723616L20PFG8 [IDT]

Bi-Directional FIFO, 128X36, 12ns, Synchronous, CMOS, PQFP128;
723616L20PFG8
型号: 723616L20PFG8
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Bi-Directional FIFO, 128X36, 12ns, Synchronous, CMOS, PQFP128

先进先出芯片
文件: 总26页 (文件大小:203K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CMOS TRIPLE BUS SyncFIFO™  
WITH BUS-MATCHING AND  
BYTE SWAPPING 64 x 36 x 2  
IDT723616  
Width can be easily expanded by adding FIFOs  
Auto power down minimizes power dissipation  
Available in a space-saving 128-pin Thin Quad Flatpack (TQFP)  
High performance sub-micron CMOS technology  
Industrial temperature range (–40oC to +85oC) is available  
Green parts available, see ordering information  
FEATURES:  
Two independent FIFOs (64 X 36 storage capacity each) buffer  
data between bidirectional 36-bit port A and two unidirectional  
18/9-bit ports (Port B transmits, Port C receives)  
Clock frequencies up to 67 MHz (10 ns access time)  
Free-running clock lines for each port: CLKA, CLKB and CLKC,  
may be asynchronous or coincident (simultaneous reading and  
writing of data is permitted)  
DESCRIPTION:  
IDT Standard timing  
TheIDT723616isamonolithic,high-speed,low-power,CMOSTripleBus  
SyncFIFO(clocked) memory which supports clock frequencies up to 67  
MHzandhas readaccess times as fastas 10ns. Twoindependent64x36  
dual-portSRAMFIFOsonboardeachchipbufferdatabetweenabidirectional  
36-bitbus(PortA)andtwounidirectional18-bitbuses(PortBtransmitsdata,  
PortCreceives data.)FIFOdata canbe readoutofports Bandwritteninto  
portCusingeither18-bitor9-bitformats.  
Empty flag functions: EFA (synchronized by CLKA) and EFB  
(synchronized by CLKB)  
Full flag functions: FFA (synchronized by CLKA) and FFC  
(synchronized by CLKC)  
Programmable Almost-Empty and Almost-Full flags; each has  
four default offsets (4, 8, 12 and 16)  
Bus sizing of 18-bits (word) and 9-bits (byte) for ports B and C  
Byte order swapping on ports B and C  
Passive parity checking on ports A and C  
Parity generation can be selected for ports A and B  
Master Reset clears data and configures FIFO  
Reset(RST)initializesthereadandwritepointerstothefirstlocationofthe  
memoryarrayandselectsoneoffourpossibledefaultflagoffsetsettings:4,8,  
12 or 16.  
EachFIFOhasflagstoindicateemptyandfullconditionsandtwoprogram-  
mable flags (Almost-Full and Almost-Empty) to indicate when a selected  
FUNCTIONALBLOCKDIAGRAM  
CLKA  
PGB  
Port-A  
CSA  
Control  
W/RA  
ENA  
Logic  
RAM  
ARRAY  
18  
B0 - B17  
Parity  
check  
64 x 36  
PEFA  
Port-B  
Control  
Logic  
CLKB  
RENB  
Write  
Pointer  
Read  
Pointer  
36  
FFA  
AFA  
Status Flag  
Logic  
EFB  
AEB  
FIFO 1  
FIFO 2  
SWB0  
SWB1  
SWC0  
SWC1  
SIZ0  
Common  
Port  
Programmable Flag  
Offset Registers  
Control  
Logic  
FS0  
FS1  
- A35  
(B and C)  
A
0
SIZ1  
EFA  
AEA  
Status Flag  
Logic  
FFC  
AFC  
Read  
Pointer  
Write  
Pointer  
36  
FIFO2,  
FIFO1  
Reset/  
Control  
Logic  
Parity  
RST  
PEFC  
Check  
ODD/EVEN  
RAM  
ARRAY  
18  
C0 - C17  
64 x 36  
CLKC  
Port-C  
Control  
Logic  
WENC  
PGA  
3520 drw01  
IDTandtheIDTlogoareregisteredtrademarksofIntegratedDeviceTechnology,Inc.SyncFIFOisatrademarkofIntegratedDeviceTechnology,Inc.  
FEBRUARY 2009  
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES  
1
©
2009 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice.  
DSC-3107/3  
IDT723616CMOSTRIPLEBUSSyncFIFO  
BUS-MATCHINGANDBYTESWAPPING64x36x2  
                                                                                            
WITH  
                                                                                            
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
This device is a clocked FIFO, which means each port employs a  
synchronousinterface.AlldatatransfersthroughaportaregatedtotheLOW-  
to-HIGHtransitionofacontinuous(free-running)portclockbyenablesignals.  
The clocks for each port are independent of one another and can be  
asynchronous or coincident. The enables for each port are arranged to  
provide a simple bidirectional interface between microprocessors and/or  
buses controlledbyasynchronous interface.  
DESCRIPTION(CONTINUED)  
numberofwordsisstoredinmemory.DataonPortBcanbeaccessedin18-  
bitand9-bitformats.FIFODataonPortCcanbeinputin18-bitand9-bitformats.  
Byte-orderswappingonportsBandCispossiblewithanybussizeselection.  
ParityischeckedpassivelyonportsAandCandmaybeignoredifnotdesired.  
Parity generation can be selected for data read from ports A and B. Two or  
more devices can be used in parallel to create wider or deeper FIFO  
configurations.  
PIN CONFIGURATION  
INDEX  
1
2
3
4
5
6
7
NC  
B8  
B7  
B6  
Vcc  
A26  
A25  
A24  
A23  
A22  
A21  
102  
101  
100  
99  
B5  
98  
B4  
97  
B3  
96  
8
9
GND  
B2  
94  
GND  
A20  
A19  
A18  
A17  
A16  
A15  
A14  
A13  
A12  
A11  
A10  
GND  
A9  
A8  
A7  
Vcc  
A6  
A5  
A4  
A3  
GND  
A2  
A1  
95  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
B1  
93  
B0  
92  
C17  
91  
C16  
90  
C15  
89  
C14  
88  
C13  
87  
C12  
86  
C11  
85  
C10  
84  
GND  
C9  
C8  
C7  
Vcc  
C6  
C5  
C4  
C3  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
GND  
C2  
C1  
C0  
EFB  
AEB  
AFC  
FFC  
A0  
EFA  
AEA  
AFA  
FFA  
CSA  
ENA  
RENB  
WENC  
3520 drw02  
TQFP (PK128-1, ORDER CODE: PF)  
TOP VIEW  
NOTE:  
1. NC - No internal connection.  
2
IDT723616CMOSTRIPLEBUSSyncFIFO  
BUS-MATCHINGANDBYTESWAPPING64x36x2  
                                                                                            
                                                                                            
WITH  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
ThisFIFOemploysIDTStandardModetiming;thatistosay,thefirstword totheportclockthatreadsdatafromitsarray. Fourdefaultoffsetsettingsare  
writtentoanemptyFIFOisdepositedintothememoryarray.Areadoperation alsoprovided.TheAEAandAEBthresholdcanbesetat4,8,12or16locations  
isrequiredtoaccessthatword(alongwithallotherwordsresidinginmemory). fromtheemptyboundaryandtheAFAandAFCthresholdcanbesetat4,8,  
Each FIFO has an Empty Flag (EFA and EFB) and a Full Flag (FFA and 12or16locationsfromthefullboundary.Allthesechoicesaremadeusingthe  
FFC). EF indicates whether or not the FIFO memory is empty. FF shows FS0 and FS1 inputs during Reset.  
whetherthe memoryis fullornot.  
EachFIFOhasaprogrammableAlmost-Emptyflag(AEAandAEB)anda awidthexpansionrequiresnoadditional,externalcomponents.  
If, atanytime, the FIFOis notactivelyperforminga function, the chipwill  
TwoormoreFIFOsmaybeusedinparalleltocreatewiderdatapaths.Such  
programmableAlmost-Fullflag(AFAandAFC).AEAandAEBindicatewhen  
aselectednumberofwordswrittentoFIFOmemoryachieveapredetermined automatically power down. During the power down state, supply current  
"almost-emptystate".AFAandAFCindicatewhenaselectednumberofwords consumption (ICC) is at a minimum. Initiating any operation (by activating  
writtentothememoryachieveapredetermined"almost-fullstate".  
FFA,FFC,AFAandAFCaretwo-stagesynchronizedtotheportclockthat  
writesdataintoitsarray.EFA,EFB,AEA,andAEBaretwo-stagesynchronized arefabricatedusingIDT’shighspeed,submicronCMOStechnology.  
controlinputs)willimmediatelytakethedeviceoutofthePowerDownstate.  
The IDT723616 are characterized for operation from 0°C to 70°C. They  
3
IDT723616CMOSTRIPLEBUSSyncFIFO  
BUS-MATCHINGANDBYTESWAPPING64x36x2  
                                                                                            
WITH  
                                                                                            
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTION  
Symbol  
A0-A35  
AEA  
Name  
I/O  
I/O  
O
Description  
PortAData  
36-bitbidirectionaldataportforsideA.  
PortAAlmost-Empty  
Flag  
ProgrammableAlmost-EmptyflagsynchronizedtoCLKA.ItisLOWwhenthenumberof 36-bit  
words in FIFO2 is less than or equal to the value in the offset register, X.  
AEB  
AFA  
AFC  
PortBAlmost-Empty  
Flag  
O
O
O
Programmable Almost-Empty flag synchronized to CLKB. It is LOW when the number of 36-bit  
words in FIFO1 is less than or equal to the value in the offset register, X.  
PortAAlmost-Full  
Flag  
ProgrammableAlmost-FullflagsynchronizedtoCLKA.ItisLOWwhenthenumberof36-bitempty  
locations inFIFO1is less thanorequaltothe value inthe offsetregister, X.  
PortCAlmost-Full  
Flag  
ProgrammableAlmost-FullflagsynchronizedtoCLKC.ItisLOWwhenthenumberof  
36-bitemptylocations inFIFO2is less thanorequaltothe value inthe offsetregister, X.  
B0-B17  
C0-C17  
CLKA  
PortBData.  
Port-CData  
PortAClock  
O
I
18-bitoutputdataportforsideB.  
18-bitinputdataportforsideC.  
I
CLKA is a continuous clock that synchronizes all data transfers through port A and can be  
asynchronous or coincident to CLKB and CLKC. EFA, FFA, AFA, and AEA are synchronized  
totheLOW-to-HIGHtransitionofCLKA.  
CLKB  
CLKC  
PortBClock  
Port-CClock  
I
I
CLKB is a continuous clock that synchronizes all data read from port B and can be asynchronous  
or coincident to CLKA and CLKC. Port B byte swapping and data port sizing operations are also  
synchronous totheLOW-to-HIGHtransitionofCLKB.EFBandAEBaresynchronizedtothe  
LOW-to-HIGHtransitionofCLKB.  
CLKCis a continuous clockthatsynchronizes alldata writtentoportCandcanbe asynchronous  
orcoincidenttoCLKAandCLKC. FFC and AFC are synchronizedtothe LOW-to-HIGHtransition  
ofCLKC.  
CSA  
EFA  
PortAChipSelect  
PortAEmptyFlag  
I
CSA mustbe LOWtoenable a LOW-to-HIGHtransitionofCLKAtoreadorwrite data onportA.  
The A0-A35 outputs are in the high-impedance state whenCSA is HIGH.  
EFAissynchronizedtotheLOW-to-HIGHtransitionofCLKA.WhenEFAis LOW,FIFO2is empty,  
andreads fromits memoryare disabled. Data canbe readfromFIFO2tothe outputregister  
when EFA is HIGH. EFA is forced LOW when the device is reset and is set HIGH by the second  
LOW-to-HIGHtransitionofCLKAafterdataisloadedintoemptyFIFO2memory.  
O
EFB  
PortBEmptyFlag  
O
EFBis synchronizedtotheLOW-to-HIGHtransitionofCLKB.WhenEFBis LOW,theFIFO1is  
empty, andreads fromits memoryare disabled. Data canbe readfromFIFO1tothe output  
register when EFB is HIGH. EFB is forced LOW when the device is reset and is set HIGH by the  
secondLOW-to-HIGHtransitionofCLKBafterdataisloadedintoemptyFIFO1memory.  
ENA  
Port A Enable  
I
ENA must be HIGH to enable a LOW-to-HIGH transition of CLKA to read or write data on port A.  
FFA  
Port A Full Flag  
O
FFA is synchronizedtothe LOW-to-HIGHtransitionofCLKA. WhenFFA is LOW, FIFO1is full,  
and writes to its memory are disabled. FFA is forced LOW when the device is reset and is set  
HIGHbythesecondLOW-to-HIGHtransitionofCLKAafterreset.  
FFC  
Port C Full Flag  
O
FFC is synchronized to the LOW-to-HIGH transition of CLKC. WhenFFC is LOW, FIFO2is full,  
and writes to its memory are disabled. FFC is forced LOW when the device is reset and is set  
HIGHbythesecondLOW-to-HIGHtransitionofCLKCafterreset.  
FS1, FS0 Flag-OffsetSelects  
I
I
The LOW-to-HIGH transition of RST latches the values of FS0 and FS1, which selects oneoffour  
presetvaluesfortheAlmost-FullflagandAlmost-Emptyflagoffset.  
ODD/  
Odd/EvenParity  
Select  
Odd parity is checked on each port when ODD/EVEN is HIGH, and even parity is checked when  
ODD/EVEN is LOW.ODD/EVEN alsoselects thetypeofparitygeneratedforeachportifparity  
generation is enabled for a read operation.  
EVEN  
PEFA  
Port A Parity Error  
Flag  
O
When any byte applied to terminals A0-A35 fails parity, PEFA is LOW. Bytes are organized as  
A0-A8, A9-A17, A18-A26, andA27-A35, withthe mostsignificantbitofeachbyte servingas  
theparitybit.ThetypeofparitycheckedisdeterminedbythestateoftheODD/EVENinput.  
The parity trees used to check the A0-A35 inputs are shared by the mail2 register to generate  
parityifparitygenerationis selectedbyPGA.Therefore,ifa mail2 read parity generation is  
setup by having W/RA LOW, and PGA HIGH, the PEFA flag is forced HIGH regardless of the  
A0-A35inputs.  
4
IDT723616CMOSTRIPLEBUSSyncFIFO  
BUS-MATCHINGANDBYTESWAPPING64x36x2  
                                                                                            
WITH  
                                                                                            
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTION(CONTINUED)  
Symbol  
Name  
I/O  
Description  
PEFC  
Port C Parity Error  
Flag  
O
When any valid byte applied to terminals B0-B17 fails parity, PEFC is LOW. Bytes are organized  
as B0-B8 and B9-B17 with the most significant bit of each byte serving as the parity bit. A byte  
is valid when it is used by the bus size selected for Port C. The type of parity checked is  
determined by the state of the ODD/ EVEN input.  
The parity trees used to check the B0-B17 inputs are shared by the mail 1 register to generate parity if  
parity generation is selected by PGB. Therefore, if a mail1 read with parity generation is setup by  
having WENC LOW, SIZ1 and SIZ0 HIGH, and PGB HIGH, the PEFC flag is forced HIGH  
regardless of the state of the B0-B17 inputs.  
PGA  
PGB  
Port A Parity  
Generation  
I
I
Parity is generated for data reads from port A when PGA is HIGH. The type of parity generated  
is selectedbythe state ofthe ODD/EVEN input. Bytes are organizedas A0-A8, A9-A17, A18-A26,  
andA27-A35.Thegeneratedparitybits areoutputinthemostsignificantbitofeachbyte.  
Port B Parity  
Generation  
Parity is generated for data reads from port B when PGB is HIGH. The type of parity generated  
is selectedbythe state ofthe ODD/EVEN input.Bytes are organizedas B0-B8 and B9-B17. The  
generatedparitybitsareoutputinthemostsignificantbitofeachbyte.  
RENB  
Port B Read Enable  
Reset  
I
I
RENB must be HIGH to enable a LOW-to-HIGH transition of CLKB to read data on port B.  
RST  
To resetthedevice,fourLOW-to-HIGHtransitionsofCLKA,fourLOW-to-HIGHtransitionsofCLKB,  
andfourLOW-to-HIGHtransitions ofCLKCmustoccurwhileRSTis LOW.This sets theAFA and  
AFCflags HIGHandthe EFA,EFB,AEA,AEB,FFA,andFFCflags LOW.TheLOW-to-HIGH  
transitionofRSTlatchesthestatusoftheFS1andFS0inputstoselectAlmost-FullandAlmost-  
Emptyflagoffsets.  
SIZ0, SIZ1 BusSizeSelect  
(Ports B and C)  
I
I
I
The levels on these inputs determine the bus size for ports B and C . These levels must be  
stable before Master Reset and must remain static for the duration of FIFO operation. Either  
a word or a byte size may be selected for both ports B and C together; the ports cannot be  
configuredindependently.  
SWB0  
SWB1  
Port B Byte Swap  
Port C Byte Swap  
The levels on these inputs select one of four modes of byte-order swapping for Port B. These levels  
must be stable before Master Reset and must remain static for the duration of FIFO operation. The  
four modes are no swap, byte swap, word swap, and byte-word swap. Byte-order swapping is  
possiblewithanybussizeselection.  
SWC0  
The levels on these inputs select one of four modes of byte-order swapping for Port C. These levels  
must be stable before Master Reset and must remain static for the duration of FIFO operation. The  
four modes are no swap, byte swap, word swap, and byte-word swap. Byte-order swapping is  
possiblewithanybussizeselection.  
W/RA  
PortAWrite/Read  
Select  
I
I
A HIGHselects a write operationanda LOWselects a readoperationonportAfora LOW-to-HIGH  
transitionofCLKA.TheA0-A35outputs areinthehigh-impedancestatewhenW/RAis HIGH.  
AHIGHselects aPortCwriteoperationforaLOW-to-HIGHtransitionofCLKC.  
WENC  
PortCWriteEnable  
5
IDT723616CMOSTRIPLEBUSSyncFIFO  
BUS-MATCHINGANDBYTESWAPPING64x36x2  
                                                                                            
                                                                                            
WITH  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
ABSOLUTEMAXIMUMRATINGSOVEROPERATINGFREE-AIRTEMPERATURE  
RANGE(UNLESSOTHERWISENOTED)(1)  
Symbol  
Rating  
Commercial  
–0.5to7  
–0.5toVCC+0.5  
–0.5toVCC+0.5  
±20  
Unit  
V
VCC  
SupplyVoltageRange  
(2)  
VI  
InputVoltageRange  
V
VO(2)  
OutputVoltageRange  
V
IIK  
Input Clamp Current, (VI < 0 or VI > VCC)  
mA  
mA  
mA  
mA  
° C  
IOK  
Output Clamp Current, (VO < 0 or VO > VCC)  
Continuous OutputCurrent, (VO =0toVCC)  
ContinuousCurrentThroughVCC orGND  
StorageTemperatureRange  
±50  
IOUT  
ICC, IGND  
TSTG  
±50  
±500  
–65to150  
NOTES:  
1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of  
the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to absolute-maximum-rated conditions  
for extended periods may affect device reliability.  
2. The input and output voltage ratings may be exceeded provided the input and output current ratings are observed.  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
VCC  
VIH  
Parameter  
SupplyVoltage  
Min.  
4.5  
2
Max.  
5.5  
0.8  
–4  
Unit  
V
HIGH Level Input Voltage  
LOW-LevelInputVoltage  
HIGH-LevelOutputCurrent  
LOW-LevelOutputCurrent  
OperatingFree-airTemperature  
V
VIL  
0
V
IOH  
mA  
mA  
° C  
IOL  
8
TA  
70  
ELECTRICALCHARACTERISTICSOVERRECOMMENDEDOPERATINGFREE-AIR  
TEMPERATURERANGE(UNLESSOTHERWISENOTED)  
IDT723616  
Commercial & Industrial(1)  
tA = 15, 20 ns  
Parameter  
Test Conditions  
Min.  
2.4  
Typ.(1)  
4
Max.  
Unit  
V
VOH  
VOL  
II  
VCC = 4.5V, IOH = –4 mA  
VCC = 4.5 V, IOL = 8 mA  
VCC = 5.5 V, VI = VCC or 0  
VCC = 5.5 V, VO = VCC or 0  
0.5  
±50  
±50  
1
V
µ A  
µ A  
mA  
pF  
IOZ  
(3)  
ICC  
VCC = 5.5 V, IO = 0 mA, VI = VCC or GND  
VI = 0, f = 1 MHz  
CIN  
COUT  
VO = 0, f = 1 MHz  
8
pF  
NOTES:  
1. Industrial temperature range product for 20ns speed grade is available as a standard device. All other speed grades are available by special order.  
2. All typical values are at VCC = 5V, TA = 25°C.  
3 For additional ICC information, see following page.  
6
IDT723616CMOSTRIPLEBUSSyncFIFO  
BUS-MATCHINGANDBYTESWAPPING64x36x2  
                                                                                            
WITH  
                                                                                            
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
400  
VCC = 5.5V  
350  
= 1/2  
f data  
f
s
T
= 25° C  
A
VCC = 5V  
C
L
= 0 pF  
300  
VCC = 4.5V  
250  
200  
150  
100  
50  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
3520 drw04  
fs  
Clock Frequency MHz  
Figure 1. Typical Characteristics: Supply Current vs Clock Frequency  
CALCULATING POWER DISSIPATION  
The ICC(f) current for the graph in Figure 1 was taken while simultaneously reading and writing the FIFO on the IDT723616 with CLKA and CLKB set to  
fs.Alldatainputsanddataoutputschangestateduringeachclockcycletoconsumethehighestsupplycurrent.Dataoutputsweredisconnectedtonormalize  
thegraphtoazero-capacitanceload.Oncethecapacitiveleadperdata-outputchannelisknown,thepowerdissipationcanbecalculatedwiththeequation  
below.  
With ICC(f) taken from Figure 1, the maximum power dissipation (PT) of the IDT723616 can be calculated by:  
2
PT = VCC x ICC(f) + Σ(CL x VOH x fo)  
where:  
CL  
fo  
VOH  
=
=
=
outputcapacitanceload  
switchingfrequencyofanoutput  
outputhighlevelvoltage  
When no reads or writes are occurring on the IDT723616, the power dissipated by a single clock (CLKA or CLKB) input running at frequency  
fS is calculatedby:  
PT=VCC x fS x 0.290 mA/MHz  
7
IDT723616CMOSTRIPLEBUSSyncFIFO  
BUS-MATCHINGANDBYTESWAPPING64x36x2  
                                                                                            
                                                                                            
WITH  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
SWITCHING CHARACTERISTICS OVER RECOMMENDED RANGES OF SUPPLY  
VOLTAGE AND OPERATING FREE-AIR TEMPERATURE  
(Commercial: VCC = 5.0V ±10%, TA = 0°C to +70°C; Industrial; VCC = 5.0V 10%,TA = 40°C to +85°C)  
Commercial  
Com’l & Ind’l(1)  
IDT723616L20  
IDT723616L15  
Symbol  
fS  
Parameter  
Clock Frequency, CLKA, CLKB, or CLKC  
Min.  
Max.  
Min.  
Max.  
50  
Unit  
MHz  
ns  
66.7  
tCLK  
tCLKH  
tCLKL  
tDS  
Clock Cycle Time, CLKA, CLKB, or CLKC  
15  
6
20  
8
Pulse Duration, CLKA, CLKB, and CLKC  
ns  
Pulse Duration, CLKA, CLKB, and CLKC  
6
8
ns  
Setup Time, A0-A35 before CLKAand C0-C17 before CLKC↑  
4
5
ns  
tENS  
SetupTime, CSA, W/RA, andENAbefore CLKA;RENBbefore CLKB;  
WENCbeforeCLKC↑  
5
5
ns  
tSZS  
tSWS  
tPGS  
Setup Time, SIZ0 and SIZ1 before CLKBand CLKC↑  
4
5
4
5
7
5
ns  
ns  
ns  
SetupTime,SWB0andSWB1beforeCLKB,SWCOandSWC1,beforeCLKC↑  
SetupTime, ODD/EVEN andPGAbefore CLKA;ODD/EVENandPGBbefore  
(2)  
CLKB↑  
(3)  
tRSTS  
tFSS  
tDH  
SetupTime,RST LOWbeforeCLKA,CLKB,orCLKC↑  
5
5
1
1
6
6
1
1
ns  
ns  
ns  
ns  
Setup Time, FS0 and FS1 before RST HIGH  
HoldTime, A0-A35afterCLKAandC0-C17afterCLKC↑  
tENH  
HoldTime,CSA,W/RA,andENAafterCLKA;RENBafterCLKB;WENB  
afterCLKC↑  
tSZH  
tSWH  
tPGH  
Hold Time, SIZ0 and SIZ1 after CLKBand CLKC↑  
2
0
0
2
0
0
ns  
ns  
ns  
HoldTime,SWB0andSWB1afterCLKB,SWC0andSWC1afterCLKC↑  
HoldTime,ODD/EVEN andPGAafterCLKA;ODD/EVENandPGBafter  
(2)  
CLKB↑  
(2)  
tRSTH  
tFSH  
tSKEW1(4)  
HoldTime, RSTLOWafterCLKA,CLKBorCLKC↑  
5
4
8
6
4
8
ns  
ns  
ns  
Hold Time, FS0 and FS1 after RST HIGH  
Skew Time, between CLKAand CLKBfor EFB and FFA; between CLKC↑  
and CLKAfor EFA and FFC  
tSKEW2(4)  
SkewTime, betweenCLKAandCLKBforAEB andAFA;betweenCLKC↑  
and CLKAfor AEA and AFC  
14  
16  
ns  
NOTES:  
1. Industrial temperature range product for 20ns speed grade is available as a standard device. All other speed grades are available by special order.  
2. Only applies for a clock edge that does a FIFO read.  
3. Requirement to count the clock edge as one of at least four needed to reset a FIFO.  
4. Skew time is not a timing constraint for proper device operation and is only included to illustrate the timing relationships among CLKA cycle, CLKB cycle and CLKC.  
8
IDT723616CMOSTRIPLEBUSSyncFIFO  
BUS-MATCHINGANDBYTESWAPPING64x36x2  
                                                                                            
                                                                                            
WITH  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
SWITCHINGCHARACTERISTICSOVERRECOMMENDEDRANGESOFSUPPLY  
VOLTAGE AND OPERATING FREE-AIR TEMPERATURE, CL = 30PF  
(Commercial: VCC = 5.0V ±10%, TA = 0°C to +70°C; Industrial; VCC = 5.0V 10%,TA = 40°C to +85°C)  
Commercial  
Com’l & Ind’l(1)  
IDT723616L20  
IDT723616L15  
Symbol  
tA  
Parameter  
Min.  
2
Max.  
10  
Min.  
2
Max.  
12  
Unit  
ns  
Access Time,CLKAtoA0-A35andCLKBtoB0-B17  
Propagation Delay Time, CLKAto FFA and CLKCto FFC  
PropagationDelayTime, CLKAtoEFA andCLKBto EFB  
PropagationDelayTime, CLKAtoAEA andCLKBtoAEB  
Propagation Delay Time, CLKAto AFA and CLKCto AFC  
Propagationdelaytime,CLKBtoPEFB  
tWFF  
tREF  
2
10  
2
12  
ns  
2
10  
2
12  
ns  
tPAE  
2
10  
2
12  
ns  
tPAF  
tPPE(2)  
2
10  
2
12  
ns  
2
10  
2
12  
ns  
tPDPE  
Propagation Delay Time, A0-A35 valid to PEFA valid; C0-C17 valid to PEFC  
valid  
2
10  
2
11  
ns  
tPOPE  
tPEPE  
tEN  
Propagation Delay Time, ODD/EVEN to PEFA and PEFC  
PropagationDelayTime, W/RAorPGAtoPEFA  
2
1
2
10  
10  
10  
2
1
2
12  
12  
12  
ns  
ns  
ns  
Enable Time, CSA and W/RA LOW to A0-A35 active and RENB HIGH to B0-B17  
active  
tDIS  
Disable Time, CSA orW/RAHIGHtoA0-A35athigh-impedance andRENBLOW  
toB0-B17athigh-impedance  
1
8
1
9
ns  
NOTE:  
1. Industrial temperature range product for 20ns speed grade is available as a standard device. All other speed grades are available by special order.  
2. Only applies when a new port B bus size is implemented by the rising CLKB edge.  
9
IDT723616CMOSTRIPLEBUSSyncFIFO  
BUS-MATCHINGANDBYTESWAPPING64x36x2  
                                                                                            
WITH  
                                                                                            
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
FIFO WRITE/READ OPERATION  
SIGNALDESCRIPTIONS  
The state of Port A data A0-A35 outputs is controlled by the Port A chip  
select(CSA)andthePortAwrite/readselect(W/RA).TheA0-A35outputsare  
inthehigh-impedancestatewheneitherCSAorW/RAisHIGH.TheA0-A35  
outputs are active whenbothCSAandW/RAare LOW. Data is loadedinto  
FIFO1fromtheA0-A35inputs onaLOW-to-HIGHtransitionofCLKAwhen  
CSA is LOW, W/RA is HIGH, ENA is HIGH, and FFA is HIGH. Data is read  
fromFIFO2totheA0-A35outputsbyaLOW-to-HIGHtransitionofCLKAwhen  
CSAis LOW, W/RAis LOW, ENAis HIGH, andEFAis HIGH(see Table 2).  
ThestateofthePortBdata(B0-B17)outputs is controlledbyPortBread  
select(RENB). The B0-B17outputs are inthe high-impedance state when  
REN is LOW. The B0-B17 outputs are active when REN IS HIGH. Data is  
read from FIFO1 to the B0-B17 outputs by a LOW-to-HIGH transition of  
CLKB when RENB is HIGH, EFB is HIGH, and either SIZ0 or SIZ1 is LOW  
(see Table 3).  
RESET  
The IDT723616 is reset by taking the reset (RST) input LOW for at least  
four Port A clock (CLKA), four Port B clock (CLKB) and four Port C clock  
(CLKC) LOW-to-HIGH transitions. The reset input can switch asynchro-  
nously to the clocks. A device reset initializes the internal read and write  
pointers ofeachFIFOandforces the fullflags (FFA, FFC)LOW, the empty  
flags (EFA, EFB) LOW, the Almost-Empty flags (AEA, AEB) LOW and the  
Almost-Full flags (AFA, AFC) HIGH. After a reset, FFA is set HIGH after  
two LOW-to-HIGH transitions of CLKA and FFC is set HIGH after two  
LOW-to-HIGH transitions of CLKC. The device must be reset after power  
up before data is written to its memory.  
A LOW-to-HIGH transition on the RST input loads the Almost-Full and  
Almost-Empty Offset register (X) with the values selected by the flag-  
select (FS0, FS1) inputs. The values that can be loaded into the registers  
are shown in Table 1.  
Data is loaded into FIFO2 from the C0-C17 inputs on a LOW-to-HIGH  
transition of CLKC when WENC is HIGH, FFC is HIGH, and either SIZ0 or  
SIZ1 is LOW (see Table 4).  
ThesetupandholdtimeconstraintstothePortClocksforthePortAchipselect  
(CSA) and write/read selects (W/RA, RENB, WENC) are only for enabling  
writeandreadoperationsandarenotrelatedtohigh-impedancecontrolofthe  
dataoutputs.IfaportenableisLOWduringaclockcycle,thePortChipselect  
(forPortA)andwrite/readselect(forallports)canchangestatesduringthe  
setupandholdtime windowofthe cycle.  
TABLE 1 — FLAG PROGRAMMING  
ALMOST-FULL AND  
FS1  
FS0  
RST  
ALMOST-EMPTY FLAG  
OFFSET REGISTER (X)  
H
H
L
L
H
L
H
L
16  
12  
8
4
TABLE 2 — PORT-A ENABLE FUNCTION TABLE  
CSA  
W/RA  
ENA  
CLKA  
A0-A35Outputs  
Port Functions  
None  
H
X
X
X
X
InHigh-ImpedanceState  
InHigh-ImpedanceState  
InHigh-ImpedanceState  
Active,FIFO2OutputRegister  
Active,FIFO2OutputRegister  
L
H
L
None  
L
H
H
FIFO1Write  
None  
L
L
L
X
L
L
H
FIFO2Read  
TABLE 3 — PORT-B ENABLE FUNCTION TABLE  
RENB  
SIZ1, SIZ0  
CLKB  
B0-B17Outputs  
Port Functions  
L
X
X
InHigh-ImpedanceState  
Active,FIFO1OutputRegister  
None  
(1)  
H
OneortheotherLOW  
FIFO1read  
NOTE:  
1. At no time during the operation of the FIFO is it permissible to apply a LOW logic level simultaneously to both SIZ0 and SIZ1, nor is it permissible to apply a HIGH logic level  
simultaneously to both these inputs. These state combinations are reserved.  
TABLE 4 — PORT-C ENABLE FUNCTION TABLE  
WENC  
SIZ1, SIZ0  
CLKC  
C0-C17Inputs  
Port Functions  
None  
L
X
X
InHigh-ImpedanceState  
InHigh-ImpedanceState  
(1)  
H
OneortheotherLOW  
FIFO2 write  
NOTE:  
1. At no time during the operation of the FIFO is it permissible to apply a LOW logic level simultaneously to both SIZ0 and SIZ1, nor is it permissible to apply a HIGH logic level  
simultaneously to both these inputs. These state combinations are reserved.  
10  
IDT723616CMOSTRIPLEBUSSyncFIFO  
BUS-MATCHINGANDBYTESWAPPING64x36x2  
                                                                                            
WITH  
                                                                                            
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
SYNCHRONIZED FIFO FLAGS  
EachFIFOissynchronizedtoitsPortClockthroughtwoflip-flopstages.This  
is done to improve flag reliability by reducing the probability of metastable  
location is ready to be written in a minimum of three cycles of the full flag  
synchronizingclock.Therefore,afullflagisLOWiflessthantwocyclesofthe  
fullflagsynchronizingclockhaveelapsedsincethenextmemorywritelocation  
eventsontheoutputwhenCLKAoperatesasynchronouslyrelativetoCLKB hasbeenread.ThesecondLOW-to-HIGHtransitiononthefullflagsynchro-  
orCLKC.EFA,AEA,FFA,andAFAaresynchronizedtoCLKA.EFBandAEB  
aresynchronizedtoCLKB.FFCandAFCaresynchronizedtoCLKC.Tables  
5 and 6 show the relationship of each port flag to FIFO1 and FIFO2.  
nizationclockafterthereadsetsthefullflagHIGHandthedatacanbewritten  
inthefollowingclockcycle.  
ALOW-to-HIGHtransitiononafullflagsynchronizingclockbeginsthefirst  
synchronizationcycleofareadiftheclocktransitionoccursattimetSKEW1or  
greateraftertheread.Otherwise,thesubsequentclockcyclecanbethefirst  
synchronization cycle (see Figure 14 and 15).  
EMPTY FLAGS (EFA, EFB)  
The empty flag of a FIFO is synchronized to the Port Clock that reads  
data from its array. When the empty flag is HIGH, new data can be read  
to the FIFO output register. When the empty flag is LOW, the FIFO is  
empty and attempted FIFO reads are ignored. When reading FIFO1 with  
ALMOST-EMPTY FLAGS (AEA, AEB)  
TheAlmost-EmptyflagofaFIFOissynchronizedtothePortClockthatreads  
a byte or word size on Port B, EFB is set LOW when the fourth byte or data from its array. The state machine that controls an Almost-Empty flag  
second word of the last long word is read.  
The read pointer of a FIFO is incremented each time a new word is  
monitorsawrite-pointerandaread-pointercomparatorthatindicateswhen  
theFIFOSRAMstatusisalmost-empty,almost-empty+1,oralmost-empty+2.  
clocked to the output register. The state machine that controls an empty Thealmost-emptystateisdefinedbythevalueoftheAlmost-FullandAlmost-  
flagmonitorsawrite-pointerandread-pointercomparatorthatindicateswhen EmptyOffsetregister(X).Thisregisterisloadedwithoneoffourpresetvalues  
theFIFOSRAMstatusisempty,empty+1,orempty+2.AwordwrittentoaFIFO duringadevicereset(seeResetabove).AnAlmost-EmptyflagisLOWwhen  
canbereadtotheFIFOoutputregisterinaminimumofthreecyclesoftheempty theFIFOcontainsXorlesslongwordsinmemoryandisHIGHwhentheFIFO  
flagsynchronizingclock.Therefore,anemptyflagisLOWifawordinmemory contains (X+1) or more long words.  
isthenextdatatobesenttotheFIFOoutputregisterandtwocyclesofthePort  
ClockthatreadsdatafromtheFIFOhavenotelapsedsincethetimetheword  
TwoLOW-to-HIGHtransitionsoftheAlmost-Emptyflagsynchronizingclock  
arerequiredafteraFIFOwritefortheAlmost-Emptyflagtoreflectthenewlevel  
waswritten.TheemptyflagoftheFIFOissetHIGHbythesecondLOW-to- offill.Therefore,theAlmost-EmptyflagofaFIFOcontaining(X+1)ormore  
HIGHtransitionofthesynchronizingclock,andthenewdatawordcanberead longwords remains LOWiftwocycles ofthe synchronizingclockhave not  
totheFIFOoutputregisterinthefollowingcycle.  
ALOW-to-HIGHtransitiononanemptyflagsynchronizingclockbeginsthe  
elapsedsincethewritethatfilledthememorytothe(X+1)level.AnAlmost-  
Empty flag is set HIGH by the second LOW-to-HIGH transition of the  
firstsynchronizationcycleofawriteiftheclocktransitionoccursattimetSKEW1 synchronizingclockaftertheFIFOwritethatfillsmemorytothe(X+1)level.  
orgreaterafterthewrite.Otherwise,thesubsequentclockcyclecanbethe  
first synchronization cycle (see Figure 12 and 13).  
ALOW-to-HIGHtransitionofanAlmost-Emptyflagsynchronizingclockbegins  
thefirstsynchronizationcycleifitoccursattimetSKEW2orgreaterafterthe  
write that fills the FIFO to (X+1) long words. Otherwise, the subsequent  
synchronizingclockcyclecanbethefirstsynchronizationcycle(seeFigure  
FULL FLAG (FFA, FFC)  
ThefullflagofaFIFOissynchronizedtothePortClockthatwritesdatato 16 and 17).  
its array. Whenthe fullflagis HIGH, a memorylocationis free inthe SRAM  
toreceivenewdata.NomemorylocationsarefreewhenthefullflagisLOW ALMOST-FULL FLAGS (AFA, AFC)  
andattemptedwrites tothe FIFOare ignored.  
TheAlmost-FullflagofaFIFOissynchronizedtothePortClockthatwrites  
Each time a word is written to a FIFO, the write pointer is incremented. datatoitsarray.ThestatemachinethatcontrolsanAlmost-Fullflagmonitors  
The state machine that controls a full flag monitors a write-pointer and a write-pointer and read-pointer comparator that indicates when the FIFO  
read-pointercomparatorthatindicateswhentheFIFOSRAMstatusisfull,full- SRAMstatusisalmost-full,almost-full-1,oralmost-full-2.Thealmost-fullstate  
1,orfull-2.Fromthe time a wordis readfroma FIFO,the previous memory isdefinedbythevalueoftheAlmost-FullandAlmost-EmptyOffsetregister(X).  
TABLE 6 — FIFO2 FLAG OPERATION  
TABLE 5 — FIFO1 FLAG OPERATION  
Synchronized  
to CLKA  
Synchronized  
to CLKC  
Synchronized  
to CLKB  
Synchronized  
to CLKA  
Number of 36-Bit  
Words in the FIFO2(1  
Number of 36-Bit  
Words in the FIFO1(1)  
EFA  
L
AEA  
AFC  
H
FFC  
EFB  
L
AEB  
AFA  
H
FFA  
0
1 to X  
L
L
H
H
H
H
L
0
1 to X  
L
L
H
H
H
H
L
H
H
H
H
(X+1)to[64–(X+1)]  
(64–X)to63  
64  
H
H
H
H
H
(X+1)to[64–(X+1)]  
(64–X)to63  
64  
H
H
H
H
H
H
L
H
L
H
L
H
L
NOTE:  
1. X is the value in the Almost-Empty flag and Almost-Full flag Offset register.  
11  
IDT723616CMOSTRIPLEBUSSyncFIFO  
BUS-MATCHINGANDBYTESWAPPING64x36x2  
                                                                                            
                                                                                            
WITH  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
Thisregisterisloadedwithoneoffourpresetvaluesduringadevicereset(see dataportsizeselection.Theorderofthebytesarerearrangedwithinthelong  
Resetabove).AnAlmost-FullflagisLOWwhentheFIFOcontains(64-X)or word,butthebitorderwithinthebytes remains constant.  
morelongwordsinmemoryandisHIGHwhentheFIFOcontains[64-(X+1)]  
or less long words.  
TheswapconfigurationcanbeselectedindependentlyforportsBandC.  
ThePortBSwapSelectinputs(SWB0andSWB1)areusedtochoosethebyte  
TwoLOW-to-HIGHtransitionsoftheAlmost-Fullflagsynchronizingclock arrangementforPortB.ThePortCSwapSelectinputs(SWC0andSWC1)  
arerequiredafteraFIFOreadfortheAlmost-Fullflagtoreflectthenewlevel areusedtochoosethebytearrangementforPortC.Thelevelsappliedtothe  
offill.Therefore,theAlmost-FullflagofaFIFOcontaining[64-(X+1)]orless swapselectmustbestaticthroughoutFIFOoperation.Theselevelscanonly  
wordsremainsLOWiftwocyclesofthesynchronizingclockhavenotelapsed be changed when the FIFO is idle (no read or write activity) just preceding  
sincethereadthatreducedthenumberoflongwordsinmemoryto[64-(X+1)]. Master Reset operation. Figures 3 and 4 are examples of the byte-order  
AnAlmost-FullflagissetHIGHbythesecondLOW-to-HIGHtransitionofthe swappingoperationsavailablefor18-bitwords.Performingabyteswapand  
synchronizingclockaftertheFIFOreadthatreducesthenumberoflongwords bussizesimultaneouslyforaFIFO1readfirstrearrangesthebytesasshown  
in memory to [64-(X+1)]. A LOW-to-HIGH transition of an Almost-Full flag inFigure 3, thenoutputs the bytes as showninFigure 2. Simultaneous bus  
synchronizingclockbeginsthefirstsynchronizationcycleifitoccursattime sizing and byte swapping operations for FIFO2 writes first loads the data  
tSKEW2 or greater after the read that reduces the number of long words in accordingtoFigure 2, thenswaps the bytes as showninFigure 4whenthe  
memoryto[64-(X+1)].Otherwise,thesubsequentsynchronizingclockcycle long word is loaded to FIFO2 RAM.  
can be the first synchronization cycle (see Figure 18 and 19).  
PARITY CHECKING  
BUS SIZING  
The Port A inputs (A0-A35) have four parity trees to check the parity of  
Both ports B and C, taken together, may be configured for either an 18- incoming(oroutgoing)data;thePortBinputs(B0-B17)havetwoparitytrees  
bit word or a 9-bit byte format, thus determining the word width of the data tochecktheparityofoutgoingdata;PortCinputs (C0-C17)havetwoparity  
read from FIFO1 or written to FIFO2. Whichever bus size is selected treestochecktheparityofincomingdata.Aparityfailureononeormorebytes  
appliestobothportsBandC.Itisnotpossibletoconfigurethebuswidthofports ofthePortAdatabus is reportedbyaLOWlevelontheportparityerrorflag  
B and C independently.  
(PEFA).Aparityfailureononeormorebytes ofthePortCdatabus thatare  
Thelevelsappliedtothebussizeselect(SIZ0,SIZ1)inputsmustbestatic validforthebus sizeimplementationis reportedbyaLOWlevelonthePort  
throughoutFIFOoperation.TheselevelscanonlybechangedwhentheFIFO Cparityerrorflag(PEFC).Oddorevenparitycheckingcanbeselected,and  
isidle(noreadorwriteactivity)justprecedingMasterResetoperation.The the parityerrorflags canbe ignoredifthis feature is notdesired.  
bussizeasselectedusingSIZ0andSIZ1isimplementedaccordingtoFigure  
2. Note thatneithera HIGHnora LOWlogiclevelshouldbe appliedtoboth EVEN parity select input. A parity error on one or more valid bytes of a port  
SIZ0andSIZ1atthe same time;these states are reserved.  
ParitystatusischeckedoneachinputbusaccordingtotheleveloftheODD/  
isreportedbyaLOWlevelonthecorrespondingportparityerrorflag(PEFA,  
Only36-bitlong-worddataiswrittentoorreadfromthetwoFIFOmemories PEFC)output.PortAbytes are arrangedas A0-A8,A9-A17,A18-A26,and  
ontheIDT723616.Bus-matchingoperationsaredoneafterdataisreadfrom A27-A35.PortCbytesarearrangedasC0-C8andC9-C17,anditsvalidbytes  
the FIFO1 RAM and before data is written to the FIFO2 RAM.  
arethoseusedinaPortCbussizeimplementation.WhenODD/EVENparity  
is selected, a port parity error flag (PEFA, PEFC) is LOW if any byte on the  
porthas anODD/EVENnumberofLOWlevels appliedtothe bits.  
BUS-MATCHING FIFO1 READS  
Data is read from the FIFO1 RAM in 36-bit long word increments. Since  
Port B can only have a byte or word size, only the first one or two bytes PARITYGENERATION  
appear on the selected portion of the FIFO1 output register, with the rest  
A HIGH level on the Port A parity generate select (PGA) or Port B parity  
of the long word stored in auxiliary registers. In this case, subsequent generateselect(PGB)enablestheIDT723616togenerateparitybitsforport  
FIFO1 reads with the same bus size implementation output the rest of the reads from a FIFO. Port A bytes are arranged as A0-A8, A9-A17, A18-26,  
long word to the FIFO1 output register in the order shown by Figure 2.  
andA27-A35,withthemostsignificantbitofeachbyteusedastheparitybit.  
When reading data from FIFO1 in byte format, the unused B0-B17 PortBbytesarearrangedasB0-B8andB9-B17,withthemostsignificantbit  
outputs remain inactive but static, with the unused FIFO1 output register ofeachbyteusedastheparitybit.AwritetoaFIFOstoresthelevelsapplied  
bits holding the last data value to decrease power consumption.  
toallnineinputsofabyteregardlessofthestateoftheparitygenerateselect  
(PGA, PGB) inputs. When data is read from a port with parity generation  
selected, the lower eight bits of each byte are used to generate a parity bit  
BUS-MATCHING FIFO2 WRITES  
Data is written to the FIFO2 RAM in 36-bit long word increments. Data accordingtothelevelontheODD/EVENselect.Thegeneratedparitybitsare  
can be written to FIFO2 with a byte or word bus size. This action stores the substitutedforthelevelsoriginallywrittentothemostsignificantbitsofeachbyte  
initial bytes or words in auxiliary registers. The CLKC rising edge that as the word is read to the data outputs.  
writes the fourthbyte orthe secondwordoflongwordtoFIFO2alsostores  
Paritybits forFIFOdata are generatedafterthe data is readfromSRAM  
the entire long word in FIFO2 RAM. The bytes are arranged in the manner andbeforethedataiswrittentotheoutputregister.Therefore,thePortAparity  
shown in Figure 2.  
generateselect(PGA)andODD/EVENparityselect(ODD/EVEN)havesetup  
and hold time constraints to the Port A clock (CLKA) and the Port B parity  
generateselect(PGB)andODD/EVENhavesetupandhold-timeconstraints  
BYTE SWAPPING  
The byte-order arrangement of data read from FIFO1 or data written to tothePortBclock(CLKB).Thesetimingconstraintsonlyapplyforarisingclock  
FIFO2 can be changed synchronous to the rising edge of CLKB. Four edge used to read a new long word to the FIFO output register.  
modes of byte-order swapping (including no swap) can be done with any  
12  
IDT723616CMOSTRIPLEBUSSyncFIFO  
BUS-MATCHINGANDBYTESWAPPING64x36x2  
                                                                                            
                                                                                            
WITH  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
A35A27 A26A18  
A17A9  
A8A0  
Write to FIFO1/  
Read From FIFO2  
BYTE ORDER ON PORT A:  
D
A
B
C
B17B9  
B8B0  
C8C0  
C17C9  
1st: Read  
from FIFO1  
1st: Write  
to FIFO2  
SIZ1 SIZ0  
B
A
C
D
L
H
B17B9  
B8B0  
C8C0  
C17C9  
2nd: Write  
to FIFO2  
2nd: Read  
from FIFO1  
A
B
C
D
WORD SIZE  
C8C0  
C17C9  
C17C9  
B17B9  
B8B0  
B8B0  
SIZ1 SIZ0  
1st: Write  
to FIFO2  
1st: Read  
D
A
from FIFO1  
H
L
C8C0  
B17B9  
2nd: Write  
to FIFO2  
2nd: Read  
from FIFO1  
C
B
C8C0  
B8B0  
B8B0  
C17C9  
C17C9  
B17B9  
3rd: Write  
to FIFO2  
3rd: Read  
from FIFO1  
B
C
C8C0  
B17B9  
4th: Read  
from FIFO1  
4th: Write  
to FIFO2  
A
D
3520 fig01  
BYTE SIZE  
NOTE:  
1. At no time during the operation of the FIFO is it permissible to apply a LOW logic level simultaneously to both SIZ0 and SIZ1, nor is it permissible to apply a HIGH logic level  
simultaneously to both these inputs. These state combinations are reserved.  
Figure 2. Bus Sizing  
13  
IDT723616CMOSTRIPLEBUSSyncFIFO  
BUS-MATCHINGANDBYTESWAPPING64x36x2  
                                                                                            
WITH  
                                                                                            
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
Byte order on Port A:  
A26A18  
A17A9  
A35A27  
A8A0  
Write to FIFO1  
B
A
C
D
B17B9  
B8B0  
SWB1 SWB0  
L
L
B
A
1st: Read from FIFO1  
2nd: Read from FIFO1  
C
D
NO SWAP  
B17B9  
B8B0  
SWB1 SWB0  
L
H
D
C
1st: Read from FIFO1  
2nd: Read from FIFO1  
B
A
BYTE SWAP  
B17B9  
B8B0  
SWB1 SWB0  
1st: Read from FIFO1  
2nd: Read from FIFO1  
D
H
L
C
A
B
WORD SWAP  
B17B9  
B8B0  
SWB1 SWB0  
1st: Read from FIFO1  
2nd: Read from FIFO1  
A
H
H
B
D
C
BYTE-WORD SWAP  
3520 fig01a  
Figure 3. Port B Byte Swapping (Word Size Example)  
14  
IDT723616CMOSTRIPLEBUSSyncFIFO  
BUS-MATCHINGANDBYTESWAPPING64x36x2  
                                                                                            
                                                                                            
WITH  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
A26A18  
A17A9  
A8A0  
A35A27  
BYTE ORDER ON PORT A:  
Read from FIFO2  
B
A
C
D
C17C9  
C8C0  
SWC1 SWC0  
D
C
1st: Write to FIFO2  
2nd: Write to FIFO2  
L
L
A
B
NO SWAP  
C17C9  
C8C0  
SWC1 SWC0  
A
B
1st: Write to FIFO2  
2nd: Write to FIFO2  
L
H
D
C
BYTE SWAP  
C17C9  
C8C0  
SWC1 SWC0  
A
1st: Write to FIFO2  
2nd: Write to FIFO2  
B
H
L
C
D
WORD SWAP  
C17B9  
C8B0  
SWC1 SWC0  
1st: Write to FIFO2  
C
D
H
H
2nd: Write to FIFO2  
A
B
3520 fig01b  
BYTE-WORD SWAP  
Figure 4. Port C Byte Swapping (Word Size Example)  
15  
IDT723616CMOSTRIPLEBUSSyncFIFO  
BUS-MATCHINGANDBYTESWAPPING64x36x2  
                                                                                            
WITH  
                                                                                            
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
CLKA  
CLKB  
CLKC  
}
tRSTH  
t
FSH  
t
RSTS  
t
FSS  
}
RST  
FS1,FS0  
0,1  
t
WFF  
t
WFF  
FFA  
t
REF  
EFA  
FFB  
t
WFF  
t
WFF  
t
REF  
EFB  
AEA  
AFA  
AEB  
t
PAE  
t
PAF  
t
PAE  
t
PAF  
AFC  
3520 drw05  
Figure 5. Device Reset Loading the X Register with the Value of Eight  
tCLK  
tCLKH  
tCLKL  
CLKA  
FFA  
CSA  
HIGH  
t
ENS  
t
ENH  
tENS  
t
ENH  
W/RA  
tENS  
tENH  
tENS  
tENH  
tENS  
tENH  
ENA  
tDH  
tDS  
(1)  
W2(1)  
No Operation  
A0 - A35  
W1  
ODD/  
EVEN  
tPDPE  
tPDPE  
Valid  
Valid  
PEFA  
3520 drw06  
NOTE:  
1. Written to FIFO1.  
Figure 6. Port-A Write Cycle Timing for FIFO1  
16  
IDT723616CMOSTRIPLEBUSSyncFIFO  
BUS-MATCHINGANDBYTESWAPPING64x36x2  
                                                                                            
WITH  
                                                                                            
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
CLKC  
FFC HIGH  
tENH  
tENH  
tENS  
tENS  
WENC  
tDH  
tDS  
C0-C17  
ODD/EVEN  
tPDPE  
tPDPE  
PEFC  
VALID  
VALID  
3520 drw07  
NOTE:  
1. PEFC indicates parity error for the following bytes: C17-C9 and C8-C0.  
DATA SWAP TABLE FOR WORD WRITES TO FIFO2  
SWAP  
WRITE  
MODE  
NO.  
DATA WRITTEN TO FIFO2  
DATA READ FROM FIFO2  
SWC1  
SWC0  
C17-C9  
C8-C0  
A35-27  
A26-A18  
A17-A9  
A8-A0  
L
L
1
2
C
A
D
B
A
B
C
D
L
H
H
H
L
1
2
B
D
A
C
A
A
A
B
B
B
C
C
C
D
D
D
1
2
A
C
B
D
H
1
2
D
B
C
A
Figure 7. Port-C Word Write Cycle Timing for FIFO2  
17  
IDT723616CMOSTRIPLEBUSSyncFIFO  
BUS-MATCHINGANDBYTESWAPPING64x36x2  
                                                                                            
WITH  
                                                                                            
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
CLKC  
FFC  
HIGH  
tENS  
tENH  
tENS  
tENH  
WENC  
tDS  
tDH  
C0-C8  
ODD/EVEN  
PEFC  
t
PPE  
tPDPE  
t
PDPE  
t
PDPE  
Valid  
Valid  
Valid  
3520 drw08  
Valid  
NOTE:  
1. PEFC indicates parity error for the following byte: C8C0.  
DATA SWAP TABLE FOR BYTE WRITES TO FIFO2  
SWAP  
WRITE  
MODE  
NO.  
DATA WRITTEN TO FIFO2  
DATA READ FROM FIFO2  
A17-A9  
SWC1  
SWC0  
C8-C0  
A35-27  
A26-A18  
A8-A0  
1
D
L
L
2
3
4
C
B
A
A
A
A
A
B
C
C
C
C
D
1
2
3
4
A
B
C
D
L
H
H
H
L
B
B
B
D
D
D
1
2
3
4
B
A
D
C
1
2
3
4
C
D
A
B
H
Figure 8. Port-C Byte Write Cycle Timing for FIFO2  
18  
IDT723616CMOSTRIPLEBUSSyncFIFO  
BUS-MATCHINGANDBYTESWAPPING64x36x2  
                                                                                            
WITH  
                                                                                            
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
CLKB  
EFB HIGH  
tENH  
tENS  
RENB  
tPGS  
tPGH  
PGB,  
ODD/  
EVEN  
tEN  
tDIS  
tA  
tA  
Previous Data  
Read 1  
Read 2  
B0-B17  
3520drw09  
DATA SWAP TABLE FOR WORD READS FROM FIFO1  
SWAP MODE  
SWB0  
DATA WRITTEN TO FIFO1  
READ  
NO.  
DATA READ FROM FIFO1  
SWB1  
A35-A27  
A26-A18  
A17-A9  
A8-A0  
D
B17-B9  
B8-B0  
1
2
A
C
B
D
L
L
L
H
L
A
A
A
A
B
B
B
B
C
C
C
C
1
2
D
B
C
A
D
1
2
C
A
D
B
H
H
D
1
2
B
D
A
C
H
D
Figure 9. Port-B Word Read Cycle Timing for FIFO1  
19  
IDT723616CMOSTRIPLEBUSSyncFIFO  
BUS-MATCHINGANDBYTESWAPPING64x36x2  
                                                                                            
WITH  
                                                                                            
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
CLKB  
EFB  
HIGH  
tENS  
tENH  
RENB  
tPGS  
tPGH  
t
SZS  
tSZH  
PGB,  
ODD/  
EVEN  
tDIS  
tEN  
tA  
tA  
tA  
tA  
Read 4  
B0-B8  
Previous Data  
Read 1  
Read 2  
Read 3  
3520 drw10  
NOTE:  
1. Unused bytes hold last FIFO1 output register data for byte-size reads.  
DATA SWAP TABLE FOR BYTE READS FROM FIFO1  
DATA READ  
FROM FIFO 1  
SWAP MODE  
DATA WRITTEN TO FIFO 1  
A26-A18  
READ  
NO.  
SWB1  
SWB0  
A35-A27  
A17-A9  
A8-A0  
B17-B9  
1
2
3
4
A
B
C
D
L
L
L
A
B
B
B
B
C
D
D
D
D
1
2
3
4
D
C
B
A
H
L
A
A
A
C
C
C
1
2
3
4
C
D
A
B
H
H
1
2
3
4
B
A
D
C
H
Figure 10. Port-B Byte Read Cycle Timing for FIFO1  
20  
IDT723616CMOSTRIPLEBUSSyncFIFO  
BUS-MATCHINGANDBYTESWAPPING64x36x2  
                                                                                            
WITH  
                                                                                            
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
tCLK  
tCLKH  
tCLKL  
CLKA  
EFA HIGH  
CSA  
W/RA  
tENS  
tENS  
tENH  
tENS  
tENH  
tENH  
ENA  
No Operation  
tEN  
tA  
t
DIS  
tA  
A0 - A35  
Word 1(1)  
Word 2 (1)  
Previous Data  
tPGS  
tPGS  
tPGH  
tPGH  
PGA,  
ODD/  
EVEN  
3520 drw11  
NOTE:  
1. Read from FIFO2.  
Figure 11. Port-A Read Cycle Timing for FIFO2  
t
CLK  
t
CLKL  
t
CLKH  
CLKA  
CSA LOW  
WRA HIGH  
tENS  
tENH  
ENA  
FFA  
HIGH  
tDS  
tDH  
A0 - A35  
W1  
t
CLK  
(1)  
SKEW1  
t
CLKH  
t
t
CLKL  
1
2
CLKB  
t
REF  
t
REF  
FIFO1 Empty  
EFB  
tENS  
tENH  
RENB  
tDIS  
tEN  
tA  
tA  
B0 -B17  
Read 1  
Previous Data  
Read 2  
3520 drw12  
NOTES:  
1. tSKEW1 is the minimum time between a rising CLKA edge and a rising CLKB edge for EFB to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge  
and rising CLKB edge is less than tSKEW1, then the transition of EFB HIGH may occur one CLKB cycle later than shown.  
2. Port-B size is word or byte; EFB is set LOW by the last word or byte read from FIFO1, respectively. (The word-size case is shown.)  
Figure 12. EFB Flag Timing and First Data Read when FIFO1 is Empty  
21  
IDT723616CMOSTRIPLEBUSSyncFIFO  
BUS-MATCHINGANDBYTESWAPPING64x36x2  
                                                                                            
WITH  
                                                                                            
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
t
CLK tCLKL  
t
CLKH  
CLKC  
tENS  
tENH  
WENC  
FFC  
HIGH  
tDH  
tDS  
tDH  
t
DS  
Write 1  
Write 2  
C0 - C17  
t
CLK  
(1)  
SKEW1  
tCLKH  
t
tCLKL  
CLKA  
1
2
t
REF  
t
REF  
EFA  
CSA  
FIFO2 Empty  
LOW  
LOW  
W/RA  
tENS  
tENH  
ENA  
tA  
A0 -A35  
W1  
3520 drw13  
NOTES:  
1. tSKEW1 is the minimum time between a rising CLKC edge and a rising CLKA edge for EFA to transition HIGH in the next CLKA cycle. If the time between the rising CLKC  
edge and rising CLKA edge is less than tSKEW1, then the transition of EFA HIGH may occur one CLKA cycle later than shown.  
2. Port-C size is word or byte; tSKEW1 is referenced to the rising CLKC edge that writes the last word or byte of the long word, respectively. (The word-size case is shown.)  
Figure 13. EFA Flag Timing and First Data Read when FIFO2 is Empty  
tCLK  
tCLKL  
tCLKH  
CLKB  
RENB  
tENH  
tENS  
EFB  
HIGH  
tDIS  
tA  
tA  
t
EN  
Read 1  
Read 2  
B0 - B17  
(1)  
Previous Word in  
FIFO1 Output Register  
tSKEW1  
tCLK  
tCLKH  
tCLKL  
CLKA  
1
2
t
WFF  
tWFF  
FFA  
FIFO1 Full  
CSA LOW  
WRA HIGH  
tENS  
tENH  
ENA  
tDS  
tDH  
A0 - A35  
To FIFO1  
3520 drw14  
NOTES:  
1. tSKEW1 is the minimum time between a rising CLKB edge and a rising CLKA edge for FFA to transition HIGH in the next CLKA cycle. If the time between the rising CLKB  
edge and rising CLKA edge is less than tSKEW1, then FFA may transition HIGH one CLKA cycle later than shown.  
2. Port-B size is word or byte; tSKEW1 is referenced from the rising CLKB edge that reads the last word or byte of the long word, respectively. (The word-size case is shown.)  
Figure 14. FFA Flag Timing and First Available Write when FIFO1 is Full  
22  
IDT723616CMOSTRIPLEBUSSyncFIFO  
BUS-MATCHINGANDBYTESWAPPING64x36x2  
                                                                                            
                                                                                            
WITH  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
tCLK  
tCLKH  
tCLKL  
CLKA  
CSA  
LOW  
LOW  
W/RA  
tENH  
tENS  
ENA  
EFA  
HIGH  
tA  
Previous Word in FIFO2 Output Register  
Next Word From FIFO2  
A0 - A35  
(1)  
tSKEW1  
t
CLK tCLKL  
tCLKH  
CLKC  
FFC  
1
2
t
WFF  
ENH  
t
WFF  
FIFO2 Full  
t
tENS  
WENC  
C0 - C17  
tDS  
tDH  
tDH  
tDS  
3520 drw15  
To FIFO2  
NOTES:  
1. tSKEW1 is the minimum time between a rising CLKA edge and a rising CLKB edge for FFB to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge  
and rising CLKB edge is less than tSKEW1, then FFB may transition HIGH one CLKB cycle later than shown.  
2. Port-C size is word or byte; FFC is set LOW by the last word or byte write of the long word, respectively. (The word-size case is shown.)  
Figure 15. FFC Flag Timing and First Available Write when FIFO2 is Full  
CLKA  
tENS  
tENH  
ENA  
(1)  
tSKEW2  
1
2
CLKB  
t
PAE  
(X+1) Long Words in FIFO1  
ENS ENH  
t
PAE  
X Long Word in FIFO1  
AEB  
t
t
RENB  
3520 drw16  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKA edge and a rising CLKB edge for AEB to transition HIGH in the next CLKB cycle. If the time between the rising CLKA  
edge and rising CLKB edge is less than tSKEW2, then AEB may transition HIGH one CLKB cycle later than shown.  
2. FIFO1 Write (CSA = LOW, W/RA = HIGH).  
3. Port-B size is word or byte; AEB is set LOW by the last word or byte read of the long word, respectively.  
Figure 16. Timing for AEB when FIFO1 is Almost-Empty  
CLKC  
tENS  
tENH  
WENC  
(1)  
t
SKEW2  
1
2
CLKA  
t
PAE  
t
PAE  
AEA  
X Long Words in FIFO2  
(X+1) Long Words in FIFOt2ENH  
t
ENS  
ENA  
3520 drw17  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKC edge and a rising CLKA edge for AEA to transition HIGH in the next CLKA cycle. If the time between the rising CLKC edge  
and rising CLKA edge is less than tSKEW2, then AEA may transition HIGH one CLKA cycle later than shown.  
2. FIFO2 read (CSA = LOW, W/RA = LOW).  
3. Port-C size is word or byte; tSKEW2 is referenced from the rising CLKC edge that writes the last word or byte of the long word, respectively.  
Figure 17. Timing for AEA when FIFO2 is Almost-Empty  
23  
IDT723616CMOSTRIPLEBUSSyncFIFO  
BUS-MATCHINGANDBYTESWAPPING64x36x2  
                                                                                            
WITH  
                                                                                            
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
(1)  
tSKEW2  
CLKA  
1
2
tENH  
tPAF  
tENS  
ENA  
tPAF  
(64-X) Long Words in FIFO1  
tENH  
AFA  
[64-(X+1)] Long Words in FIFO1  
CLKB  
tENS  
RENB  
3520 drw18  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKA edge and a rising CLKB edge for AFA to transition HIGH in the next CLKA cycle. If the time between the rising CLKA  
edge and rising CLKB edge is less than tSKEW2, then AFA may transition HIGH one CLKB cycle later than shown.  
2. FIFO1 Write (CSA = LOW, W/RA = HIGH).  
3. Port-B size is word or byte; tSKEW2 is referenced from the last word or byte read of the long word, respectively.  
Figure 18. Timing for AFA when FIFO1 is Almost-Full  
(1)  
tSKEW2  
1
2
CLKC  
tENH  
tPAF  
tENS  
WENC  
tPAF  
(64-X) Long Words in FIFO2  
tENH  
AFC [64-(X+1)] Long Words in FIFO2  
CLKA  
ENA  
tENS  
3520drw19  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKC edge and a rising CLKA edge for AFC to transition HIGH in the next CLKC cycle. If the time between the rising  
CLKC edge and rising CLKA edge is less than tSKEW2, then AFC may transition HIGH one CLKA cycle later than shown.  
2. Port-C size is word or byte; AFC is set LOW by the last word or byte read of the long word, respectively.  
Figure 19. Timing for AFC when FIFO2 is Almost-Full  
ODD/  
EVEN  
W/RA  
PGA  
tPOPE  
tPOPE  
t
PEPE  
tPEPE  
PEFA  
Valid  
Valid  
Valid  
Valid  
3520 drw20  
Figure 20. ODD/EVEN, W/RA and PGA to PEFA Timing  
ODD/  
EVEN  
tPOPE  
tPOPE  
PEFC  
Valid  
Valid  
Valid  
3520 drw21  
Figure 21. ODD/EVEN to PEFC Timing  
24  
IDT723616CMOSTRIPLEBUSSyncFIFO  
BUS-MATCHINGANDBYTESWAPPING64x36x2  
                                                                                            
                                                                                            
WITH  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PARAMETER MEASUREMENT INFORMATION  
5 V  
1.1 kΩ  
From Output  
Under Test  
30 pF (1)  
680Ω  
LOAD CIRCUIT  
3 V  
3 V  
Timing  
Input  
1.5 V  
High-Level  
1.5 V  
Input  
1.5 V  
1.5 V  
GND  
GND  
t
S
th  
tW  
3 V  
3 V  
Data,  
Enable  
Input  
1.5 V  
1.5 V  
Low-Level  
Input  
1.5 V  
GND  
GND  
VOLTAGE WAVEFORMS  
SETUP AND HOLD TIMES  
VOLTAGE WAVEFORMS  
PULSE DURATIONS  
3 V  
Output  
Enable  
1.5 V  
1.5 V  
t
PZL  
GND  
tPLZ  
3 V  
3 V  
Input  
1.5 V  
1.5 V  
1.5 V  
Low-Level  
Output  
GND  
V
OL  
tPD  
t
PZH  
tPD  
V
V
OH  
OH  
In-Phase  
Output  
1.5 V  
1.5 V  
1.5 V  
High-Level  
Output  
t
PHZ  
V
OV  
OL  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES  
3520 drw22  
NOTE:  
1. Includes probe and jig capacitance.  
Figure 22. Load Circuit and Voltage Waveforms  
25  
ORDERINGINFORMATION  
X
XX  
X
X
X
XXXXXX  
Device Type Power Speed Package  
Process/  
Temperature  
Range  
BLANK  
I(1)  
Commercial (0°C to +70°C)  
Industrial (40°C to +85°C)  
G(2)  
Green  
Thin Quad Flat Pack (TQFP, PK128-1)  
PF  
15  
20  
Commercial Only  
Com'l & Ind'l  
Clock Cycle Time (tCLK)  
Speed in Nanoseconds  
L
Low Power  
723616  
4 x 36 x 2Triple Bus SyncFIFO  
3520 drw23  
NOTES:  
1. Industrial temperature range product for 20ns speed grade is available as a standard device. All other speed grades are available by special order.  
2. Green parts available. For specific speeds and packages contact your sales office.  
DATASHEETDOCUMENTHISTORY  
03/05/2002  
02/04/2009  
pgs. 1, 6, 8, 9 and 26.  
pgs. 1, and 26.  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
408-360-1753  
email:FIFOhelp@idt.com  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
26  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY