that filled the memory to the (X+1)  
level. An Almost-Empty flag is set HIGH by the second LOW-to-HIGH  
transition of the synchronizing clock after the FIFO write that fills memory  
to the (X+1) level. A LOW-to-HIGH transition of an Almost-Empty flag  
synchronizingclockbegins the firstsynchronizationcycle ifitoccurs attime  
SYNCHRONIZED FIFO FLAGS  
Each FIFO is synchronized to its port clock through two flip-flop stages.  
This is done to improve flag reliability by reducing the probability of  
metastable events on the output when CLKA and CLKB operate asynchro-  
nouslytooneanother.EFA,AEA,FFA,andAFAaresynchronizedtoCLKA.  
EFB, AEB, FFB, and AFB are synchronized to CLKB. Tables 4 and 5 show  
the relationship of each port flag to FIFO1 and FIFO2.  
EMPTY FLAGS (EFA, EFB)  
TheEmptyFlagofaFIFOissynchronizedtotheportclockthatreadsdata  
fromitsarray. WhentheEmptyFlagisHIGH,newdatacanbereadtotheFIFO  
outputregister. WhentheEmptyFlagisLOW,theFIFOisemptyandattempted  
FIFOreadsareignored.WhenreadingFIFO1withabyteorwordsizeonport  
JANUARY14,2009  
10  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
IDT723614CMOSSYNCBIFIFOWITHBUS-MATCHING  
AND BYTE SWAPPING 64 x 36 x 2  
tSKEW2 or greater after the write that fills the FIFO to (X+1) long words. offill. Therefore,theAlmost-FullflagofaFIFOcontaining[64-(X+1)]orless  
Otherwise, the subsequent synchronizing clock cycle can be the first words remains LOW if two cycles of the synchronizing clock have not  
synchronization cycle (see Figure 18 and 19).  
elapsed since the read that reduced the number of long words in memory  
to [64-(X+1)]. An Almost-Full flag is set HIGH by the second LOW-to-HIGH  
transition of the synchronizing clock after the FIFO read that reduces the  
ALMOST FULL FLAGS (AFA, AFB)  
TheAlmost-FullflagofaFIFOissynchronizedtotheportclockthatwrites number of long words in memory to [64-(X+1)]. A LOW-to-HIGH transition  
data to its array. The state machine that controls an Almost-Full flag of an Almost-Full flag synchronizing clock begins the first synchronization  
monitors a write-pointer and read-pointer comparator that indicates when cycleifitoccursattimetSKEW2orgreaterafterthereadthatreducesthenumber  
the FIFO SRAM status is almost full, almost full-1, or almost full-2. The oflongwordsinmemoryto[64-(X+1)]. Otherwise,thesubsequentsynchro-  
almost-fullstateisdefinedbythevalueoftheAlmost-FullandAlmost-Empty nizingclockcyclecanbethefirstsynchronizationcycle(seeFigure20and21).  
Offset register (X). This register is loaded with one of four preset values  
during a device reset (see Reset above). An Almost-Full flag is LOW when MAILBOX REGISTERS  
the FIFO contains (64-X) or more long words in memory and is HIGH when  
the FIFO contains [64-(X+1)] or less long words.  
Each FIFO has a 36-bit bypass register to pass command and control  
information between port A and port B without putting it in queue. The  
TwoLOW-to-HIGHtransitionsoftheAlmost-Fullflagsynchronizingclock Mailbox-Select (MBA, MBB) inputs choose between a mail register and a  
arerequiredafteraFIFOreadfortheAlmost-Fullflagtoreflectthenewlevel FIFOforaportdatatransferoperation. ALOW-to-HIGHtransitiononCLKA  
writes A0-A35 data to the mail1 register when a port A write is selected by  
CSA,W/RA,andENAwithMBAHIGH. ALOW-to-HIGHtransitiononCLKB  
writes B0-B35 data to the mail2 register when a port B write is selected by  
TABLE 1 — FLAG PROGRAMMING  
CSB, W/RB, andENBwithbothSIZ1andSIZ0HIGH. Writingdata toa mail  
register sets the corresponding flag (MBF1 or MBF2) LOW. Attempted  
writes to a mail register are ignored while the mail flag is LOW.  
ALMOST-FULL AND  
ALMOST-EMPTY FLAG  
OFFSET REGISTER (X)  
FS1  
FS0  
RST  
When the port A data outputs (A0-A35) are active, the data on the bus  
comesfromtheFIFO2outputregisterwhenMBAisLOWandfromthemail2  
register when MBA is HIGH. When the port B data outputs (B0-B35) are  
active, the data on the bus comes from the FIFO1 output register when  
eitherone orbothSIZ1andSIZ0are LOWandfromthe mail2registerwhen  
both SIZ1 and SIZ0 are HIGH. The Mail1 Register Flag (MBF1) is set HIGH  
H
H
L
L
H
L
H
L
16  
12  
8
4
TABLE 2 — PORT-A ENABLE FUNCTION TABLE  
CSA  
H
L
W/RA  
ENA  
MBA  
CLKA  
A0-A35Outputs  
InHigh-ImpedanceState  
InHigh-ImpedanceState  
InHigh-ImpedanceState  
InHigh-ImpedanceState  
Active,FIFO2OutputRegister  
Active,FIFO2OutputRegister  
Active,Mail2Register  
Port Functions  
X
X
X
X
None  
None  
H
L
X
X
L
H
H
L
FIFO1Write  
Mail1Write  
L
H
H
H
L
L
L
L
X
None  
L
L
H
L
FIFO2Read  
None  
L
L
L
H
X
L
L
H
H
Active,Mail2Register  
Mail2 Read (Set MBF2 HIGH)  
TABLE 3 — PORT-B ENABLE FUNCTION TABLE  
CSB  
H
L
W/RB  
ENB  
SIZ1, SIZ0  
CLKB  
B0-B35Outputs  
InHigh-ImpedanceState  
InHigh-ImpedanceState  
InHigh-ImpedanceState  
InHigh-ImpedanceState  
Active,FIFO1OutputRegister  
Active,FIFO1OutputRegister  
Active,Mail1Register  
Port Functions  
X
X
X
X
None  
None  
H
L
X
X
L
H
H
One,bothLOW  
Both HIGH  
One,bothLOW  
One,bothLOW  
Both HIGH  
Both HIGH  
FIFO2Write  
Mail2Write  
L
H
H
L
L
L
X
None  
L
L
H
FIFO1read  
None  
L
L
L
X
L
L
H
Active,Mail1Register  
Mail1 Read (Set MBF1 HIGH)  
COMMERCIALANDINDUSTRIAL  
JANUARY14,2009  
11  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
IDT723614CMOSSYNCBIFIFOWITHBUS-MATCHING  
AND BYTE SWAPPING 64 x 36 x 2  
byarising CLKBedgewhenaportBreadisselectedbyCSB,W/RB,andENB subsequentFIFO1readswiththesamebus-sizeimplementationoutputtherest  
withbothSIZ1andSIZ0HIGH.TheMail2RegisterFlag(MBF2)is setHIGH ofthe longwordtothe FIFO1outputregisterinthe ordershownbyFigure 2.  
byaLOW-to-HIGHtransitiononCLKAwhenportAreadisselectedbyCSA,  
EachFIFO1readwithanewbus-sizeimplementationautomaticallyunloads  
W/RA,andENAandMBAisHIGH.Thedatainthemailregisterremainsintact datafromtheFIFO1RAMtoitsoutputregisterandauxiliaryregisters.Therefore,  
afteritis readandchanges onlywhennewdata is writtentothe register.  
implementinganewportBbussizeandperformingaFIFO1readbeforeallbytes  
orwordsstoredintheauxiliaryregistershavebeenreadresultsinalossofthe  
unread long word data.  
When reading data from FIFO1 in byte or word format, the unused B0-  
B35 outputs remain inactive but static, with the unused FIFO1 output  
register bits holding the last data value to decrease power consumption.  
TABLE 4 — FIFO1 FLAG OPERATION  
Synchronized  
Synchronized  
Number of 36-Bit  
Words in the FIFO1(1)  
to CLKB  
to CLKA  
BUS-MATCHING FIFO2 WRITES  
EFB  
AEB  
AFA  
H
FFA  
Data is written to the FIFO2 RAM in 36-bit long word increments. FIFO2  
writes, with a long-word bus size, immediately store each long word in  
FIFO2 RAM. Data written to FIFO2 with a byte or word bus size stores the  
initial bytes or words inauxiliaryregisters. The CLKBrisingedge thatwrites  
the fourth byte or the second word of long word to FIFO2 also stores the  
entire long word in FIFO2 RAM. The bytes are arranged in the manner  
shown in Figure 2.  
0
1 to X  
L
L
H
H
H
H
L
H
H
H
H
L
H
H
H
H
(X+1)to[64-(X+1)]  
(64-X)to63  
64  
H
L
L
Each FIFO2 write with a new bus-size implementation resets the state  
machine thatcontrols the data flowfromthe auxiliaryregisters tothe FIFO2  
RAM. Therefore, implementing a new bus size and performing a FIFO2  
write before bytes or words stored in the auxiliary registers have been  
loaded to FIFO2 RAM results in a loss of data.  
TABLE 5 — FIFO2 FLAG OPERATION  
Synchronized  
Synchronized  
Number of 36-Bit  
Words in the FIFO2(1)  
to CLKA  
to CLKB  
PORT-B MAIL REGISTER ACCESS  
EFA  
AEA  
AFB  
H
FFB  
In addition to selecting port-B bus sizes for FIFO reads and writes, the  
port B bus Size select (SIZ0, SIZ1) inputs also access the mail registers.  
WhenbothSIZ0andSIZ1areHIGH,themail1registerisaccessedforaport  
B long word read and the mail2 register is accessed for a port B long word  
write. The mail register is accessed immediately and any bus-sizing  
operation that may be underway is unaffected by the mail register access.  
After the mail register access is complete, the previous FIFO access can  
resume in the next CLKB cycle. The logic diagram in Figure 3 shows the  
previous bus-size selection is preserved when the mail registers are  
accessedfromportB.AportBbussizeisimplementedoneachrisingCLKB  
edgeaccordingtothestates ofSIZ0_Q,SIZ1_Q,andBE_Q.  
0
1 to X  
L
L
H
H
H
H
L
H
H
H
H
L
H
H
H
H
(X+1)to[64-(X+1)]  
(64-X)to63  
64  
H
L
L
NOTE:  
1. X is the value in the Almost-Empty flag and Almost-Full flag Offset register.  
DYNAMIC BUS SIZING  
The port B bus can be configured in a 36-bit long word, 18-bit word, or 9-  
bitbyteformatfordatareadfromFIFO1orwrittentoFIFO2.Word-andbyte-  
size bus selections can utilize the most significant bytes of the bus (Big-  
Endian) or least significant bytes of the bus (Little-Endian). Port B bus size  
can be changed dynamically and synchronous to CLKB to communicate  
with peripherals of various bus widths.  
The levels applied to the port B bus Size select (SIZ0, SIZ1) inputs and  
the Big-Endian select (BE) input are stored on each CLKB LOW-to-HIGH  
transition. The stored port B bus size selection is implemented by the next  
rising edge on CLKB according to Figure 2.  
BYTE SWAPPING  
The byte-order arrangement of data read from FIFO1 or data written to  
FIFO2canbe changedsynchronous tothe risingedge ofCLKB. Byte-order  
swapping is not available for mail register data. Four modes of byte-order  
swapping(includingnoswap)canbedonewithanydataportsizeselection.  
The order of the bytes are rearranged within the long word, but the bit order  
within the bytes remains constant.  
Byte arrangement is chosen by the port B Swap select (SW0, SW1)  
inputs on a CLKB rising edge that reads a new long word from FIFO1 or  
writes a new long word to FIFO2. The byte order chosen on the first byte or  
first word of a new long word read from FIFO1 or written to FIFO2 is  
maintained until the entire long word is transferred, regardless of the SW0  
and SW1 states during subsequent writes or reads. Figure 4 is an example  
ofthebyte-orderswappingavailableforlongwords.Performingabyteswap  
and bus size simultaneously for a FIFO1 read first rearranges the bytes as  
shown in Figure 4, then outputs the bytes as shown in Figure 2. Simulta-  
neousbus-sizingandbyte-swappingoperationsforFIFO2writes,firstloads  
thedataaccordingtoFigure2,thenswapsthebytesasshowninFigure4when  
the long word is loaded to FIFO2 RAM.  
Only 36-bit long-word data is written to or read from the two FIFO  
memories on the IDT723614. Bus-matching operations are done after data  
is read from the FIFO1 RAM and before data is written to the FIFO2 RAM.  
Port B bus sizing does not apply to mail register operations.  
BUS-MATCHING FIFO1 READS  
Datais readfromtheFIFO1RAMin36-bitlongwordincrements.Ifalong  
wordbus size is implemented, the entire longwordimmediatelyshifts tothe  
FIFO1 output register. If byte or word size is implemented on port B, only  
the firstone ortwobytes appearonthe selectedportionofthe FIFO1output  
register,withtherestofthelongwordstoredinauxiliaryregisters.Inthiscase,  
JANUARY14,2009  
12  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
IDT723614CMOSSYNCBIFIFOWITHBUS-MATCHING  
AND BYTE SWAPPING 64 x 36 x 2  
A35A27 A26A18  
A17A9  
A8A0  
Write to FIFO1/  
Read From FIFO2  
BYTE ORDER ON PORT A:  
D
A
B
C
B35B27  
B26B18 B17B9  
B8B0  
Read from FIFO1/  
Write to FIFO2  
BE SIZ1 SIZ0  
D
A
B
C
X
L
L
(a) LONG WORD SIZE  
B8B0  
B8B0  
B35B27 B26B18 B17B9  
BE  
SIZ1 SIZ0  
1st: Read from FIFO1/  
Write to FIFO2  
B
A
L
L
H
B35B27 B26B18 B17B9  
2nd: Read from FIFO1/  
Write to FIFO2  
C
D
(b) WORD SIZE  
BIG-ENDIAN  
B8B0  
B17B9  
B35B27 B26B18  
BE  
SIZ1  
L
SIZ0  
H
1st: Read from FIFO1/  
Write to FIFO2  
C
D
H
B8B0  
B35B27 B26B18 B17B9  
2nd: Read from FIFO1/  
Write to FIFO2  
A
B
(c) WORD SIZE  
LITTLE-ENDIAN  
B26B18 B17B9  
B26B18 B17B9  
B8B0  
B8B0  
B35B27  
BE  
SIZ1 SIZ0  
1st: Read from FIFO1/  
Write to FIFO2  
A
L
H
L
B35B27  
2nd: Read from FIFO1/  
Write to FIFO2  
B
B26B18 B17B9  
B26B18 B17B9  
B8B0  
B8B0  
B35B27  
3rd: Read from FIFO1/  
Write to FIFO2  
C
B35B27  
4th: Read from FIFO1/  
Write to FIFO2  
D
(d) BYTE SIZE  
BIG-ENDIAN  
B17B9  
B8B0  
B35B27 B26B18  
BE SIZ1 SIZ0  
1st: Read from FIFO1/  
Write to FIFO2  
D
H
H
L
B26B18  
B35B27  
B17B9  
B17B9  
B17B9  
B8B0  
2nd: Read from FIFO1/  
Write to FIFO2  
C
B8B0  
B26B18  
B26B18  
B35B27  
B35B27  
3rd: Read from FIFO1/  
Write to FIFO2  
B
B8B0  
4th: Read from FIFO1/  
Write to FIFO2  
A
3146 fig 01  
(d) BYTE SIZE  
LITTLE-ENDIAN  
Figure 2. Dynamic Bus Sizing  
COMMERCIALANDINDUSTRIAL  
JANUARY14,2009  
13  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
IDT723614CMOSSYNCBIFIFOWITHBUS-MATCHING  
AND BYTE SWAPPING 64 x 36 x 2  
PARITYGENERATION  
PARITY CHECKING  
A HIGH level on the port A Parity Generate select (PGA) or port B Parity  
Generateselect(PGB)enablestheIDT723614togenerateparitybitsforport  
reads froma FIFOormailboxregister. PortAbytes are arrangedas A0-A8,  
A9-A17,A18-26,andA27-A35,withthemostsignificantbitofeachbyteused  
astheparitybit. PortBbytesarearrangedasB0-B8,B9-B17,B18-B26,and  
B27-B35,withthemostsignificantbitofeachbyteusedastheparitybit. Awrite  
toa FIFOormailregisterstores the levels appliedtoallnine inputs ofa byte  
regardlessofthestateoftheParityGenerateselect(PGA,PGB)inputs. When  
dataisreadfromaportwithparitygenerationselected,thelowereightbitsof  
eachbyteareusedtogenerateaparitybitaccordingtothelevelontheODD/  
EVENselect. Thegeneratedparitybitsaresubstitutedforthelevelsoriginally  
writtentothemostsignificantbitsofeachbyteasthewordisreadtothedata  
outputs.  
Parity bits for FIFO data are generated after the data is read from SRAM  
and before the data is written to the output register. Therefore, the port A  
ParityGenerateselect(PGA)andOdd/Evenparityselect(ODD/EVEN)have  
setupandholdtimeconstraintstotheportAClock(CLKA)andtheportBParity  
Generateselect(PGB)andODD/EVENhavesetupandhold-timeconstraints  
totheportBClock(CLKB). Thesetimingconstraintsonlyapplyforarisingclock  
edge used to read a new long word to the FIFO output register.  
Thecircuitusedtogenerateparityforthemail1dataissharedbytheportB  
bus(B0-B35)tocheckparityandthecircuitusedtogenerateparityforthemail2  
data is shared by the port A bus (A0-A35) to check parity. The shared parity  
treesofaportareusedtogenerateparitybitsforthedatainamailregisterwhen  
theportChipSelect(CSA,CSB)isLOW,Enable(ENA,ENB)isHIGH,Write/  
Readselect(W/RA,W/RB)inputisLOW,the Mailregisterisselected(MBAis  
HIGH for port A; both SIZ0 and SIZ1 are HIGH for port B), and port Parity  
Generateselect(PGA,PGB)isHIGH. Generatingparityformailregisterdata  
doesnotchangethecontentsoftheregister.  
The port A inputs (A0-A35) and port B inputs (B0-B35) each have four  
paritytreestochecktheparityofincoming(oroutgoing)data. Aparityfailure  
on one or more bytes of the port A data bus is reported by a LOW level on  
the port Parity Error Flag (PEFA). A parity failure on one or more bytes of  
the port B data input that are valid for the bus-size implementation is  
reportedbyaLOWlevelontheportBParityErrorFlag(PEFB). OddorEven  
parity checking can be selected, and the Parity Error Flags can be ignored  
if this feature is not desired.  
Parity status is checked on each input bus according to the level of the  
Odd/Even parity (ODD/EVEN) select input. A parity error on one or more  
valid bytes of a port is reported by a LOW level on the corresponding port  
Parity Error Flag (PEFA, PEFB) output. Port A bytes are arranged as A0-  
A8, A9-A17, A18-A26, and A27-A35. Port B bytes are arranged as B0-B8,  
B9-B17, B18-B26, andB27-B35, andits validbytes are those usedina port  
Bbus-sizeimplementation. WhenOdd/Evenparityis selected, aportParity  
Error Flag (PEFA, PEFB) is LOW if any byte on the port has an odd/even  
numberofLOWlevelsappliedtothebits.  
ThefourparitytreesusedtochecktheA0-A35inputsaresharedbythemail2  
register when parity generation is selected for port A reads (PGA = HIGH).  
WhenaportAreadfromthemail2registerwithparitygenerationisselectedwith  
CSALOW, ENAHIGH, W/RALOW, MBAHIGH, andPGAHIGH, the portA  
ParityErrorFlag(PEFA)is heldHIGHregardless ofthelevels appliedtothe  
A0-A35inputs. Likewise,theparitytreesusedtochecktheB0-B35inputsare  
sharedbythemail1registerwhenparitygenerationisselectedforportBreads  
(PGB = HIGH). WhenaportBreadfromthemail1registerwithparitygeneration  
isselectedwithCSBLOW,ENB HIGH,W/RBLOW,bothSIZ0andSIZ1HIGH,  
andPGBHIGH,theportBParityErrorFlag(PEFB)isheldHIGHregardless  
ofthelevelsappliedtotheB0-B35inputs.  
CLKB  
MUX  
G1  
SIZ0 Q  
SIZ1 Q  
BE Q  
1
D
Q
SIZ0  
SIZ1  
BE  
1
3146 fig02  
Figure 3. Logic Diagrams for SIZ0, SIZ1, and BE Register  
JANUARY14,2009  
14  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
IDT723614CMOSSYNCBIFIFOWITHBUS-MATCHING  
AND BYTE SWAPPING 64 x 36 x 2  
A35A27  
A26A18  
A17A9  
A8A0  
B
A
C
D
SW1 SW0  
L
L
A
B
C
D
B35B27  
B26B18  
B17B9  
B8B0  
(a) NO SWAP  
A35A27  
A26A18  
A17A9  
A8A0  
SW1 SW0  
A
B
C
D
L
H
A
D
C
B
B35B27  
B26B18  
B17B9  
B8B0  
(b) BYTE SWAP  
A35A27  
A26A18  
A17A9  
A8A0  
SW1 SW0  
B
A
C
D
H
L
D
B
C
A
B35B27  
B26B18  
B17B9  
B8B0  
(c) WORD SWAP  
A35A27  
A26A18  
A17A9  
A8A0  
SW1 SW0  
A
B
C
D
H
H
B
A
D
C
B35B27  
B26B18  
B17B9  
B8B0  
3146 fig03  
(d) BYTE-WORD SWAP  
Figure 4. Byte Swapping (Long Word Size Example)  
COMMERCIALANDINDUSTRIAL  
JANUARY14,2009  
15  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
IDT723614CMOSSYNCBIFIFOWITHBUS-MATCHING  
AND BYTE SWAPPING 64 x 36 x 2  
CLKA  
CLKB  
tRSTH  
t
FSS  
t
RSTS  
t
FSH  
RST  
FS1,FS0  
FFA  
0,1  
t
WFF  
t
t
WFF  
REF  
EFA  
t
WFF  
t
WFF  
FFB  
EFB  
t
REF  
t
RSF  
MBF1,  
MBF2  
t
PAE  
AEA  
AFA  
t
PAF  
t
PAE  
AEB  
AFB  
t
PAF  
3146 drw05  
Figure 5. Device Reset Loading the X Register with the Value of Eight  
JANUARY14,2009  
16  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
IDT723614CMOSSYNCBIFIFOWITHBUS-MATCHING  
AND BYTE SWAPPING 64 x 36 x 2  
tCLK  
tCLKH  
tCLKL  
CLKA  
FFA  
CSA  
HIGH  
t
ENS  
tENH  
t
ENS  
t
ENH  
ENH  
W/RA  
t
ENS  
t
MBA  
tENS  
tENS  
tENH  
tENH  
tENS  
tENH  
ENA  
tDS  
tDH  
(1)  
W2(1)  
No Operation  
A0 - A35  
W1  
ODD/  
EVEN  
tPDPE  
tPDPE  
Valid  
Valid  
PEFA  
3146 drw06  
NOTE:  
1. Written to FIFO1.  
Figure 6. Port-A Write Cycle Timing for FIFO1  
CLKB  
FFB  
CSB  
HIGH  
t
ENS  
ENS  
t
W/RB  
t
ENH  
t
t
ENS  
tENS  
tENH  
ENB  
SWS  
t
SWH  
SW1,  
SW0  
t
SZH  
t
SZS  
BE  
t
SZS  
t
SZH  
SIZ1,  
SIZ0  
(0,0)  
(0,0)  
DS  
(1)  
NOT (1,1)  
tDH  
t
B0-B35  
ODD/  
EVEN  
t
PPE  
tPDPE  
PEFB  
VALID  
3146 drw 07  
VALID  
NOTE:  
1. SIZ0 = HIGH and SIZ1 = HIGH writes data to the mail2 register  
DATA SWAP TABLE FOR LONG-WORD WRITES TO FIFO2  
SWAP MODE  
DATA WRITTEN TO FIFO2  
DATA READ FROM FIFO2  
SW1  
L
SW0  
L
B35-27  
B26-18  
B17-B9  
B8-B0  
D
A35-27  
A26-A18  
A17-A9  
A8-A0  
D
A
D
C
B
C
D
C
B
A
A
A
A
B
B
B
C
C
C
L
H
A
D
H
L
B
D
H
H
B
A
D
C
A
B
C
D
COMMERCIALANDINDUSTRIAL  
JANUARY14,2009  
Figure 7. Port-B Long-Word Write Cycle Timing for FIFO2  
17  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
IDT723614CMOSSYNCBIFIFOWITHBUS-MATCHING  
AND BYTE SWAPPING 64 x 36 x 2  
CLKB  
FFB  
CSB  
HIGH  
tENH  
tENS  
tENS  
W/RB  
tENH  
tENS  
tENH  
tENS  
ENB  
SW1, SW0  
BE  
t
SWS  
tSWH  
t
SZS  
t
t
SZH  
SZH  
t
t
SZH  
SZH  
t
SZS  
t
SZS  
t
SZS  
SIZ1, SIZ0  
NOT (1,1) (1)  
(0, 1)  
(0, 1)  
tDH  
tDS  
Little-  
Endian  
B0-B17  
tDH  
tDS  
Big-  
Endian  
B18-B35  
ODD/EVEN  
tPDPE  
t
PPE  
VALID  
PEFB  
VALID  
3146 drw08  
NOTES:  
1. SIZ0 = HIGH and SIZ1 = HIGH writes data to the mail2 register.  
2. PEFB indicates parity error for the following bytes: B35-B27 and B26-B18 for Big-Endian bus, and B17-B9 and B8-B0 for Little-Endian bus.  
DATA SWAP TABLE FOR WORD WRITES TO FIFO2  
DATA WRITTEN TO FIFO2  
SWAP  
WRITE  
NO.  
DATA READ FROM FIFO2  
MODE  
BIG-ENDIAN  
LITTLE-ENDIAN  
B17-B9 B8-B0  
SW1  
SW0  
B35-27  
B26-18  
A35-27  
A26-A18  
A17-A9  
A8-A0  
L
L
1
2
1
2
1
2
1
A
C
D
B
C
A
B
B
D
C
A
D
B
A
C
D
A
B
C
D
D
D
D
A
B
D
A
C
D
B
A
C
B
D
C
L
H
L
A
A
A
B
B
B
C
C
C
H
H
H
2
D
C
B
A
Figure 8. Port-B Word Write Cycle Timing for FIFO2  
JANUARY14,2009  
18  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
IDT723614CMOSSYNCBIFIFOWITHBUS-MATCHING  
AND BYTE SWAPPING 64 x 36 x 2  
CLKB  
FFB  
CSB  
HIGH  
tENS  
tENH  
tENS  
tENH  
W/RB  
tENS  
tENH  
tSZH  
tENS  
tENH  
ENB  
tSWS  
tSZS  
SW1,  
SW0  
tSZS  
tSZS  
tSZH  
tSZH  
BE  
tSZH  
tDH  
tSZS  
tDS  
SIZ1,  
SIZ0  
(1,0)  
(1,0)  
(1,0)  
(1,0)  
Not (1,1)(1)  
Little-  
Endian  
B0-  
B8  
tDS  
tDH  
Big- B27-  
Endian B35  
ODD/EVEN  
tPPE  
tPDPE  
tPDPE  
tPDPE  
Valid  
Valid  
Valid  
PEFB  
3146 drw09  
Valid  
NOTES:  
1.  
SIZ0 = HIGH and SIZ1 = HIGH writes data to the mail2 register.  
2. PEFB indicates parity error for the following bytes: B35B27 for Big-Endian bus and B17B9 for Little-Endian bus.  
DATA SWAP TABLE FOR BYTE WRITES TO FIFO2  
DATA WRITTEN TO FIFO2  
SWAP  
MODE  
WRITE  
NO.  
DATA READ FROM FIFO2  
BIG-ENDIAN  
B35-27  
LITTLE-ENDIAN  
B8-B0  
SW1  
SW0  
A35-27  
A26-A18  
A17-A9  
A8-A0  
1
2
3
4
A
B
C
D
D
C
B
A
L
L
A
B
C
D
1
2
3
4
D
C
B
A
A
B
C
D
A
A
B
B
C
C
D
D
L
H
L
1
2
3
4
C
D
A
B
B
A
D
C
H
H
1
2
3
4
B
A
D
C
C
D
A
B
H
A
B
C
D
Figure 9. Port-B Byte Write Cycle Timing for FIFO2  
COMMERCIALANDINDUSTRIAL  
JANUARY14,2009  
19  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
IDT723614CMOSSYNCBIFIFOWITHBUS-MATCHING  
AND BYTE SWAPPING 64 x 36 x 2  
CLKB  
EFB  
CSB  
HIGH  
W/RB  
tENS  
tENH  
tENS  
tENH  
ENB  
No Operation  
tSWS  
tSWH  
SW1,  
SW0  
t
SZH  
t
SZS  
BE  
t
SZH  
t
SZS  
NOT (1,1)(1)  
(0,0)  
SIZ1,  
SIZ0  
NOT (1,1)(1)  
(0,0)  
tPGS  
t
PGH  
PGB,  
ODD/  
EVEN  
tDIS  
t
A
tA  
tEN  
Previous Data  
W1(2)  
W2(2)  
B0-B35  
3146 drw10  
NOTES:  
1. SIZ0 = HIGH and SIZ1 = HIGH selects the mail1 register for output on B0-B35.  
2. Data read from FIFO1.  
DATA SWAP TABLE FOR FIFO LONG-WORD READS FROM FIFO1  
DATA WRITTEN TO FIFO1  
SWAP MODE  
DATA READ FROM FIFO1  
A35-27  
A26-A18  
A17-A9  
A8-A0  
D
SW1  
SW0  
L
B35-27  
B26-18  
B17-B9  
B8-B0  
D
A
A
A
B
B
B
C
C
C
L
L
A
D
C
B
C
D
C
B
A
D
H
A
D
H
L
B
A
B
C
D
H
H
B
A
D
C
Figure 10. Port-B Long-Word Read Cycle Timing for FIFO1  
JANUARY14,2009  
20  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
IDT723614CMOSSYNCBIFIFOWITHBUS-MATCHING  
AND BYTE SWAPPING 64 x 36 x 2  
CLKB  
EFB  
CSB  
HIGH  
W/RB  
tENS  
tSWS  
tENH  
tSWH  
ENB  
No Operation  
SW1,  
SW0  
tSZH  
tSZH  
tSZS  
BE  
tSZS  
SIZ1,  
SIZ0  
NOT (1,1)(1)  
NOT (1,1)(1)  
(0,1)  
(0,1)  
tPGS  
tPGH  
tA  
PGB,  
ODD/  
EVEN  
tEN  
tA  
tA  
tDIS  
tDIS  
Little-  
Previous Data  
tA  
Read 1  
Read 1  
Read 2  
Read 2  
Endian(2)  
B0-B17  
Big-  
Endian(2)  
B18-B35  
Previous Data  
3146 drw11  
NOTES:  
1. SIZ0 = HIGH and SIZ1 = HIGH selects the mail1 register for output on B0-B35.  
2. Unused word B0-B17 or B18-B35 holds last FIFO1 output register data for word-size reads.  
DATA SWAP TABLE FOR WORD READS FROM FIFO1  
DATA READ FROM FIFO1  
DATA WRITTEN TO FIFO1  
SWAP MODE  
READ  
NO.  
BIG-ENDIAN  
B35-B27 B26-B18  
LITTLE-ENDIAN  
A35-A27  
A26-A18  
A17-A9  
A8-A0  
D
SW1  
SW0  
L
B17-B9  
B8-B0  
1
2
A
C
B
D
C
A
D
B
A
A
A
A
B
B
B
B
C
C
C
C
L
L
1
2
D
B
C
A
B
D
A
C
D
H
1
2
C
A
D
B
A
C
B
D
D
H
H
L
1
2
B
D
A
C
D
B
C
A
D
H
Figure 11. Port-B Word Read Cycle Timing for FIFO1  
COMMERCIALANDINDUSTRIAL  
JANUARY14,2009  
21  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
IDT723614CMOSSYNCBIFIFOWITHBUS-MATCHING  
AND BYTE SWAPPING 64 x 36 x 2  
CLKB  
EFB  
CSB  
HIGH  
W/RB  
tENS  
tENH  
ENB  
No Operation  
tSWS  
tSWH  
SW1,  
SW0  
t
SZS  
t
t
SZH  
SZH  
BE  
t
SZS  
SIZ1,  
SIZ0  
(1)  
(1,0)  
Not (1,1)  
(1,0)  
(1,0)  
(1,0)  
(1)  
(1)  
(1)  
Not (1,1)  
PGH  
Not (1,1)  
PGS  
Not (1,1)  
t
t
PGB,  
ODD/  
EVEN  
t
DIS  
DIS  
tEN  
tA  
tA  
t
A
tA  
Previous Data  
Read 1  
Read 2  
Read 3  
Read 4  
Read 4  
B0-B8  
t
tA  
tA  
tA  
tA  
Previous Data  
Read 1  
Read 2  
Read 3  
B27-B35  
3146 drw12  
NOTES:  
1. SIZ0 = HIGH and SIZ1 = HIGH selects the mail1 register for output on B0-B35.  
2. Unused bytes hold last FIFO1 output register data for byte-size reads.  
DATA SWAP TABLE FOR BYTE READS FROM FIFO1  
DATA READ FROM FIFO 1  
DATA WRITTEN TO FIFO 1  
SWAP MODE  
READ  
NO.  
BIG-  
ENDIAN  
LITTLE-  
ENDIAN  
A35-A27  
A26-A18  
A17-A9  
A8-A0  
SW1  
SW0  
B35-B27  
B8-B0  
1
2
3
4
A
B
C
D
D
C
B
A
A
B
C
D
L
L
L
1
2
3
4
D
C
B
A
A
B
C
D
A
A
A
B
B
B
C
C
C
D
D
D
H
L
1
2
3
4
C
D
A
B
B
A
D
C
H
H
1
2
3
4
B
A
D
C
C
D
A
B
H
Figure 12. Port-B Byte Read Cycle Timing for FIFO1  
JANUARY14,2009  
22  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
IDT723614CMOSSYNCBIFIFOWITHBUS-MATCHING  
AND BYTE SWAPPING 64 x 36 x 2  
tCLK  
tCLKH  
tCLKL  
CLKA  
EFA  
CSA  
HIGH  
W/RA  
MBA  
ENA  
t
ENH  
t
ENH  
tENH  
t
ENS  
tENS  
tENS  
No Operation  
Word 2(1)  
t
MDV  
tDIS  
tEN  
tA  
tA  
(1)  
A0 - A35  
Word 1  
Previous Data  
tPGH  
tPGH  
tPGS  
tPGS  
PGA,  
ODD/  
EVEN  
3146 drw13  
NOTE:  
1. Read from FIFO2.  
Figure 13. Port-A Read Cycle Timing for FIFO2  
t
CLKtCLKL  
t
CLKH  
CLKA  
CSA  
LOW  
HIGH  
WRA  
t
ENH  
ENH  
t
ENS  
MBA  
tENS  
t
ENA  
FFA  
HIGH  
tDS  
tDH  
W1  
A0 - A35  
t
CLKHCLKtCLKL  
(1)  
SKEW1  
t
t
1
2
CLKB  
t
REF  
t
REF  
EFB  
CSB  
FIFO1 Empty  
LOW  
LOW  
LOW  
W/RB  
SIZ1,  
SIZ0  
tENS  
tENH  
ENB  
tA  
B0 -B35  
W1  
3146 drw14  
NOTES:  
1. tSKEW1 is the minimum time between a rising CLKA edge and a rising CLKB edge for EFB to transition HIGH in the next CLKB cycle. If the time between the rising CLKA  
edge and rising CLKB edge is less than tSKEW1, then the transition of EFB HIGH may occur one CLKB cycle later than shown.  
2. Port-B size of long word is selected for FIFO1 read by SIZ1 = LOW, SIZ0 = LOW. If port-B size is word or byte, EFB is set LOW by the last word or byte read from FIFO1,  
respectively.  
Figure 14. EFB Flag Timing and First Data Read when FIFO1 is Empty  
COMMERCIALANDINDUSTRIAL  
23  
JANUARY14,2009  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
IDT723614CMOSSYNCBIFIFOWITHBUS-MATCHING  
AND BYTE SWAPPING 64 x 36 x 2  
tCLK  
tCLKH  
tCLKL  
CLKB  
CSB  
LOW  
HIGH  
W/RB  
tENS  
tENS  
tENH  
tENH  
SIZ1,  
SIZ0  
ENB  
FFB  
HIGH  
tDS  
tDH  
W1  
B0 - B35  
tCLKtCLKL  
(1)  
tSKEW1  
tCLKH  
1
2
CLKA  
tREF  
tREF  
EFA  
CSA  
FIFO2 Empty  
LOW  
LOW  
LOW  
W/RA  
MBA  
tENS  
tENH  
ENA  
tA  
A0 -A35  
W1  
3146 drw15  
NOTES:  
1. tSKEW1 is the minimum time between a rising CLKB edge and a rising CLKA edge for EFA to transition HIGH in the next CLKA cycle. If the time between the rising CLKB  
edge and rising CLKA edge is less than tSKEW1, then the transition of EFA HIGH may occur one CLKA cycle later than shown.  
2. Port B size of long word is selected for FIFO2 write by SIZ1 = LOW, SIZ0 = LOW. If port B size is word or byte tSKEW1 is referenced to the rising CLKB edge that writes the  
last word or byte of the long word, respectively.  
Figure 15. EFA Flag Timing and First Data Read when FIFO2 is Empty  
JANUARY14,2009  
24  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
IDT723614CMOSSYNCBIFIFOWITHBUS-MATCHING  
AND BYTE SWAPPING 64 x 36 x 2  
tCLK  
tCLKH  
tCLKL  
CLKB  
CSB  
LOW  
LOW  
LOW  
W/RB  
SIZ1,  
SIZ0  
tENH  
tENS  
ENB  
EFB  
HIGH  
tA  
Previous Word in FIFO1 Output Register  
Next Word From FIFO1  
B0 - B35  
(1)  
SKEW1  
tCLK  
t
tCLKH  
tCLKL  
1
2
CLKA  
t
WFF  
t
WFF  
FFA  
CSA  
FIFO1 Full  
LOW  
HIGH  
WRA  
tENS  
tENH  
MBA  
tENS  
tENH  
ENA  
tDS  
tDH  
A0 - A35  
To FIFO1  
3146 drw16  
NOTES:  
1. tSKEW1 is the minimum time between a rising CLKB edge and a rising CLKA edge for FFA to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and  
rising CLKA edge is less than tSKEW1, then FFA may transition HIGH one CLKA cycle later than shown.  
2. Port B size of long word is selected for FIFO1 read by SIZ1 = LOW, SIZ0 = LOW. If port B size is word or byte, tSKEW1 is referenced from the rising CLKB edge that reads the last  
word or byte of the long word, respectively.  
Figure 16. FFA Flag Timing and First Available Write when FIFO1 is Full.  
COMMERCIALANDINDUSTRIAL  
25  
JANUARY14,2009  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
IDT723614CMOSSYNCBIFIFOWITHBUS-MATCHING  
AND BYTE SWAPPING 64 x 36 x 2  
tCLK  
tCLKL  
tCLKH  
CLKA  
CSA  
LOW  
LOW  
LOW  
W/RA  
MBA  
tENS  
tENH  
ENA  
EFA  
HIGH  
tA  
Previous Word in FIFO2 Output Register  
Next Word From FIFO2  
A0 - A35  
(1)  
SKEW1  
t
tCLK  
tCLKH  
tCLKL  
1
2
CLKB  
t
WFF  
t
WFF  
FFB  
CSB  
FIFO2 Full  
LOW  
HIGH  
W/RB  
tENH  
tENS  
SIZ1,  
SIZ0  
tENS  
tENH  
ENB  
tDS  
tDH  
B0 - B35  
To FIFO2  
3146 drw17  
NOTES:  
1. tSKEW1 is the minimum time between a rising CLKA edge and a rising CLKB edge for FFB to transition HIGH in the next CLKB cycle. If the time between the rising CLKA  
edge and rising CLKB edge is less than tSKEW1, then FFB may transition HIGH one CLKB cycle later than shown.  
2. Port B size of long word is selected for FIFO2 write by SIZ1 = LOW, SIZ0 = LOW. If port B size is word or byte, FFB is set LOW by the last word or byte write of the long  
word, respectively.  
Figure 17. FFB Flag Timing and First Available Write when FIFO2 is Full  
CLKA  
tENS  
tENH  
ENA  
(1)  
tSKEW2  
1
2
CLKB  
t
PAE  
(X+1) Long Words in FIFO1  
ENH  
t
PAE  
AEB  
X Long Word in FIFO1  
t
tENS  
ENB  
3146 drw18  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKA edge and a rising CLKB edge for AEB to transition HIGH in the next CLKB cycle. If the time between the rising CLKA  
edge and rising CLKB edge is less than tSKEW2, then AEB may transition HIGH one CLKB cycle later than shown.  
2. FIFO1 Write (CSA = LOW, W/RA = HIGH, MBA = LOW), FIFO1 read (CSB = LOW, W/RB = LOW, MBB = LOW).  
3. Port B size of long word is selected for FIFO1 read by SIZ1 = LOW, SIZ0 = LOW. If port B size is word or byte, AEB is set LOW by the last word or byte read of the long  
word, respectively.  
Figure 18. Timing for AEB when FIFO1 is Almost-Empty  
JANUARY14,2009  
26  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
IDT723614CMOSSYNCBIFIFOWITHBUS-MATCHING  
AND BYTE SWAPPING 64 x 36 x 2  
CLKB  
tENS  
tENH  
ENB  
tSKEW2(1)  
1
2
CLKA  
AEA  
t
PAE  
t
PAE  
(X+1) Long Words in FIFO2  
X Long Words in FIFO2  
tENH  
tENS  
ENA  
3146 drw19  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKB edge and a rising CLKA edge for AEA to transition HIGH in the next CLKA cycle. If the time between the rising  
CLKB edge and rising CLKA edge is less than tSKEW2, then AEA may transition HIGH one CLKA cycle later than shown.  
2. FIFO2 Write (CSB = LOW, W/RB = HIGH, MBB = LOW), FIFO2 read (CSA = LOW, W/RA = LOW, MBA = LOW).  
3. Port B size of long word is selected for FIFO2 write by SIZ1 = LOW, SIZ0 = LOW. If port B size is word or byte, tSKEW2 is referenced from the rising CLKB edge that  
writes the last word or byte of the long word, respectively.  
Figure 19. Timing for AEA when FIFO2 is Almost-Empty  
(1)  
SKEW2  
t
1
2
CLKA  
ENA  
tENS  
tENH  
t
PAF  
tPAF  
(64-X) Long Words in FIFO1  
AFA  
CLKB  
ENB  
[64-(X+1)] Long Words in FIFO1  
tENS  
tENH  
3146 drw20  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKA edge and a rising CLKB edge for AFA to transition HIGH in the next CLKA cycle. If the time between the rising  
CLKA edge and rising CLKB edge is less than tSKEW2, then AFA may transition HIGH one CLKB cycle later than shown.  
2. FIFO1 Write (CSA = LOW, W/RA = HIGH, MBA = LOW), FIFO1 read (CSB = LOW, W/RB = LOW, MBB = LOW).  
3. Port B size of long word is selected for FIFO1 read by SIZ1 = LOW, SIZ0 = LOW. If port B size is word or byte, tSKEW2 is referenced from the last word or byte read of  
the long word, respectively.  
Figure 20. Timing for AFA when FIFO1 is Almost-Full  
(1)  
SKEW2  
t
1
2
CLKB  
ENB  
tENS  
tENH  
t
PAF  
t
PAF  
(64-X) Long Words in FIFO2  
AFB  
CLKA  
ENA  
[64-(X+1)] Long Words in FIFO2  
tENS  
tENH  
3146 drw21  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKB edge and a rising CLKA edge for AFB to transition HIGH in the next CLKB cycle. If the time between the rising  
CLKB edge and rising CLKA edge is less than tSKEW2, then AFB may transition HIGH one CLKA cycle later than shown.  
2. FIFO2 Write (CSB = LOW, W/RB = HIGH, MBB = LOW), FIFO2 read (CSA = LOW, W/RA = LOW, MBA = LOW).  
3. Port B size of long word is selected for FIFO2 write by SIZ1 = LOW, SIZ0 = LOW. If port B size is word or byte, AFB is set LOW by the last word or byte read of  
the long word, respectively.  
Figure 21. Timing for AFB when FIFO2 is Almost-Full  
COMMERCIALANDINDUSTRIAL  
27  
JANUARY14,2009  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
IDT723614CMOSSYNCBIFIFOWITHBUS-MATCHING  
AND BYTE SWAPPING 64 x 36 x 2  
CLKA  
tENS  
tENH  
CSA  
W/RA  
MBA  
ENA  
A0 - A35  
CLKB  
tDH  
t
DS  
W1  
t
PMF  
t
PMF  
MBF1  
CSB  
W/RB  
SIZ1,  
SIZ0  
tENH  
tENS  
ENB  
t
PMR  
tEN  
tDIS  
t
MDV  
W1 (Remains valid in Mail1 Register after read)  
B0 - B35  
3146 drw22  
FIFO1 Output Register  
NOTE:  
1. Port B Parity Generation off (PGB = LOW).  
Figure 22. Timing for Mail1 Register and MBF1 Flag  
JANUARY14,2009  
28  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
IDT723614CMOSSYNCBIFIFOWITHBUS-MATCHING  
AND BYTE SWAPPING 64 x 36 x 2  
CLKB  
tENH  
tENS  
CSB  
W/RB  
t
SZH  
t
SZS  
SIZ1,  
SIZ0  
ENB  
B0 - B35  
CLKA  
tDH  
t
DS  
W1  
t
PMF  
t
PMF  
MBF2  
CSA  
W/RA  
MBA  
ENA  
tENH  
tENS  
t
PMR  
tEN  
tDIS  
t
MDV  
W1 (Remains valid in Mail2 Register after read)  
A0 - A35  
3146 drw23  
FIFO2 Output Register  
NOTE:  
1. Port-A Parity Generation off (PGA = LOW).  
Figure 23. Timing for Mail2 Register and MBF2 Flag  
ODD/  
EVEN  
W/RA  
MBA  
PGA  
t
PEPE  
tPOPE  
tPOPE  
t
PEPE  
PEFA  
Valid  
Valid  
Valid  
Valid  
3146 drw24  
Figure 24. ODD/EVEN. W/RA, MBA, and PGA to PEFA Timing  
COMMERCIALANDINDUSTRIAL  
JANUARY14,2009  
29  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
IDT723614CMOSSYNCBIFIFOWITHBUS-MATCHING  
AND BYTE SWAPPING 64 x 36 x 2  
ODD/  
EVEN  
W/RB  
SIZ1,  
SIZ0  
PGB  
t
PEPE  
t
PEPE  
tPOPE  
tPOPE  
PEFB  
Valid  
Valid  
Valid  
Valid  
3146 drw25  
Figure 25. ODD/EVEN. W/RB, SIZ1, SIZ0, and PGB to PEFB Timing  
ODD/  
EVEN  
CSA LOW  
W/RA  
MBA  
PGA  
t
PEPB  
t
MDV  
tEN  
t
POPB  
tPEPB  
Generated Parity  
A8, A17,  
A26, A35  
Generated Parity  
Mail2 Data  
3146 drw26  
Mail2  
Data  
NOTE:  
1. ENA is HIGH.  
Figure 26. Parity Generation Timing when Reading from the Mail2 Register  
ODD/  
EVEN  
CSB LOW  
W/RB  
SIZ1,  
SIZ0  
PGB  
t
PEPB  
MDV  
tEN  
t
tPOPB  
tPEPB  
B8, B17,  
B26, B35  
Generated Parity  
Generated Parity  
Mail1 Data  
Mail1  
Data  
3146 drw27  
NOTE:  
1. ENB is HIGH.  
Figure 27. Parity Generation Timing when Reading from the Mail1 Register  
JANUARY14,2009  
30  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
IDT723614CMOSSYNCBIFIFOWITHBUS-MATCHING  
AND BYTE SWAPPING 64 x 36 x 2  
5 V  
1.1 kΩ  
From Output  
Under Test  
30 pF (1)  
680Ω  
LOAD CIRCUIT  
3 V  
3 V  
Timing  
Input  
1.5 V  
High-Level  
1.5 V  
Input  
1.5 V  
1.5 V  
GND  
GND  
t
S
th  
tW  
3 V  
3 V  
Data,  
Enable  
Input  
1.5 V  
1.5 V  
Low-Level  
Input  
1.5 V  
GND  
GND  
VOLTAGE WAVEFORMS  
SETUP AND HOLD TIMES  
VOLTAGE WAVEFORMS  
PULSE DURATIONS  
3 V  
Output  
Enable  
1.5 V  
1.5 V  
tPZL  
GND  
3 V  
tPLZ  
3 V  
Input  
1.5 V  
1.5 V  
1.5 V  
Low-Level  
Output  
GND  
V
OL  
tPD  
t
PZH  
tPD  
V
V
OH  
OH  
In-Phase  
Output  
1.5 V  
1.5 V  
High-Level  
Output  
1.5 V  
V
t
PHZ  
OL  
OV  
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
3146 drw28  
NOTE:  
1. Includes probe and jig capacitance.  
Figure 28. Load Circuit and Voltage Waveforms  
COMMERCIALANDINDUSTRIAL  
JANUARY14,2009  
31  
ORDERING INFORMATION  
X
XX  
X
X
XXXXXX  
X
Device Type Power  
Speed  
Package  
Process/  
Temperature  
Range  
Commercial (0°C to +70°C)  
Industrial (40°C to +85°C)  
BLANK  
I(1)  
Green  
G
Thin Quad Flat Pack (TQFP, PN120-1)  
Plastic Quad Flat Pack (PQFP, PQ132-1)  
PF  
PQF  
Commercial Only  
Com'l & Ind'l  
Clock Cycle Time (t CLK  
)
15  
20  
Speed in Nanoseconds  
Low Power  
L
64 x 36 x 2 SyncBiFIFO™  
723614  
3146 drw29  
NOTES:  
1. Industrial temperature range product for 20ns speed grade is available as a standard device. All other speed grades are available by special order.  
2. Green parts are available. For specific speeds and packages contact your sales office.  
DATASHEETDOCUMENTHISTORY  
03/05/2002  
06/06/2005  
01/14/2009  
pgs. 1, 8, 9 and 32.  
pgs. 1, 2, 3 and 32.  
pg. 32.  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, Ca 95138  
for SALES:  
for TECH SUPPORT:  
408-360-1753  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
FIFOhelp@idt.com  
32  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY