72T36125L5BBI [IDT]

2.5 VOLT HIGH-SPEED TeraSyncTM FIFO 36-BIT CONFIGURATIONS;
72T36125L5BBI
型号: 72T36125L5BBI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

2.5 VOLT HIGH-SPEED TeraSyncTM FIFO 36-BIT CONFIGURATIONS

时钟 PC 先进先出芯片 内存集成电路
文件: 总56页 (文件大小:359K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2.5 VOLT HIGH-SPEED TeraSyncTM FIFO 36-BIT CONFIGURATIONS  
IDT72T36105  
IDT72T36115  
IDT72T36125  
65,536 x 36  
131,072 x 36  
262,144 x 36  
FEATURES:  
User selectable input and output port bus-sizing  
Choose among the following memory organizations:  
- x36 in to x36 out  
- x36 in to x18 out  
- x36 in to x9 out  
- x18 in to x36 out  
- x9 in to x36 out  
Big-Endian/Little-Endian user selectable byte representation  
Auto power down minimizes standby power consumption  
Master Reset clears entire FIFO  
Partial Reset clears data, but retains programmable settings  
Empty, Full and Half-Full flags signal FIFO status  
Select IDT Standard timing (using EF and FF flags) or First Word  
Fall Through timing (using OR and IR flags)  
Output enable puts data outputs into high impedance state  
JTAG port, provided for Boundary Scan function  
Available in 240-pin (19mm x 19mm) Plastic Ball Grid Array (PBGA)  
Easily expandable in depth and width  
IDT72T36105  
IDT72T36115  
IDT72T36125  
65,536 x 36  
131,072 x 36  
262,144 x 36  
Up to 225 MHz Operation of Clocks  
User selectable HSTL/LVTTL Input and/or Output  
2.5V LVTTL or 1.8V, 1.5V HSTL Port Selectable Input/Ouput voltage  
3.3V Input tolerant  
Read Enable & Read Clock Echo outputs aid high speed operation  
User selectable Asynchronous read and/or write port timing  
Mark & Retransmit, resets read pointer to user marked position  
Write Chip Select (WCS) input enables/disables Write operations  
Read Chip Select (RCS) synchronous to RCLK  
Programmable Almost-Empty and Almost-Full flags, each flag can  
default to one of eight preselected offsets  
Independent Read and Write Clocks (permit reading and writing  
simultaneously)  
High-performance submicron CMOS technology  
Industrial temperature range (–40°C to +85°C) is available  
Green parts are available, see ordering information  
Program programmable flags by either serial or parallel means  
Selectable synchronous/asynchronous timing modes for Almost-  
Empty and Almost-Full flags  
Separate SCLK input for Serial programming of flag offsets  
FUNCTIONALBLOCKDIAGRAM  
D0 - Dn (x36, x18 or x9)  
LD SEN  
SCL K  
WEN  
WCL K / WR  
WCS  
INPUT REGISTER  
OF F SET REGISTER  
FF/IR  
PAF  
EF/OR  
PAE  
HF  
F WF T/SI  
PF M  
WRI TE CON TROL  
LOGIC  
ASYW  
F LAG  
LOGIC  
RAM ARRAY  
WRITE POINTER  
65,536 x 36  
131,072 x36  
262,144 x 36  
F SEL0  
F SEL1  
BE  
CONTROL  
LOGIC  
REA D P OI N TER  
IP  
BM  
IW  
OW  
BUS  
CONF IGURATION  
RT  
REA D  
CONTROL  
LOGIC  
MARK  
ASYR  
MRS  
PRS  
OUTPUT REGISTER  
RESET  
LOGIC  
TCK  
TRST  
TMS  
TDO  
RCL K / RD  
REN  
JTAGCONTROL  
(BOUNDARY SCAN)  
RCS  
TDI  
Vr ef  
WHSTL  
RHSTL  
SHSTL  
HSTL I/0  
CONTROL  
EREN  
OE  
5907 dr w01  
Q0 - Qn (x36, x18 or x9)  
ERCL K  
IDTandtheIDTlogoareregisteredtrademarksofIntegratedDeviceTechnology, Inc. TheTeraSyncFIFOisatrademarkofIntegratedDeviceTechnology, Inc.  
JUNE 2017  
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES  
1
©
2017 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice.  
DSC-5907/21  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
PINCONFIGURATION  
A1 BALL PAD CORNER  
A
B
C
D
E
F
V
V
V
CC  
CC  
CC  
V
DDQ  
V
V
DDQ  
DDQ  
V
V
DDQ  
DDQ  
VDDQ  
V
V
V
V
V
V
CC  
V
V
V
V
V
CC  
V
V
V
V
V
V
CC  
CC  
V
V
V
CC  
V
V
V
CC  
WCLK  
WEN  
GND  
GND  
RCLK  
V
V
DDQ  
DDQ  
PRS  
MRS  
LD  
FF  
PAF  
HF  
EREN  
EF  
OE  
V
V
DDQ  
DDQ  
VDDQ  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
REN  
RCS  
RT  
CC  
MARK  
V
DDQ  
V
DDQ  
V
V
V
V
V
DDQ  
DDQ  
VDDQ  
WCS  
PAE  
IP  
GND  
GND  
OW  
RHSTL  
CC  
CC  
CC FWFT/SI  
FS0  
SHSTL  
FS1  
BM  
PFM  
GND  
GND  
GND  
V
DDQ  
V
V
V
DDQ  
BE  
ASYR  
CC  
CC  
CC  
CC  
GND  
GND  
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
V
CC  
G
H
J
DDQ  
V
CC  
SCLK WHSTL  
V
DDQ  
V
DDQ  
SEN  
V
CC  
VCC  
V
CC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
V
DDQ  
V
V
DDQ  
DDQ  
V
V
V
DDQ  
DDQ  
ASYW  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
V
CC  
CC  
V
V
CC  
CC  
V
V
CC  
CC  
VREF  
VDDQ  
K
L
V
IW  
V
DDQ  
V
DDQ  
DDQ  
D33  
D30  
D27  
D24  
D34  
D31  
D28  
D25  
D22  
D20  
D17  
D35  
D32  
GND  
GND  
GND  
GND  
V
DDQ  
Q35  
Q32  
Q29  
Q26  
Q34  
Q31  
Q28  
Q25  
M
N
P
R
T
Q33  
Q30  
Q27  
D29  
D26  
GND  
GND  
GND  
GND  
Q2  
GND  
Q3  
GND  
Q8  
D21  
D19  
D23  
D13  
GND  
D10  
D11  
GND  
D5  
GND  
D4  
GND  
D1  
GND  
TMS  
GND  
TDO  
TDI  
GND  
Q0  
GND  
Q11  
Q24  
Q14  
Q15  
Q23  
Q21  
Q22  
Q20  
Q19  
U
V
D18  
D14  
D7  
D8  
D2  
Q1  
Q6  
Q5  
Q9  
Q12  
Q18  
TRST  
V
CC  
D16  
D15  
D0  
ERCLK  
Q4  
Q7  
Q10  
Q13  
Q17  
V
DDQ  
D12  
D9  
D6  
D3  
TCK  
GND  
Q16  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
5907 drw02A  
PBGA: 1mm pitch, 19mm x 19mm BB240, BBG240 (Order code: BB, BBG)  
TOP VIEW  
2
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
InIDTStandardmode,thefirstwordwrittentoanemptyFIFOwillnotappear  
onthedataoutputlinesunlessaspecificreadoperationisperformed.Aread  
operation,whichconsistsofactivatingRENandenablingarisingRCLKedge,  
willshiftthewordfrominternalmemorytothedataoutputlines.  
InFWFTmode,thefirstwordwrittentoanemptyFIFOisclockeddirectly  
tothedataoutputlinesafterthreetransitionsoftheRCLKsignal.ARENdoes  
not have to be asserted for accessing the first word. However, subsequent  
wordswrittentotheFIFOdorequireaLOWonRENforaccess. Thestateof  
theFWFT/SIinputduringMasterResetdeterminesthetimingmodeinuse.  
ForapplicationsrequiringmoredatastoragecapacitythanasingleFIFO  
canprovide,theFWFTtimingmodepermitsdepthexpansionbychainingFIFOs  
inseries(i.e.thedataoutputsofoneFIFOareconnectedtothecorresponding  
data inputs of the next). No external logic is required.  
DESCRIPTION:  
The IDT72T36105/72T36115/72T36125 are exceptionally deep,  
extrememly high speed, CMOS First-In-First-Out (FIFO) memories with  
clockedreadandwritecontrolsandaflexibleBus-Matchingx36/x18/x9data  
flow. These FIFOs offer several key user benefits:  
• Flexible x36/x18/x9 Bus-Matching on both read and write ports  
AuserselectableMARKlocationforretransmit  
• User selectable I/O structure for HSTL or LVTTL  
• Asynchronous/Synchronoustranslationonthereadorwriteports  
• Thefirstworddatalatencyperiod,fromthetimethefirstwordiswrittentoan  
empty FIFO to the time it can be read, is fixed and short.  
• Highdensityofferingsupto9Mbit  
Bus-Matching TeraSync FIFOs are particularly appropriate for network,  
video,telecommunications,datacommunicationsandotherapplicationsthat  
needtobufferlargeamountsofdataandmatchbussesofunequalsizes.  
Each FIFO has a data input port (Dn) and a data output port (Qn), both of  
whichcanassumeeithera36-bit, 18-bitora9-bitwidthasdeterminedbythe  
stateofexternalcontrolpinsInputWidth(IW), OutputWidth(OW), andBus-  
Matching(BM)pinduringtheMasterResetcycle.  
TheinputportcanbeselectedaseitheraSynchronous(clocked)interface,  
or Asynchronous interface. During Synchronous operation the input port is  
controlledbyaWriteClock(WCLK)inputandaWriteEnable(WEN)input. Data  
present on the Dn data inputsiswritten into the FIFOon everyrising edge of  
WCLKwhenWENisasserted.DuringAsynchronousoperationonlytheWR  
inputisusedtowritedataintotheFIFO.DataiswrittenonarisingedgeofWR,  
theWENinputshouldbetiedtoitsactivestate,(LOW).  
TheoutputportcanbeselectedaseitheraSynchronous(clocked)interface,  
orAsynchronousinterface.DuringSynchronousoperationtheoutputportis  
controlledbyaReadClock(RCLK)inputandReadEnable(REN)input. Data  
is read from the FIFO on every rising edge of RCLK when REN is asserted.  
DuringAsynchronousoperationonlytheRDinputisusedtoreaddatafromthe  
FIFO. DataisreadonarisingedgeofRD, the RENinputshouldbetiedtoits  
activestate,LOW.WhenAsynchronousoperationisselectedontheoutputport  
theFIFOmustbeconfiguredforStandardIDTmode,alsotheRCSshouldbe  
tiedLOWandtheOEinputusedtoprovidethree-statecontroloftheoutputs,Qn.  
Theoutputportcanbeselectedforeither2.5VLVTTLorHSTLoperation,  
thisoperationisselectedbythestateoftheRHSTLinputduringamasterreset.  
AnOutputEnable(OE)inputisprovidedforthree-statecontroloftheoutputs.  
AReadChipSelect(RCS)inputisalsoprovided,theRCSinputissynchronized  
tothereadclock,andalsoprovidesthree-statecontroloftheQndataoutputs.  
When RCS is disabled, the data outputs will be high impedance. During  
Asynchronousoperationoftheoutputport,RCSshouldbeenabled,heldLOW.  
Echo Read Enable, EREN and Echo Read Clock, ERCLK outputs are  
provided. TheseareoutputsfromthereadportoftheFIFOthatarerequired  
forhighspeeddatacommunication,toprovidetightersynchronizationbetween  
thedatabeingtransmittedfromtheQnoutputsandthedatabeingreceivedby  
theinputdevice.Datareadfromthereadportisavailableontheoutputbuswith  
respect to EREN and ERCLK, this is very useful when data is being read at  
highspeed.TheERCLKandERENoutputsarenon-functionalwhentheRead  
portissetupforAsynchronousmode.  
These FIFOs have five flag pins, EF/OR (Empty Flag or Output Ready),  
FF/IR (Full Flag or Input Ready), HF (Half-full Flag), PAE (Programmable  
Almost-Emptyflag)andPAF(ProgrammableAlmost-Fullflag). TheEFandFF  
functions are selected in IDT Standard mode. The IR and OR functions are  
selected in FWFT mode. HF, PAE and PAF are always available for use,  
irrespectiveoftimingmode.  
PAEandPAFcanbeprogrammedindependentlytoswitchatanypointin  
memory. Programmableoffsetsdeterminetheflagswitchingthresholdandcan  
beloadedbytwomethods:parallelorserial. Eightdefaultoffsetsettingsarealso  
provided,sothatPAEcanbesettoswitchatapredefinednumberoflocations  
from the empty boundary and the PAF threshold can also be set at similar  
predefinedvaluesfromthefullboundary. Thedefaultoffsetvaluesaresetduring  
Master Reset by the state of the FSEL0, FSEL1, and LD pins.  
For serial programming, SEN together with LD on each rising edge of  
SCLK,areusedtoloadtheoffsetregistersviatheSerialInput(SI). Forparallel  
programming,WENtogetherwithLDoneachrisingedgeofWCLK,areused  
toloadtheoffsetregistersviaDn. RENtogetherwithLDoneachrisingedge  
ofRCLKcanbeusedtoreadtheoffsetsinparallelfromQnregardlessofwhether  
serialorparalleloffsetloadinghasbeenselected.  
DuringMasterReset(MRS)thefollowingeventsoccur: thereadandwrite  
pointers are set to the first location of the FIFO. The FWFT pin selects IDT  
Standard mode or FWFT mode.  
The Partial Reset (PRS) also sets the read and write pointers to the first  
location of the memory. However, the timing mode, programmable flag  
programmingmethod,anddefaultorprogrammedoffsetsettingsexistingbefore  
PartialResetremainunchanged.Theflagsareupdatedaccordingtothetiming  
modeandoffsetsineffect. PRSisusefulforresettingadeviceinmid-operation,  
whenreprogrammingprogrammableflagswouldbeundesirable.  
ItisalsopossibletoselectthetimingmodeofthePAE(ProgrammableAlmost-  
Empty flag) and PAF (Programmable Almost-Full flag) outputs. The timing  
modescanbesettobeeitherasynchronousorsynchronousforthePAEand  
PAFflags.  
IfasynchronousPAE/PAFconfigurationisselected, thePAEisasserted  
LOWontheLOW-to-HIGHtransitionofRCLK.PAEisresettoHIGHontheLOW-  
to-HIGHtransitionofWCLK.Similarly,thePAFisassertedLOWontheLOW-  
to-HIGH transition of WCLK and PAF is reset to HIGH on the LOW-to-HIGH  
transitionofRCLK.  
IfsynchronousPAE/PAFconfigurationisselected,thePAEisassertedand  
updated on the rising edge of RCLK only and not WCLK. Similarly, PAF is  
assertedandupdatedontherisingedgeofWCLKonlyandnotRCLK.Themode  
desiredisconfiguredduringMasterResetbythestateoftheProgrammableFlag  
Mode (PFM) pin.  
ThefrequenciesofboththeRCLKandtheWCLKsignalsmayvaryfrom0  
tofMAXwithcompleteindependence. Therearenorestrictionsonthefrequency  
oftheoneclockinputwithrespecttotheother.  
Therearetwopossibletimingmodesofoperationwiththesedevices:IDT  
Standard mode and First Word Fall Through (FWFT) mode.  
3
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
andD32,D33,D34andD35areignored. IPmodeisselectedduring Master  
ResetbythestateoftheIPinputpin.  
DESCRIPTION (CONTINUED)  
ThisdeviceincludesaRetransmitfromMarkfeaturethatutilizestwocontrol  
inputs,MARKand,RT(Retransmit).IftheMARKinputisenabledwithrespect  
totheRCLK,thememorylocationbeingreadatthatpointwillbemarked.Any  
subsequentretransmitoperation,RTgoesLOW,willresetthereadpointerto  
thismarkedlocation.  
If,atanytime,theFIFOisnotactivelyperforminganoperation,thechipwill  
automaticallypowerdown.Onceinthepowerdownstate,thestandbysupply  
currentconsumptionisminimized. Initiatinganyoperation(byactivatingcontrol  
inputs)willimmediatelytakethedeviceoutofthepowerdownstate.  
Both an Asynchronous Output Enable pin (OE) and Synchronous Read  
ChipSelectpin(RCS)areprovidedontheFIFO.TheSynchronousReadChip  
SelectissynchronizedtotheRCLK.Boththeoutputenableandreadchipselect  
control the output buffer of the FIFO, causing the buffer to be either HIGH  
impedanceorLOWimpedance.  
AJTAGtestportisprovided,heretheFIFOhasfullyfunctionalBoundary  
Scan feature, compliant with IEEE 1449.1 Standard Test Access Port and  
BoundaryScanArchitecture.  
TheTeraSyncFIFOhasthecapabilityofoperatingitsports(writeand/or  
read)ineitherLVTTLorHSTLmode,eachportsselectionindependentofthe  
other.ThewriteportselectionismadeviaWHSTLandthereadportselection  
via RHSTL. An additional input SHSTL is also provided, this allows the user  
toselectHSTLoperationforotherpinsonthedevice(notassociatedwiththe  
write or read ports).  
Thedevicecanbeconfiguredwithdifferentinputandoutputbuswidthsas  
shown in Table 1.  
ABig-Endian/Little-Endiandatawordformatisprovided. Thisfunctionis  
usefulwhendataiswrittenintotheFIFOinlongwordformat(x36/x18)andread  
outoftheFIFOinsmallword(x18/x9)format.IfBig-Endianmodeisselected,  
thenthemostsignificantbyte(word)ofthelongwordwrittenintotheFIFOwill  
bereadoutoftheFIFOfirst,followedbytheleastsignificantbyte.IfLittle-Endian  
formatisselected,thentheleastsignificantbyteofthelongwordwrittenintothe  
FIFOwillbereadoutfirst,followedbythemostsignificantbyte.Themodedesired  
isconfiguredduringmasterresetbythestateoftheBig-Endian(BE)pin.See  
Figure 5 for Bus-Matching Byte Arrangement.  
TheInterspersed/Non-InterspersedParity(IP)bitfunctionallowstheuser  
to select the parity bit in the word loaded into the parallel port (D0-Dn) when  
programmingtheflagoffsets.IfInterspersedParitymodeisselected,thenthe  
FIFOwillassumethattheparitybitislocatedinbitpositionsD8,D17,D26and  
D35duringtheparallelprogrammingoftheflagoffsets. IfNon-Interspersed  
Parity mode is selected, then D8, D17 and D26 are assumed to be valid bits  
TheIDT72T36105/72T36115/72T36125arefabricatedusinghighspeed  
submicronCMOStechnology.  
4
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
PARTIAL RESET (PRS) MASTER RESET (MRS)  
WRITE CLOCK (WCLK/WR)  
READ CLOCK (RCLK/RD)  
WRITE ENABLE (WEN)  
READ ENABLE (REN)  
OUTPUT ENABLE (OE)  
WRITE CHIP SELECT (WCS)  
LOAD (LD)  
READ CHIP SELECT (RCS)  
IDT  
72T36105  
72T36115  
72T36125  
(x36, x18, x9) DATA IN (D  
0
- D  
n
)
(x36, x18, x9) DATA OUT (Q0 - Qn)  
RCLK ECHO, ERCLK  
REN ECHO, EREN  
MARK  
SERIAL CLOCK (SCLK)  
SERIAL ENABLE(SEN)  
FIRST WORD FALL  
THROUGH/  
RETRANSMIT (RT)  
SERIAL INPUT (FWFT/SI)  
EMPTY FLAG/OUTPUT READY (EF/OR)  
PROGRAMMABLE ALMOST-EMPTY (PAE)  
HALF-FULL FLAG (HF)  
FULL FLAG/INPUT READY (FF/IR)  
PROGRAMMABLE ALMOST-FULL (PAF)  
BIG-ENDIAN/LITTLE-ENDIAN (BE)  
INTERSPERSED/  
NON-INTERSPERSED PARITY (IP)  
5907 drw03  
OUTPUT WIDTH (OW)  
INPUT WIDTH (IW)  
BUS-  
MATCHING  
(BM)  
Figure 1. Single Device Configuration Signal Flow Diagram  
TABLE 1 — BUS-MATCHING CONFIGURATION MODES  
BM  
IW  
OW  
Write Port Width  
Read Port Width  
L
H
H
H
H
L
L
L
L
x36  
x36  
x36  
x18  
x9  
x36  
x18  
x9  
L
H
L
H
H
x36  
x36  
H
NOTE:  
1. Pin status during Master Reset.  
5
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
PINDESCRIPTION  
Symbol  
Name  
I/O TYPE  
Description  
(1)  
ASYR Asynchronous  
LVTTL  
INPUT  
AHIGHonthisinputduringMasterResetwillselectSynchronousreadoperationfortheoutputport.ALOW  
willselectAsynchronousoperation.IfAsynchronousisselectedtheFIFOmustoperateinIDTStandardmode.  
Read Port  
(1)  
ASYW Asynchronous  
LVTTL  
INPUT  
AHIGHonthisinputduringMasterResetwillselectSynchronouswriteoperationfortheinputport.ALOW  
willselectAsynchronousoperation.  
WritePort  
(1)  
BE  
Big-Endian/  
Little-Endian  
LVTTL  
INPUT  
During Master Reset, a LOW on BE will select Big-Endian operation. A HIGH on BE during Master Reset  
willselectLittle-Endianformat.  
BM(1)  
Bus-Matching  
LVTTL  
INPUT  
BM works with IW and OW to select the bus sizes for both write and read ports. See Table 1 for bus size  
configuration.  
D0–D35 DataInputs  
HSTL-LVTTL Datainputsfora36-,18-or9-bitbus.Whenin18-or9-bitmode,theunusedinputpinsshouldbetiedtoGND.  
INPUT  
EF/OR EmptyFlag/  
HSTL-LVTTL IntheIDTStandardmode,theEFfunctionisselected.EFindicateswhetherornottheFIFOmemoryisempty.  
OUTPUT InFWFTmode, theORfunctionisselected. ORindicateswhetherornotthereisvaliddataavailableatthe  
outputs.  
OutputReady  
ERCLK RCLK Echo  
HSTL-LVTTL Read clock Echo output, only available when the Read is setup for Synchronous mode.  
OUTPUT  
EREN Read Enable Echo HSTL-LVTTL Read Enable Echo output, only available when the Read is setup for Synchronous mode.  
OUTPUT  
FF/IR  
Full Flag/  
Input Ready  
HSTL-LVTTL In the IDT Standard mode, the FF function is selected. FF indicates whether or not the FIFO memory is  
OUTPUT full. In the FWFT mode, the IR function is selected. IR indicates whether or not there is space available for  
writingtotheFIFOmemory.  
FSEL0(1) FlagSelectBit0  
FSEL1(1) FlagSelectBit1  
FWFT/ FirstWordFall  
LVTTL  
INPUT  
DuringMasterReset,thisinputalongwithFSEL1andtheLDpin,willselectthedefaultoffsetvaluesforthe  
programmableflagsPAE andPAF. Thereareuptoeightpossiblesettingsavailable.  
DuringMasterReset,thisinputalongwithFSEL0andtheLDpinwillselectthedefaultoffsetvaluesforthe  
programmableflagsPAE andPAF. Thereareuptoeightpossiblesettingsavailable.  
LVTTL  
INPUT  
HSTL-LVTTL During MasterReset, selectsFirstWordFallThroughorIDTStandardmode. AfterMasterReset, thispin  
SI  
Through/Serial In  
Half-FullFlag  
InterspersedParity  
InputWidth  
INPUT  
functionsasaserialinputforloadingoffsetregisters.IfAsynchronousoperationofthereadporthasbeen  
selectedthentheFIFOmustbeset-upinIDTStandardmode.  
HF  
IP(1)  
IW(1)  
LD  
HSTL-LVTTL HFindicateswhethertheFIFOmemoryismoreorlessthanhalf-full.  
OUTPUT  
LVTTL  
INPUT  
DuringMasterReset,aLOWonIPwillselectNon-InterspersedParitymode.AHIGHwillselectInterspersed  
Paritymode.  
LVTTL  
INPUT  
Thispin,alongwithOWandBM,selectsthebuswidthofthewriteport.SeeTable1forbussizeconfiguration.  
Load  
HSTL-LVTTL This is a dual purpose pin. During Master Reset, the state of the LD input along with FSEL0 and FSEL1,  
INPUT  
determinesoneofeightdefaultoffsetvaluesforthePAEandPAFflags,alongwiththemethodbywhichthese  
offsetregisterscanbeprogrammed,parallelorserial(seeTable2).AfterMasterReset,thispinenableswriting  
to and reading from the offset registers.THIS PIN MUST BE HIGH AFTER MASTER RESET TO WRITE  
OR READ DATA TO/FROM THE FIFO MEMORY.  
MARK MarkforRetransmit HSTL-LVTTL Whenthispinisassertedthecurrentlocationofthereadpointerwillbemarked.AnysubsequentRetransmit  
INPUT operationwillresetthereadpointertothisposition.  
MRS  
MasterReset  
HSTL-LVTTL MRSinitializesthereadandwritepointerstozeroandsetstheoutputregistertoallzeroes. DuringMaster  
INPUT  
Reset,theFIFOisconfiguredforeitherFWFTorIDTStandardmode,Bus-Matchingconfigurations,  
Synchronous/Asynchronousoperationofthereadorwriteport,oneofeightprogrammableflagdefaultsettings,  
serialorparallelprogrammingoftheoffsetsettings,Big-Endian/Little-Endianformat,zerolatencytimingmode,  
interspersedparity,andsynchronousversusasynchronousprogrammableflagtimingmodes.  
OE  
OutputEnable  
OutputWidth  
HSTL-LVTTL OEprovidesAsynchronousthree-statecontrolofthedataoutputs,Qn. DuringaMasterorPartialResetthe  
INPUT  
OEinputistheonlyinputthatprovideHigh-Impedancecontrolofthedataoutputs.  
OW(1)  
PAE  
PAF  
LVTTL  
INPUT  
Thispin,alongwithIWandBM,selectsthebuswidthofthereadport.SeeTable1forbussizeconfiguration.  
Programmable  
Almost-EmptyFlag  
HSTL-LVTTL PAEgoesLOWifthenumberofwordsintheFIFOmemoryislessthanoffsetn,whichisstoredintheEmpty  
OUTPUT Offsetregister.PAEgoesHIGHifthenumberofwordsintheFIFOmemoryisgreaterthanorequaltooffsetn.  
HSTL-LVTTL PAFgoesHIGHifthenumberoffreelocationsintheFIFOmemoryismorethanoffsetm,whichisstoredinthe  
OUTPUT FullOffsetregister.PAFgoesLOWifthenumberoffreelocationsintheFIFOmemoryislessthanorequaltom.  
Programmable  
Almost-FullFlag  
PFM(1) Programmable  
LVTTL  
INPUT  
DuringMasterReset,aLOWonPFMwillselectAsynchronousProgrammableflagtimingmode.AHIGHon  
PFMwillselectSynchronousProgrammableflagtimingmode.  
Flag Mode  
6
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
PINDESCRIPTION(CONTINUED)  
Symbol  
Name  
I/O TYPE  
Description  
PRS  
PartialReset  
HSTL-LVTTL PRSinitializesthereadandwritepointerstozeroandsetstheoutputregistertoallzeroes.DuringPartialReset,  
INPUT  
theexistingmode(IDTorFWFT),programmingmethod(serialorparallel),andprogrammableflagsettings  
are all retained.  
Q0–Q35 DataOutputs  
RCLK/ ReadClock/  
HSTL-LVTTL Data outputs for an 36-, 18- or 9-bit bus. When in 18- or 9-bit mode, any unused output pins should not  
OUTPUT be connected.Outputsarenot5VtolerantregardlessofthestateofOEandRCS.  
HSTL-LVTTL IfSynchronousoperationofthereadporthasbeenselected,whenenabledbyREN,therisingedgeofRCLK  
RD  
ReadStobe  
INPUT  
readsdatafromtheFIFOmemoryandoffsetsfromtheprogrammableregisters.IfLDisLOW,thevalues  
loadedintotheoffsetregistersisoutputonarisingedgeofRCLK.IfAsynchronousoperationoftheread  
port has been selected, a rising edge on RD reads data from the FIFO in an Asynchronous manner. REN  
shouldbetiedLOW.  
RCS  
REN  
ReadChipSelect HSTL-LVTTL RCSprovidessynchronouscontrolofthereadportandoutputimpedanceofQn,synchronoustoRCLK.During  
INPUT  
aMasterResetorPartialResettheRCSinputisdon’tcare,ifOEisLOWthedataoutputswillbeLow-Impedance  
regardless of RCS.  
Read Enable  
HSTL-LVTTL IfSynchronousoperationofthereadporthasbeenselected, RENenablesRCLKforreadingdatafromthe  
INPUT  
FIFOmemoryandoffsetregisters. IfAsynchronousoperationofthereadporthasbeenselected, the REN  
inputshouldbetiedLOW.  
RHSTL(1) Read Port HSTL  
Select  
LVTTL  
INPUT  
This pin is used to select HSTL or 2.5v LVTTL outputs for the FIFO. If HSTL or eHSTL outputs are  
required,thisinputmustbetiedHIGH.OtherwiseitshouldbetiedLOW.  
RT  
Retransmit  
HSTL-LVTTL RTassertedontherisingedgeofRCLKinitializestheREADpointertozero,setstheEFflagtoLOW(ORto  
INPUT  
HIGHinFWFTmode)anddoesn’tdisturbthewritepointer,programmingmethod,existingtimingmode  
orprogrammableflagsettings.IfamarkhasbeensetviatheMARKinputpin,thenthereadpointerwilljump  
tothemarklocation.  
SCLK SerialClock  
SEN SerialEnable  
HSTL-LVTTL ArisingedgeonSCLKwillclocktheserialdatapresentontheSIinputintotheoffsetregistersprovidingthat  
INPUT SEN is enabled.  
HSTL-LVTTL SENenablesserialloadingofprogrammableflagoffsets.  
INPUT  
SHSTL SystemHSTL  
Select  
LVTTL  
INPUT  
AllinputsnotassociatedwiththewriteorreadportcanbeselectedforHSTLoperationviatheSHSTLinput.  
TCK(2) JTAGClock  
HSTL-LVTTL ClockinputforJTAGfunction.OneoffourterminalsrequiredbyIEEEStandard1149.1-1990.Testoperations  
INPUT  
ofthedevicearesynchronoustoTCK. DatafromTMSandTDIaresampledontherisingedgeofTCKand  
outputschangeonthefallingedgeofTCK.IftheJTAGfunctionisnotusedthissignalneedstobetiedtoGND.  
TDI(2)  
JTAGTestData  
Input  
HSTL-LVTTL OneoffourterminalsrequiredbyIEEEStandard1149.1-1990.DuringtheJTAGboundaryscanoperation,  
INPUT  
testdataseriallyloadedviatheTDIontherisingedgeofTCKtoeithertheInstructionRegister, IDRegister  
andBypassRegister.Aninternalpull-upresistorforcesTDIHIGHifleftunconnected.  
TDO(2) JTAGTestData  
Output  
HSTL-LVTTL OneoffourterminalsrequiredbyIEEEStandard1149.1-1990.DuringtheJTAGboundaryscanoperation,  
OUTPUT testdataseriallyloadedoutputviatheTDOonthefallingedgeofTCKfromeithertheInstructionRegister,ID  
RegisterandBypassRegister.Thisoutputishighimpedanceexceptwhenshifting,whileinSHIFT-DRand  
SHIFT-IRcontrollerstates.  
TMS(2) JTAGMode  
Select  
HSTL-LVTTL TMS is a serial input pin. One of four terminals required by IEEE Standard 1149.1-1990. TMS directs the  
INPUT  
thedevicethroughitsTAPcontrollerstates.Aninternalpull-upresistorforcesTMSHIGHifleftunconnected.  
(2)  
TRST JTAGReset  
HSTL-LVTTL TRSTisanasynchronousresetpinfortheJTAGcontroller.TheJTAGTAPcontrollerdoesnotautomatically  
INPUT  
resetuponpower-up,thusitmustberesetbyeitherthissignalorbysettingTMS=HIGHforfiveTCKcycles.  
IftheTAPcontrollerisnotproperlyresetthentheFIFOoutputswillalwaysbeinhigh-impedance.IftheJTAG  
functionisusedbuttheuserdoesnotwanttouseTRST,thenTRSTcanbetiedwithMRStoensureproper  
FIFOoperation. IftheJTAGfunctionisnotusedthenthissignalneedstobetiedtoGND.  
WEN  
WCS  
WriteEnable  
HSTL-LVTTL WhenSynchronousoperationofthewriteporthasbeenselected,WENenablesWCLKforwritingdatainto  
INPUT  
theFIFOmemoryandoffsetregisters.IfAsynchronousoperationofthewriteporthasbeenselected,the  
WENinputshouldbetiedLOW.  
WriteChipSelect  
HSTL-LVTTL The WCS pin can be regarded as a second WEN input, enabling/disabling write operations.  
INPUT  
WCLK/ WriteClock/  
WR WriteStrobe  
HSTL-LVTTL IfSynchronousoperationofthewriteporthasbeenselected,whenenabledbyWEN,therisingedgeofWCLK  
INPUT  
writesdataintotheFIFO.IfAsynchronousoperationofthewriteporthasbeenselected,WRwritesdatainto  
the FIFO on a rising edge in an Asynchronous manner, (WEN should be tied to its active state).  
7
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
PINDESCRIPTION(CONTINUED)  
Symbol  
Name  
I/O TYPE  
Description  
WHSTL(1) WritePortHSTL  
Select  
LVTTL  
INPUT  
ThispinisusedtoselectHSTLor2.5VLVTTLinputsfortheFIFO.IfHSTLinputsarerequired,thisinputmust  
betiedHIGH.OtherwiseitshouldbetiedLOW.  
Vcc  
GND  
Vref  
+2.5v Supply  
GroundPin  
Reference  
Voltage  
I
I
I
These are Vcc supply inputs and must be connected to the 2.5V supply rail.  
These are Ground pins an dmust be connected to the GND rail.  
ThisisaVoltageReferenceinputandmustbeconnectedtoavoltageleveldeterminedfromthetable,  
“RecommendedDCOperatingConditions”. ThisprovidesthereferencevoltagewhenusingHSTLclass  
inputs. IfHSTLclassinputsarenotbeingused, thispinshouldbetiedLOW.  
VDDQ  
O/PRailVoltage  
I
This pin should be tied to the desired voltage rail for providing power to the output drivers.  
NOTES:  
1. Inputs should not change state after Master Reset.  
2. These pins are for the JTAG port. Please refer to Figures 6-8.  
8
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
ABSOLUTEMAXIMUMRATINGS  
CAPACITANCE(TA = +25°C, f = 1.0MHz)  
Parameter(1)  
Conditions  
Max.  
10(3)  
Unit  
Symbol  
Rating  
Commercial  
Unit  
Symbol  
VTERM  
TerminalVoltage  
–0.5 to +3.6(2)  
V
CIN(2,3)  
Input  
VIN = 0V  
pF  
with respect to GND  
Capacitance  
COUT(1,2)  
Output  
Capacitance  
VOUT = 0V  
10  
pF  
TSTG  
IOUT  
StorageTemperature  
DCOutputCurrent  
–55 to +125  
–50 to +50  
°C  
mA  
NOTES:  
NOTES:  
1. With output deselected, (OE VIH).  
2. Characterized values, not currently tested.  
3. CIN for Vref is 20pF.  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause  
permanent damage to the device. This is a stress rating only and functional operation  
of the device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect reliability.  
2. Compliant with JEDEC JESD8-5. VCC terminal only.  
RECOMMENDED DC OPERATING CONDITIONS  
Symbol  
VCC  
Parameter  
Min.  
2.375  
0
Typ.  
2.5  
0
Max.  
2.625  
0
Unit  
V
SupplyVoltage  
SupplyVoltage  
GND  
V
VIH  
InputHighVoltage  
LVTTL  
eHSTL  
HSTL  
1.7  
VREF+0.2  
VREF+0.2  
3.45  
VDDQ+0.3  
VDDQ+0.3  
V
V
V
VIL  
InputLowVoltage  
LVTTL  
eHSTL  
HSTL  
-0.3  
-0.3  
-0.3  
0.7  
VREF-0.2  
VREF-0.2  
V
V
V
VREF(1)  
TA  
VoltageReferenceInput eHSTL  
HSTL  
0.8  
0.68  
0.9  
0.75  
1.0  
0.9  
V
V
OperatingTemperatureCommercial  
OperatingTemperatureIndustrial  
0
70  
85  
°C  
°C  
TA  
-40  
NOTE:  
1. VREF is only required for HSTL or eHSTL inputs. VREF should be tied LOW for LVTTL operation.  
2. Outputs are not 3.3V tolerant.  
9
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
DCELECTRICALCHARACTERISTICS  
(Commercial: VCC = 2.5V ± 0.125V, TA = 0°C to +70°C;Industrial: VCC = 2.5V ± 0.125V, TA = -40°C to +85°C)  
Symbol  
Parameter  
Min.  
–10  
Max.  
10  
Unit  
μA  
ILI  
InputLeakageCurrent  
ILO  
VOH(5)  
OutputLeakageCurrent  
OutputLogic1Voltage,  
–10  
10  
μA  
IOH = –8 mA @VDDQ = 2.5V 0.125V (LVTTL)  
IOH = –8 mA @VDDQ = 1.8V 0.1V (eHSTL)  
IOH = –8 mA @VDDQ = 1.5V 0.1V (HSTL)  
VDDQ-0.4  
VDDQ-0.4  
VDDQ-0.4  
V
V
V
VOL  
OutputLogic0Voltage,  
IOL = 8 mA @VDDQ = 2.5V 0.125V (LVTTL)  
IOL = 8 mA @VDDQ = 1.8V 0.1V (eHSTL)  
IOL = 8 mA @VDDQ = 1.5V 0.1V (HSTL)  
0.4V  
0.4V  
0.4V  
V
V
V
IDT72T36105/72T36115/72T36125  
ICC1(1,2)  
ICC2(1)  
Active VCC Current (VCC = 2.5V)  
I/O = LVTTL  
I/O = HSTL  
I/O = eHSTL  
60  
90  
90  
mA  
mA  
mA  
Standby VCC Current (VCC = 2.5V) I/O = LVTTL  
20  
70  
70  
mA  
mA  
mA  
I/O = HSTL  
I/O = eHSTL  
NOTES:  
1. Both WCLK and RCLK toggling at 20MHz. Data inputs toggling at 10MHz. WCS = HIGH, REN or RCS = HIGH.  
2. For the IDT72T36105/72T36115/72T36125, typical ICC1 calculation (with data outputs in Low-Impedance):  
for LVTTL I/O ICC1 (mA) = 1.3 x fs, fs = WCLK = RCLK frequency (in MHz)  
for HSTL or eHSTL I/O ICC1 (mA) = 30 + (1.3 x fs), fs = WCLK = RCLK frequency (in MHz)  
3. For all devices, typical IDDQ calculation: with data outputs in High-Impedance: IDDQ (mA) = 0.15 x fs, fs = WCLK = RCLK frequency (in MHz)  
with data outputs in Low-Impedance: IDDQ (mA) = (CL x VDDQ x fs x N)/2000  
fs = WCLK = RCLK frequency (in MHz), VDDQ = 2.5V for LVTTL; 1.5V for HSTL; 1.8V for eHSTL, CL = capacitive load (pf), tA = 25°C,  
N = Number of outputs switching.  
4. Total Power consumed: PT = (VCC x ICC) + VDDQ x IDDQ).  
5. Outputs are not 3.3V tolerant.  
10  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
ACELECTRICALCHARACTERISTICS(1)SYNCHRONOUSTIMING  
(Commercial: VCC = 2.5V 5%, TA = 0°C to +70°C;Industrial: VCC = 2.5V 5%, TA = -40°C to +85°C)  
Commercial  
Com’l & Ind’l  
Commercial  
IDT72T36105L4-4 IDT72T36105L5 IDT72T36105L6-7 IDT72T36105L10  
IDT72T36115L4-4 IDT72T36115L5 IDT72T36115L6-7 IDT72T36115L10  
IDT72T36125L4-4 IDT72T36125L5 IDT72T36125L6-7 IDT72T36125L10  
Symbol  
fC  
Parameter  
Clock Cycle Frequency (Synchronous)  
DataAccessTime  
Min.  
Max.  
225  
3.4  
Min.  
0.6  
5
Max.  
200  
3.6  
Min.  
0.6  
6.7  
2.8  
2.8  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
100  
45  
45  
15  
5
Max.  
150  
3.8  
Min.  
Max.  
100  
4.5  
Unit  
MHz  
ns  
tA  
0.6  
4.44  
2.0  
2.0  
1.2  
0.5  
1.2  
0.5  
1.2  
0.5  
1.2  
0.5  
0.6  
10  
4.5  
4.5  
3.0  
0.5  
3.0  
0.5  
3.0  
0.5  
3.0  
0.5  
100  
45  
45  
15  
5
tCLK  
Clock Cycle Time  
ns  
tCLKH  
tCLKL  
tDS  
Clock High Time  
2.3  
2.3  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
100  
45  
45  
15  
5
ns  
Clock Low Time  
ns  
DataSetupTime  
ns  
tDH  
DataHoldTime  
ns  
tENS  
EnableSetupTime  
ns  
tENH  
EnableHoldTime  
ns  
tLDS  
LoadSetupTime  
ns  
tLDH  
LoadHoldTime  
ns  
tWCSS  
tWCSH  
fS  
WCSsetuptime  
WCSholdtime  
Clock Cycle Frequency (SCLK)  
Serial Clock Cycle  
ns  
ns  
10  
10  
10  
10  
MHz  
ns  
tSCLK  
tSCKH  
tSCKL  
tSDS  
100  
45  
45  
15  
5
Serial Clock High  
ns  
Serial Clock Low  
ns  
SerialDataInSetup  
ns  
tSDH  
Serial Data In Hold  
ns  
tSENS  
tSENH  
tRS  
SerialEnableSetup  
5
5
5
5
ns  
SerialEnableHold  
ResetPulseWidth(2)  
5
5
5
5
ns  
30  
15  
4
30  
15  
4
30  
15  
4
30  
15  
4
ns  
tRSS  
ResetSetupTime  
ns  
tHRSS  
tRSR  
HSTLResetSetupTime  
ResetRecoveryTime  
ResettoFlagandOutputTime  
Write Clock to FF or IR  
Read Clock to EF or OR  
WriteClocktoSynchronousProgrammableAlmost-FullFlag  
ReadClocktoSynchronousProgrammableAlmost-EmptyFlag  
RCLK to Echo RCLK output  
RCLK to Echo REN output  
RCLK to Active from High-Z(3)  
RCLK to High-Z(3)  
μs  
ns  
10  
10  
4
10  
5
10  
7
tRSF  
10  
12  
3.6  
3.6  
3.6  
3.6  
4
15  
15  
4.5  
4.5  
4.5  
4.5  
5
ns  
tWFF  
tREF  
3.4  
3.4  
3.4  
3.4  
3.8  
3.4  
3.4  
3.4  
3.8  
3.8  
3.8  
3.8  
4.3  
3.8  
3.8  
3.8  
ns  
ns  
ns  
tPAFS  
tPAES  
tERCLK  
tCLKEN  
tRCSLZ  
tRCSHZ  
ns  
ns  
3.6  
3.6  
3.6  
4.5  
4.5  
4.5  
ns  
ns  
ns  
ns  
tSKEW1 Skew time between RCLK and WCLK for EF/OR and FF/IR  
tSKEW2 Skew time between RCLK and WCLK for PAE and PAF  
3.5  
4
5
6
8
ns  
NOTES:  
1. All AC timings apply to both Standard IDT mode and First Word Fall Through mode.  
2. Pulse widths less than minimum values are not allowed.  
3. Values guaranteed by design, not currently tested.  
4. Industrial temperature range product for the 5ns speed grade is available as a standard device. All other speed grades are available by special order.  
11  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
ACELECTRICALCHARACTERISTICSASYNCHRONOUSTIMING  
(Commercial: VCC = 2.5V 5%, TA = 0°C to +70°C;Industrial: VCC = 2.5V 5%, TA = -40°C to +85°C)  
Commercial  
Com’l & Ind’l  
Commercial  
IDT72T36105L4-4 IDT72T36105L5 IDT72T36105L6-7 IDT72T36105L10  
IDT72T36115L4-4 IDT72T36115L5 IDT72T36115L6-7 IDT72T36115L10  
IDT72T36125L4-4 IDT72T36125L5 IDT72T36125L6-7 IDT72T36125L10  
Symbol  
fA  
Parameter  
Cycle Frequency (Asynchronous)  
DataAccessTime  
Min.  
0.6  
10  
4.5  
4.5  
8
Max.  
100  
8
Min.  
0.6  
12  
5
Max.  
83  
Min.  
0.6  
15  
7
Max.  
66  
Min.  
0.6  
20  
8
Max. Unit  
50  
14  
14  
14  
14  
14  
4.5  
4.5  
14  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAA  
10  
12  
tCYC  
tCYH  
tCYL  
tRPE  
tFFA  
tEFA  
tPAFA  
tPAEA  
tOLZ  
tOE  
Cycle Time  
8
Cycle HIGH Time  
Cycle LOW Time  
5
7
8
Read Pulse after EF HIGH  
Clock to Asynchronous FF  
Clock to Asynchronous EF  
ClocktoAsynchronousProgrammableAlmost-FullFlag  
ClocktoAsynchronousProgrammableAlmost-EmptyFlag  
OutputEnabletoOutputinLowZ(1)  
OutputEnabletoOutputValid  
OutputEnabletoOutputinHighZ(1)  
Clock to HF  
10  
0
12  
0
14  
0
0
10  
12  
8
10  
12  
8
10  
12  
8
10  
12  
3.4  
3.4  
8
3.6  
3.6  
10  
3.8  
3.8  
12  
tOHZ  
tHF  
NOTES:  
1. Values guaranteed by design, not currently tested.  
2. Industrial temperature range product for the 5ns speed grade is available as a standard device. All other speed grades are available by special order.  
12  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
HSTL  
AC TEST LOADS  
1.5V AC TEST CONDITIONS  
VDDQ/2  
InputPulseLevels  
0.25to1.25V  
0.4ns  
50  
Ω
InputRise/FallTimes  
InputTimingReferenceLevels  
OutputReferenceLevels  
0.75  
Z0 = 50Ω  
I/O  
VDDQ/2  
5907 drw04  
NOTE:  
1. VDDQ = 1.5V±.  
Figure 2a. AC Test Load  
EXTENDEDHSTL  
1.8V AC TEST CONDITIONS  
6
5
4
3
2
1
InputPulseLevels  
0.4 to 1.4V  
0.4ns  
InputRise/FallTimes  
InputTimingReferenceLevels  
OutputReferenceLevels  
0.9  
VDDQ/2  
NOTE:  
1. VDDQ = 1.8V±.  
20 30 50 80 100  
200  
Capacitance (pF)  
5907 drw04a  
Figure 2b. Lumped Capacitive Load, Typical Derating  
2.5VLVTTL  
2.5V AC TEST CONDITIONS  
InputPulseLevels  
GND to 2.5V  
1ns  
InputRise/FallTimes  
InputTimingReferenceLevels  
OutputReferenceLevels  
VCC/2  
VDDQ/2  
NOTE:  
1. For LVTTL VCC = VDDQ.  
13  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
OUTPUT ENABLE & DISABLE TIMING  
Output  
Enable  
Output  
Disable  
VIH  
OE  
VIL  
tOE &  
tOLZ  
tOHZ  
V
2
CC  
Output  
Normally  
LOW  
V
2
CC  
100mV  
100mV  
100mV  
V
OL  
V
OH  
Output  
Normally  
HIGH  
VCC  
100mV  
VCC  
2
2
5907 drw04b  
NOTES:  
1. REN is HIGH.  
2. RCS is LOW.  
READ CHIP SELECT ENABLE & DISABLE TIMING  
VIH  
tENH  
RCS  
VIL  
tENS  
RCLK  
tRCSHZ  
tRCSLZ  
Output  
Normally  
LOW  
VCC  
2
V
2
CC  
100mV  
100mV  
100mV  
VOL  
VOH  
Output  
Normally  
HIGH  
VCC  
100mV  
VCC  
2
2
5907 drw04c  
NOTES:  
1. REN is HIGH.  
2. OE is LOW.  
14  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
If the FIFO is full, the first read operation will cause FF to go HIGH.  
SubsequentreadoperationswillcausePAFandHFtogoHIGHattheconditions  
describedinTable3.Iffurtherreadoperationsoccur,withoutwriteoperations,  
PAE will go LOW when there are n words in the FIFO, where n is the empty  
offsetvalue.ContinuingreadoperationswillcausetheFIFOtobecomeempty.  
WhenthelastwordhasbeenreadfromtheFIFO,theEFwillgoLOWinhibiting  
further read operations. REN is ignored when the FIFO is empty.  
WhenconfiguredinIDTStandardmode,theEFandFFoutputsaredouble  
register-bufferedoutputs.  
FUNCTIONALDESCRIPTION  
TIMING MODES: IDT STANDARD vs FIRST WORD FALL THROUGH  
(FWFT) MODE  
The IDT72T36105/72T36115/72T36125 support two different timing  
modesofoperation:IDTStandardmodeorFirstWordFallThrough(FWFT)  
mode.TheselectionofwhichmodewilloperateisdeterminedduringMaster  
Reset, bythestateoftheFWFT/SIinput.  
If,atthetimeofMasterReset,FWFT/SIisLOW,thenIDTStandardmode  
willbeselected.ThismodeusestheEmptyFlag(EF)toindicatewhetherornot  
thereareanywordspresentintheFIFO.ItalsousestheFullFlagfunction(FF)  
to indicate whether or not the FIFO has any free space for writing. In IDT  
Standard mode, every word read from the FIFO, including the first, must be  
requested using the Read Enable (REN) and RCLK.  
If,atthetimeofMasterReset,FWFT/SIisHIGH,thenFWFTmodewillbe  
selected.ThismodeusesOutputReady(OR)toindicatewhetherornotthere  
isvaliddataatthedataoutputs(Qn). ItalsousesInputReady(IR)toindicate  
whetherornottheFIFOhasanyfreespaceforwriting.IntheFWFTmode,the  
firstwordwrittentoanemptyFIFOgoesdirectlytoQnafterthreeRCLKrising  
edges, REN =LOWisnotnecessary. Subsequentwordsmustbeaccessed  
using the Read Enable (REN) and RCLK.  
RelevanttimingdiagramsforIDTStandardmodecanbefoundinFigure  
11, 12, 13 and 18.  
FIRST WORD FALL THROUGH MODE (FWFT)  
In this mode, the status flags, IR, PAF, HF, PAE, and OR operate in the  
manneroutlinedinTable4.TowritedataintototheFIFO,WENmustbeLOW.  
DatapresentedtotheDATAINlineswillbeclockedintotheFIFOonsubsequent  
transitionsofWCLK.Afterthefirstwriteisperformed,theOutputReady(OR)  
flagwillgoLOW.SubsequentwriteswillcontinuetofilluptheFIFO.PAEwillgo  
HIGHaftern + 2wordshavebeenloadedintotheFIFO,wherenistheempty  
offsetvalue. Thedefaultsettingforthesevaluesarestatedinthefootnoteof  
Table2.Thisparameterisalsouserprogrammable.SeesectiononProgram-  
mableFlagOffsetLoading.  
Varioussignals,bothinputandoutputsignalsoperatedifferentlydepending  
onwhichtimingmodeisineffect.  
If one continued to write data into the FIFO, and we assumed no read  
operationsweretakingplace,theHFwouldtoggletoLOWoncethe32,770th  
wordfortheIDT72T36105,65,538thwordfortheIDT72T36115and131,074th  
wordfortheIDT72T36125,respectivelywaswrittenintotheFIFO.Continuing  
towritedataintotheFIFOwillcausethePAFtogoLOW.Again,ifnoreadsare  
performed,thePAFwillgoLOWafter(65,537-m)writesfortheIDT72T36105,  
(131,073-m) writes for the IDT72T36115 and (262,145-m) writes for the  
IDT72T36125,wheremisthefulloffsetvalue.Thedefaultsettingforthesevalues  
arestatedinthefootnoteofTable2.  
WhentheFIFOisfull,theInputReady(IR)flagwillgoHIGH,inhibitingfurther  
writeoperations.Ifnoreadsareperformedafterareset,IRwillgoHIGHafter  
DwritestotheFIFO. D =65,537writesfortheIDT72T36105,131,073writes  
fortheIDT72T36115and262,145writesfortheIDT72T36125,respectively.  
NotethattheadditionalwordinFWFTmodeisduetothecapacityofthememory  
plusoutputregister.  
IftheFIFOisfull, thefirstreadoperationwillcausetheIRflagtogoLOW.  
Subsequent read operations will cause the PAF and HF to go HIGH at the  
conditionsdescribedinTable4.Iffurtherreadoperationsoccur,withoutwrite  
operations,thePAEwillgoLOWwhentherearen+1wordsintheFIFO,where  
nistheemptyoffsetvalue.ContinuingreadoperationswillcausetheFIFOto  
becomeempty.WhenthelastwordhasbeenreadfromtheFIFO, ORwillgo  
HIGHinhibitingfurtherreadoperations.RENisignoredwhentheFIFOisempty.  
When configured in FWFT mode, the OR flag output is triple register-  
buffered,andtheIRflagoutputisdoubleregister-buffered.  
IDT STANDARD MODE  
In this mode, the status flags, FF, PAF, HF, PAE, and EF operate in the  
manneroutlinedinTable3.TowritedataintototheFIFO,WriteEnable(WEN)  
mustbeLOW.DatapresentedtotheDATAINlineswillbeclockedintotheFIFO  
on subsequent transitions of the Write Clock (WCLK). After the first write is  
performed,theEmptyFlag(EF)willgoHIGH.Subsequentwriteswillcontinue  
tofilluptheFIFO.TheProgrammableAlmost-Emptyflag(PAE)willgoHIGH  
aftern + 1wordshavebeenloadedintotheFIFO,wherenistheemptyoffset  
value.ThedefaultsettingforthesevaluesarestatedinthefootnoteofTable2.  
Thisparameterisalsouserprogrammable.SeesectiononProgrammableFlag  
OffsetLoading.  
If one continued to write data into the FIFO, and we assumed no read  
operationsweretakingplace,theHalf-Fullflag(HF)wouldtoggletoLOWonce  
the32,769thwordfortheIDT72T36105,65,537thwordfortheIDT72T36115  
and 131,073rd word for the IDT72T36125, respectively was written into the  
FIFO. Continuing to write data into the FIFO will cause the Programmable  
Almost-Fullflag(PAF)togoLOW.Again,ifnoreadsareperformed,thePAF  
willgoLOWafter(65,536-m)writesfortheIDT72T36105,(131,072-m)writes  
fortheIDT72T36115and(262,144-m)writesfortheIDT72T36125.Theoffset  
“misthefulloffsetvalue.Thedefaultsettingforthesevaluesarestatedinthe  
footnoteofTable2.Thisparameterisalsouserprogrammable.Seesectionon  
ProgrammableFlagOffsetLoading.  
WhentheFIFOisfull,theFullFlag(FF)willgoLOW,inhibitingfurtherwrite  
operations.Ifnoreadsareperformedafterareset,FFwillgoLOWafterDwrites  
to the FIFO. D = 65,536 writes for the IDT72T36105, 131,072 writes for the  
IDT72T36115 and 262,144 writes for the IDT72T36125, respectively.  
RelevanttimingdiagramsforFWFTmodecanbefoundinFigure14, 15,  
16 and 19.  
15  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
PROGRAMMING FLAG OFFSETS  
TABLE 2 — DEFAULT PROGRAMMABLE  
FullandEmptyFlagoffsetvaluesareuserprogrammable.TheIDT72T36105/  
72T36115/72T36125haveinternalregistersfortheseoffsets.Thereareeight  
defaultoffsetvaluesselectableduringMasterReset.Theseoffsetvaluesare  
showninTable2.OffsetvaluescanalsobeprogrammedintotheFIFOinone  
of two ways; serial or parallel loading method. The selection of the loading  
methodisdoneusingtheLD(Load)pin.DuringMasterReset,thestateofthe  
LD input determines whether serial or parallel flag offset programming is  
enabled. A HIGH on LD during Master Reset selects serial loading of offset  
values. A LOW on LD during Master Reset selects parallel loading of offset  
values.  
InadditiontoloadingoffsetvaluesintotheFIFO,itisalsopossibletoread  
thecurrentoffsetvalues.Offsetvaluescanbereadviatheparalleloutputport  
Q0-Qn,regardlessoftheprogrammingmodeselected(serialorparallel).Itis  
notpossibletoreadtheoffsetvaluesinserialfashion.  
Figure3,ProgrammableFlagOffsetProgrammingSequence,summaries  
thecontrolpinsandsequenceforbothserialandparallelprogrammingmodes.  
Foramoredetaileddescription,seediscussionthatfollows.  
FLAG OFFSETS  
IDT72T36105, 72T36115, 72T36125  
*LD  
H
L
L
L
FSEL1  
FSEL0  
Offsets n,m  
L
H
L
L
L
H
L
H
L
H
H
1,023  
511  
255  
127  
63  
31  
15  
7
L
L
H
H
L
H
H
H
H
*LD  
H
L
FSEL1  
FSEL0  
Program Mode  
Serial(3)  
X
X
X
X
Parallel(4)  
*THIS PIN MUST BE HIGH AFTER MASTER RESET TO WRITE  
OR READ DATA TO/FROM THE FIFO MEMORY.  
The offset registers may be programmed (and reprogrammed) any time  
afterMasterReset,regardlessofwhetherserialorparallelprogramminghas  
been selected. Valid programming ranges are from 0 to D-1.  
NOTES:  
1. n = empty offset for PAE.  
2. m = full offset for PAF.  
SYNCHRONOUS vs ASYNCHRONOUS PROGRAMMABLE FLAG  
TIMING SELECTION  
The IDT72T36105/72T36115/72T36125 can be configured during the  
MasterResetcyclewitheithersynchronousorasynchronoustimingforPAF  
and PAE flags by use of the PFM pin.  
3. As well as selecting serial programming mode, one of the default values will also  
be loaded depending on the state of FSEL0 & FSEL1.  
4. As well as selecting parallel programming mode, one of the default values will  
also be loaded depending on the state of FSEL0 & FSEL1.  
If synchronous PAF/PAE configuration is selected (PFM, HIGH during  
MRS),thePAFisassertedandupdatedontherisingedgeofWCLKonlyand  
notRCLK.Similarly,PAEisassertedandupdatedontherisingedgeofRCLK  
onlyandnotWCLK.Fordetailtimingdiagrams,seeFigure23forsynchronous  
PAFtimingandFigure24forsynchronousPAE timing.  
If asynchronous PAF/PAE configuration is selected (PFM, LOW during  
MRS),thePAFisassertedLOWontheLOW-to-HIGHtransitionofWCLKand  
PAFisresettoHIGHontheLOW-to-HIGHtransitionofRCLK. Similarly,PAE  
isassertedLOWontheLOW-to-HIGHtransitionofRCLK.PAEisresettoHIGH  
on the LOW-to-HIGH transition of WCLK. For detail timing diagrams, see  
Figure25forasynchronousPAFtimingandFigure26forasynchronousPAE  
timing.  
16  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
TABLE 3 STATUS FLAGS FOR IDT STANDARD MODE  
IDT72T36105  
IDT72T36115  
IDT72T36125  
FF PAF HF PAE EF  
0
0
0
H
H
H
H
H
L
H
H
H
H
L
H
H
H
L
L
L
1 to n(1)  
1 to n(1)  
1 to n(1)  
Number of  
Words in  
FIFO  
L
H
H
H
H
H
(n+1) to 32,768  
H
H
H
H
(n+1) to 65,536  
(n+1) to 131,072  
32,769 to (65,536-(m+1))  
65,537 to (131,072-(m+1))  
131,073 to (262,144-(m+1))  
L
(65,536-m) to 65,535  
65,536  
(131,072-m) to 131,071  
131,072  
(262,144-m) to 262,143  
262,144  
L
L
NOTE:  
1. See table 2 for values for n, m.  
TABLE 4 STATUS FLAGS FOR FWFT MODE  
IDT72T36115  
IDT72T36105  
IR PAF HF PAE OR  
IDT72T36125  
0
0
0
L
L
L
L
L
H
H
H
H
H
L
H
H
H
L
L
H
Number of  
Words in  
FIFO  
1 to n+1  
1 to n+1  
1 to n+1  
L
L
H
H
H
H
L
(n+2) to 32,769  
(n+2) to 131,073  
131,074 to (262,145-(m+1))  
(262,145-m) to 262,144  
262,145  
(n+2) to 65,537  
L
32,770 to (65,537-(m+1))  
65,538 to (131,073-(m+1))  
L
L
L
(65,537-m) to 65,536  
65,537  
(131,073-m) to 131,072  
131,073  
L
L
NOTE:  
1. See table 2 for values for n, m.  
5907 drw05  
17  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72T36105, IDT72T36115  
IDT72T36125  
WCLK RCLK  
SCLK  
LD  
WEN  
REN  
SEN  
Parallel write to registers:  
Empty Offset (LSB)  
Empty Offset (MSB)  
Full Offset (LSB)  
X
X
0
0
1
1
Full Offset (MSB)  
Parallel read from registers:  
Empty Offset (LSB)  
Empty Offset (MSB)  
Full Offset (LSB)  
X
0
0
1
1
0
1
1
0
X
Full Offset (MSB)  
Serial shift into registers:  
X
X
32 bits for the IDT72T36105  
34 bits for the IDT72T36115  
36 bits for the IDT72T36125  
1 bit for each rising SCLK edge  
Starting with Empty Offset (LSB)  
Ending with Full Offset (MSB)  
X
X
X
X
X
1
1
1
No Operation  
Write Memory  
X
1
1
1
0
X
1
X
0
1
X
X
X
X
X
X
X
Read Memory  
X
No Operation  
5907 drw06  
NOTES:  
1. The programming method can only be selected at Master Reset.  
2. Parallel reading of the offset registers is always permitted regardless of which programming method has been selected.  
3. The programming sequence applies to both IDT Standard and FWFT modes.  
Figure 3. Programmable Flag Offset Programming Sequence  
18  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
1st Parallel Offset Write/Read Cycle  
D/Q35  
D/Q35  
D/Q19  
D/Q17  
D/Q0  
D/Q8  
EMPTY OFFSET REGISTER (PAE)  
Non-Interspersed  
Parity  
18  
1
1
17 16 15 14 13 12 11 10  
16 15 14 13 1211 10  
9
8
8
7
7
6
6
5
5
4
4
3
3
2
2
# of Bits Used:  
Interspersed  
Parity  
18 17  
9
16 bits for the IDT72T36105  
17 bits for the IDT72T36115  
18 bits for the IDT72T36125  
Note: All unused bits of the  
LSB & MSB are don't care  
# of Bits Used  
2nd Parallel Offset Write/Read Cycle  
D/Q19  
D/Q17  
D/Q0  
D/Q8  
FULL OFFSET REGISTER (PAF)  
Non-Interspersed  
Parity  
18 17 16 15 14 13 12 11 10  
15 14 13 12 11 10  
9
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
Interspersed  
Parity  
17  
9
18  
16  
# of Bits Used  
IDT72T36105/72T36115/72T36125 x36 Bus Width  
1st Parallel Offset Write/Read Cycle  
D/Q17  
D/Q16  
Data Inputs/Outputs  
EMPTY OFFSET (LSB) REGISTER (PAE)  
D/Q0  
1st Parallel Offset Write/Read Cycle  
Non-Interspersed  
Parity  
D/Q17  
Data Inputs/Outputs  
16 15 14 13 12 11 10  
16 15 14 13 12 11 10  
9
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
D/Q0  
D/Q16  
Interspersed  
Parity  
9
EMPTY OFFSET (LSB) REGISTER (PAE)  
Non-Interspersed  
Parity  
D/Q8  
# of Bits Used  
16 15 14 13 1211 10  
13 12 10  
9
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
2nd Parallel Offset Write/Read Cycle  
16  
Interspersed  
Parity  
15 14  
11  
9
D/Q17  
D/Q8  
D/Q16  
# of Bits Used  
Data Inputs/Outputs  
D/Q0  
EMPTY OFFSET (MSB) REGISTER (PAE)  
18  
17  
17  
18  
2nd Parallel Offset Write/Read Cycle  
D/Q17  
3rd Parallel Offset Write/Read Cycle  
D/Q17  
Data Inputs/Outputs  
D/Q16  
D/Q  
0
Data Inputs/Outputs  
D/Q0  
D/Q16  
FULL OFFSET (LSB) REGISTER (PAF)  
FULL OFFSET (LSB) REGISTER (PAF)  
16 15 14  
12 11  
13  
10  
9
9
8
7
7
6
6
5
5
4
4
3
2
2
1
1
16 15 14 13 12 11 10  
16 15 14 13 12 11 10  
9
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
16 15  
14 13 12 11 10  
8
3
9
D/Q8  
D/Q8  
4th Parallel Offset Write/Read Cycle  
D/Q17  
D/Q16  
FULL OFFSET (MSB) REGISTER (PAF)  
Data Inputs/Outputs  
D/Q0  
18 17  
18 17  
IDT72T36105 x18 Bus Width  
IDT72T36115/72T36125 x18 Bus Width  
1st Parallel Offset Write/Read Cycle  
D/Q8  
1st Parallel Offset Write/Read Cycle  
D/Q8  
D/Q0  
1
D/Q0  
EMPTY OFFSET REGISTER (PAE)  
EMPTY OFFSET REGISTER (PAE)  
8
7
6
5
4
3
2
8
7
6
5
4
3
2
10  
18  
2
1
2nd Parallel Offset Write/Read Cycle  
D/Q8  
D/Q0  
9
EMPTY OFFSET REGISTER (PAE)  
2nd Parallel Offset Write/Read Cycle  
D/Q8  
16  
15 14 13 12 11  
D/Q0  
9
EMPTY OFFSET REGISTER (PAE)  
3rd Parallel Offset Write/Read Cycle  
D/Q8  
16  
15 14 13 12 11  
10  
D/Q0  
17  
EMPTY OFFSET REGISTER (PAE)  
3rd Parallel Offset Write/Read Cycle  
D/Q8  
4th Parallel Offset Write/Read Cycle  
D/Q8  
D/Q0  
1
D/Q0  
1
FULL OFFSET REGISTER (PAF)  
FULL OFFSET REGISTER (PAF)  
8
7
6
5
4
3
2
8
7
6
5
4
3
5th Parallel Offset Write/Read Cycle  
D/Q8  
D/Q0  
9
FULL OFFSET REGISTER (PAF)  
4th Parallel Offset Write/Read Cycle  
D/Q8  
16  
15 14 13 12 11  
10  
D/Q0  
9
FULL OFFSET REGISTER (PAF)  
6th Parallel Offset Write/Read Cycle  
D/Q8  
16  
15 14 13 12 11  
10  
D/Q0  
17  
FULL OFFSET REGISTER (PAF)  
18  
IDT72T36105 x9 Bus Width  
IDT72T36115/72T36125 x9 Bus Width  
5907 drw07  
NOTE:  
1. Consecutive reads of the offset registers is not permitted. The read operation must be disabled for a minimum of one RCLK cycle in between offset register accesses. (Please  
refer to Figure 22, Parallel Read of Programmable Flag Registers (IDT Standard and FWFT Modes) for more details).  
Figure 3. Programmable Flag Offset Programming Sequence (Continued)  
19  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
SERIAL PROGRAMMING MODE  
OffsetRegisterMSB.The5th LOW-to-HIGHtransitionofWCLKdataontheinputs  
IfSerialProgrammingmodehasbeenselected,asdescribedabove,then DnareonceagainwrittenintotheEmptyOffsetRegisterLSB.  
programmingofPAEandPAFvaluescanbeachievedbyusingacombination  
oftheLD,SEN,SCLKandSIinputpins.ProgrammingPAEandPAFproceeds  
When a 9 bit input bus width is used:  
FortheIDT72T36105,4enabledwritecyclesarerequiredtoloadtheoffset  
asfollows:whenLDandSENaresetLOW,dataontheSIinputarewritten,one registers,(2peroffset).DataontheinputsDnarewrittenintotheEmptyOffset  
bitforeachSCLKrisingedge,startingwiththeEmptyOffsetLSBandending RegisterLSBonthefirstLOW-to-HIGHtransitionofWCLK.Uponthe2nd LOW-  
withtheFullOffsetMSB.Atotalof32bitsfortheIDT72T36105,34bitsforthe to-HIGHtransitionofWCLKdataontheinputsDnarewrittenintotheEmptyOffset  
IDT72T36115and36bitsfortheIDT72T36125.SeeFigure20,SerialLoading RegisterMSB.Uponthe3rd LOW-to-HIGHtransitionofWCLKdataontheinputs  
ofProgrammableFlagRegisters, forthetimingdiagramforthismode.  
Dn are written into the Full Offset Register LSB. Upon the 4th LOW-to-HIGH  
Using the serial method, individual registers cannot be programmed transitionofWCLKdataontheinputsDnarewrittenintotheFullOffsetRegister  
selectively.PAEandPAFcanshowavalidstatusonlyafterthecompleteset MSB.The5th LOW-to-HIGHtransitionofWCLKdataontheinputsDnareonce  
of bits (for all offset registers) has been entered. The registers can be againwrittenintotheEmptyOffsetRegisterLSB.  
reprogrammedaslongasthecompletesetofnewoffsetbitsisentered.When  
LD is LOW and SEN is HIGH, no serial write to the registers can occur.  
For the IDT72T36115/72T36125, 6 enabled write cycles are required to  
loadtheoffsetregisters,(3peroffset).DataontheinputsDnarewrittenintothe  
Write operations to the FIFO are allowed before and during the serial EmptyOffsetRegisterLSBonthefirstLOW-to-HIGHtransitionofWCLK.Upon  
programmingsequence. Inthiscase,theprogrammingofalloffsetbitsdoesnot the3rd LOW-to-HIGHtransitionofWCLKdataontheinputsDnarewritteninto  
havetooccuratonce. AselectnumberofbitscanbewrittentotheSIinputand theEmptyOffsetRegisterMSB.Uponthe4th LOW-to-HIGHtransitionofWCLK  
then,bybringingLDandSENHIGH,datacanbewrittentoFIFOmemoryvia dataontheinputsDnarewrittenintotheFullOffsetRegisterLSB.Uponthe6th  
Dn bytogglingWEN. WhenWENisbroughtHIGHwithLDandSENrestored LOW-to-HIGHtransitionofWCLKdataontheinputsDnarewrittenintotheFull  
toaLOW,thenextoffsetbitinsequenceiswrittentotheregistersviaSI. Ifan OffsetRegisterMSB.The7th LOW-to-HIGHtransitionofWCLKdataontheinputs  
interruptionofserialprogrammingisdesired,itissufficienteithertosetLDLOW DnareonceagainwrittenintotheEmptyOffsetRegisterLSB. SeeFigure3,  
anddeactivateSENortosetSENLOWanddeactivateLD. OnceLDandSEN ProgrammableFlagOffsetProgrammingSequence.SeeFigure21,Parallel  
arebothrestoredtoaLOWlevel,serialoffsetprogrammingcontinues.  
Fromthetimeserialprogramminghasbegun,neitherprogrammableflag  
LoadingofProgrammableFlagRegisters,forthetimingdiagramforthismode.  
Theactofwritingoffsetsinparallelemploysadedicatedwriteoffsetregister  
willbevaliduntilthefullsetofbitsrequiredtofillalltheoffsetregistershasbeen pointer. The act of reading offsets employs a dedicated read offset register  
written. MeasuringfromtherisingSCLKedgethatachievestheabovecriteria; pointer.Thetwopointersoperateindependently;however,areadandawrite  
PAFwillbevalidafterthreemorerisingWCLKedgesplustPAF,PAEwillbevalid shouldnotbeperformedsimultaneouslytotheoffsetregisters. AMasterReset  
after the next three rising RCLK edges plus tPAE.  
ItisonlypossibletoreadtheflagoffsetvaluesviatheparalleloutputportQn. noeffectonthepositionofthesepointers.  
Write operations to the FIFO are allowed before and during the parallel  
programmingsequence.Inthiscase,theprogrammingofalloffsetregistersdoes  
initializesbothpointerstotheEmptyOffset(LSB)register.APartialResethas  
PARALLELMODE  
IfParallelProgrammingmodehasbeenselected,asdescribedabove,then nothavetooccuratonetime. One,twoormoreoffsetregisterscanbewritten  
programmingofPAEandPAFvaluescanbeachievedbyusingacombination andthenbybringingLDHIGH,writeoperationscanberedirectedtotheFIFO  
of the LD, WCLK , WEN and Dn input pins. Programming PAE and PAF memory.WhenLDissetLOWagain,andWENisLOW,thenextoffsetregister  
proceedsasfollows: LDandWENmustbesetLOW.Whenprogrammingthe insequenceiswrittento.AsanalternativetoholdingWENLOWandtoggling  
OffsetRegistersoftheTeraSyncFIFO’sthenumberofprogrammingcycleswill LD, parallel programming can also be interrupted by setting LD LOW and  
be based on the bus width, the following rules apply:  
togglingWEN.  
Notethatthestatusofaprogrammableflag(PAEorPAF)outputisinvalid  
When a 36 bit input bus width is used:  
For the IDT72T36105/72T36115/72T36125, 2 enabled write cycles are during the programming process. From the time parallel programming has  
requiredtoprogramtheoffsetregisters,(1peroffset).DataontheinputsDnare begun,aprogrammableflagoutputwillnotbevaliduntiltheappropriateoffset  
writtenintotheEmptyOffsetRegisteronthefirstLOW-to-HIGHtransitionof wordhasbeenwrittentotheregister(s)pertainingtothatflag.Measuringfrom  
WCLK.UponthesecondLOW-to-HIGHtransitionofWCLK,dataarewritteninto therisingWCLKedgethatachievestheabovecriteria;PAFwillbevalidafter  
theFullOffsetRegister.ThethirdtransitionofWCLKwrites,onceagain,tothe twomorerisingWCLKedgesplustPAF,PAEwillbevalidafterthenexttworising  
EmptyOffsetRegister.  
RCLK edges plus tPAE plus tSKEW2.  
When an 18 bit input bus width is used:  
The act of reading the offset registers employs a dedicated read offset  
FortheIDT72T36105,2enabledwritecyclesarerequiredtoprogramthe registerpointer. ThecontentsoftheoffsetregisterscanbereadontheQ0-Qn  
offsetregisters,(1peroffset).DataontheinputsDnarewrittenintotheEmpty pins when LD is set LOW and REN is set LOW. It is important to note that  
OffsetRegisteronthefirstLOW-to-HIGHtransitionofWCLK.Uponthesecond consecutivereadsoftheoffsetregistersisnotpermitted.Thereadoperationmust  
LOW-to-HIGHtransitionofWCLK,dataarewrittenintotheFullOffsetRegister. be disabled for a minimum of one RCLK cycle in between offset register  
ThethirdtransitionofWCLKwrites,onceagain,totheEmptyOffsetRegister. accesses. When reading the Offset Registers of the TeraSync FIFO’s the  
For the IDT72T36115/72T36125, 4 enabled write cycles are required to number of reading cycles will be based on the bus width, the following rules  
loadtheoffsetregisters,(2peroffset).DataontheinputsDnarewrittenintothe apply:  
EmptyOffsetRegisterLSBonthefirstLOW-to-HIGHtransitionofWCLK.Upon  
When a 36 bit output bus width is used:  
For the IDT72T36105/72T36115/72T36125, 2 enabled read cycles are  
the2nd LOW-to-HIGHtransitionofWCLKdataontheinputsDnarewritteninto  
theEmptyOffsetRegisterMSB.Uponthe3rd LOW-to-HIGHtransitionofWCLK requiredtoreadtheoffsetregisters,(1peroffset).DataontheoutputsQnare  
dataontheinputsDnarewrittenintotheFullOffsetRegisterLSB.Uponthe4th readfromtheEmptyOffsetRegisteronthefirstLOW-to-HIGHtransitionofRCLK.  
LOW-to-HIGHtransitionofWCLKdataontheinputsDnarewrittenintotheFull UponthesecondLOW-to-HIGHtransitionofRCLK,dataarereadfromtheFull  
20  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
OffsetRegister.ThethirdtransitionofRCLKreads,onceagain,fromtheEmpty betakenoutofretransmitmodeatanytimetoallownormaldeviceoperation.  
OffsetRegister.  
Themarkpositioncanbeselectedanynumberoftimes,eachselectionover-  
writingthepreviousmarklocation.RetransmitoperationisavailableinbothIDT  
When an 18 bit output bus width is used:  
FortheIDT72T36105,2enabledreadcyclesarerequiredtoreadtheoffset standardandFWFTmodes.  
registers,(1peroffset).DataontheoutputsQnarereadfromtheEmptyOffset  
DuringIDTstandardmodetheFIFOisputintoretransmitmodebyaLow-  
RegisteronthefirstLOW-to-HIGHtransitionofRCLK.UponthesecondLOW- to-HightransitiononRCLKwhentheMARKinputisHIGHandEFisHIGH.  
to-HIGHtransitionofRCLK,dataarereadfromtheFullOffsetRegister.Thethird TherisingRCLKedgemarksthedatapresentintheFIFOoutputregisteras  
transitionofRCLKreads,onceagain,fromtheEmptyOffsetRegister.  
thefirstretransmitdata.TheFIFOremainsinretransmitmodeuntilarisingedge  
For the IDT72T36115/72T36125, 4 enabled read cycles are required to on RCLK occurs while MARK is LOW.  
readtheoffsetregisters, (2peroffset). DataontheoutputsQnarereadfrom  
Onceamarkedlocationhasbeenset(andthedeviceisstillinretransmit  
theEmptyOffsetRegisterLSBonthefirstLOW-to-HIGHtransitionofRCLK. mode,MARKisHIGH),aretransmitcanbeinitiatedbyarisingedgeonRCLK  
Uponthe2nd LOW-to-HIGHtransitionofRCLKdataontheoutputsQnareread whiletheretransmitinput(RT)isLOW.RENmustbeHIGH(readsdisabled)  
fromtheEmptyOffsetRegisterMSB.Uponthe3rd LOW-to-HIGHtransitionof beforebringingRTLOW.Thedeviceindicatesthestartofretransmitsetupby  
RCLKdataontheoutputsQnarereadfromtheFullOffsetRegisterLSB.Upon settingEFLOW,alsopreventingreads.WhenEFgoesHIGH,retransmitsetup  
the4th LOW-to-HIGHtransitionofRCLKdataontheoutputsQnarereadfrom iscompleteandreadoperationsmaybeginstartingwiththefirstdataattheMARK  
theFullOffsetRegisterMSB.The5th LOW-to-HIGHtransitionofRCLKdataon location.SinceIDTstandardmodeisselected,everywordreadincludingthe  
theoutputsQnareonceagainreadfromtheEmptyOffsetRegisterLSB.  
When a 9 bit output bus width is used:  
firstmarkedwordfollowingaretransmitsetuprequiresaLOWonREN(read  
enabled).  
For the IDT72T36115/72T36125, 4 enabled read cycles are required to  
Note, write operations may continue as normal during all retransmit  
readtheoffsetregisters, (2peroffset). DataontheoutputsQnarereadfrom functions,howeverwriteoperationstothemarkedlocationwillbeprevented.  
theEmptyOffsetRegisterLSBonthefirstLOW-to-HIGHtransitionofRCLK. See Figure 18, Retransmit from Mark (IDT standard mode), for the relevant  
Uponthe2nd LOW-to-HIGHtransitionofRCLKdataontheoutputsQnareread timingdiagram.  
fromtheEmptyOffsetRegisterMSB.Uponthe3rd LOW-to-HIGHtransitionof  
DuringFWFTmodetheFIFOisputintoretransmitmodebyarisingRCLK  
RCLKdataontheoutputsQnarereadfromtheFullOffsetRegisterLSB.Upon edgewhentheMARKinputisHIGHandORisLOW.TherisingRCLKedge  
the4th LOW-to-HIGHtransitionofRCLKdataontheoutputsQnarereadfrom ‘marksthedatapresentintheFIFOoutputregisterasthefirstretransmitdata.  
theFullOffsetRegisterMSB.The5th LOW-to-HIGHtransitionofRCLKdataon TheFIFOremainsinretransmitmodeuntilarisingRCLKedgeoccurswhile  
theoutputsQnareonceagainreadfromtheEmptyOffsetRegisterLSB.  
For the IDT72T36115/72T36125, 6 enabled read cycles are required to  
MARKisLOW.  
Onceamarkedlocationhasbeenset(andthedeviceisstillinretransmit  
readtheoffsetregisters, (3peroffset). DataontheoutputsQnarereadfrom mode,MARKisHIGH),aretransmitcanbeinitiatedbyarisingRCLKedgewhile  
theEmptyOffsetRegisterLSBonthefirstLOW-to-HIGHtransitionofRCLK. theretransmitinput(RT)isLOW.RENmustbeHIGH(readsdisabled)before  
Uponthe3rd LOW-to-HIGHtransitionofRCLKdataontheoutputsQnareread bringingRTLOW.Thedeviceindicatesthestartofretransmitsetupbysetting  
fromtheEmptyOffsetRegisterMSB.Uponthe4th LOW-to-HIGHtransitionof OR HIGH.  
RCLKdataontheoutputsQnarereadfromtheFullOffsetRegisterLSB.Upon  
WhenORgoesLOW,retransmitsetupiscompleteandonthenextrising  
the6th LOW-to-HIGHtransitionofRCLKdataontheoutputsQnarereadfrom RCLKedgeafterretransmitsetupiscomplete,(RTgoesHIGH),thecontents  
theFullOffsetRegisterMSB.The7th LOW-to-HIGHtransitionofRCLKdataon ofthefirstretransmitlocationareloadedontotheoutputregister.SinceFWFT  
theoutputsQnareonceagainreadfromtheEmptyOffsetRegisterLSB.See modeisselected,thefirstwordappearsontheoutputsregardlessofREN,a  
Figure 3, Programmable Flag Offset Programming Sequence. See Figure LOWonRENisnotrequiredforthefirstword.Readingallsubsequentwords  
22, ParallelReadofProgrammableFlagRegisters,forthetimingdiagramfor requires a LOW on REN to enable the rising RCLK edge. See Figure 19,  
RetransmitfromMarktiming(FWFTmode),fortherelevanttimingdiagram.  
Note,theremustbeaminimumof32bytesofdatabetweenthewritepointer  
and read pointer when the MARK is asserted. (32 bytes = 16 word = 8 long  
words).Also,oncetheMARKisset,thewritepointerwillnotincrementpastthe  
“markedlocationuntiltheMARKisdeasserted.Thispreventsoverwriting”  
ofretransmitdata.  
thismode.  
Itispermissibletointerrupttheoffsetregisterreadsequencewithreadsor  
writestotheFIFO. TheinterruptionisaccomplishedbydeassertingREN,LD,  
orbothtogether. WhenRENand LDarerestoredtoaLOW level, readingof  
theoffsetregisterscontinueswhereitleftoff.Itshouldbenoted,andcareshould  
betakenfromthefactthatwhenaparallelreadoftheflagoffsetsisperformed,  
the data word that was present on the output lines Qn will be overwritten.  
Parallel reading of the offset registers is always permitted regardless of  
which timing mode (IDT Standard or FWFT modes) has been selected.  
HSTL/LVTTL I/O  
Both the write port and read port are user selectable between HSTL or  
LVTTL I/O, via two select pins, WHSTL and RHSTL respectively. All other  
control pins are selectable via SHSTL, see Table 5 for details of groupings.  
Note,thatwhenthewriteportisselectedforHSTLmode,theusercanreduce  
thepowerconsumption(instand-bymodebyutilizingtheWCSinput).  
AllStaticPinsmustbetiedtoVCC orGND. ThesepinsareLVTTLonly,  
and are purely device configuration pins.  
RETRANSMIT FROM MARK OPERATION  
TheRetransmitfromMarkfeatureallowsFIFOdatatobereadrepeatedly  
startingatauser-selectedposition.TheFIFOisfirstputintoretransmitmodethat  
willmarkabeginningwordandalsosetapointerthatwillpreventongoingFIFO  
writeoperationsfromover-writingretransmitdata.Theretransmitdatacanbe  
readrepeatedlyanynumberoftimesfromthemarkedposition.TheFIFOcan  
21  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
TABLE 5 — I/O CONFIGURATION  
WHSTL SELECT  
RHSTL SELECT  
SHSTL SELECT  
STATIC PINS  
WHSTL: HIGH = HSTL  
LOW = LVTTL  
RHSTL: HIGH = HSTL  
LOW = LVTTL  
SHSTL: HIGH = HSTL  
LOW = LVTTL  
LVTTL ONLY  
Dn (I/P)  
RCLK/RD (I/P)  
RCS (I/P)  
MARK (I/P)  
REN (I/P)  
OE (I/P)  
EF/OR (O/P)  
SCLK (I/P)  
LD (I/P)  
MRS (I/P)  
TCK (I/P)  
TMS (I/P)  
SEN (I/P)  
FWFT/SI (I/P)  
PRS (I/P)  
IW (I/P)  
BM (I/P)  
OW (I/P)  
ASYW (I/P)  
BE (I/P)  
FSEL0 (I/P)  
PFM (I/P)  
WHSTL (I/P)  
WCLK/WR (I/P)  
WEN (I/P)  
WCS (I/P)  
PAF (O/P)  
EREN (O/P)  
PAE (O/P)  
FF/IR (O/P)  
HF (O/P)  
TRST (I/P)  
TDI (I/P)  
ASYR (I/P)  
IP (I/P)  
FSEL1 (I/P)  
SHSTL (I/P)  
RHSTL (I/P)  
RT (I/P)  
Qn (O/P)  
ERCLK (O/P)  
TDO (O/P)  
22  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
Asynchronous operation of the read port will be selected. During Asynchro-  
nousoperationofthereadporttheRCLKinputbecomesRDinput,thisisthe  
Asynchronousreadstrobeinput.ArisingedgeonRDwillreaddatafromthe  
FIFO via the output register and Qn port. (REN must be tied LOW during  
Asynchronous operation of the read port).  
The OE input provides three-state control of the Qn output bus, in an  
asynchronousmanner.(RCS,providesthree-statecontrolofthereadportin  
Synchronousmode).  
WhenthereadportisconfiguredforAsynchronousoperationthedevice  
mustbeoperatingonIDTstandardmode,FWFTmodeisnotpermissibleifthe  
readportisAsynchronous.TheEmptyFlag(EF)operatesinanAsynchronous  
manner,thatis,theemptyflagwillbeupdatedbasedonbothareadoperation  
andawriteoperation.Refertofigures32,33,34and35forrelevanttimingand  
operationalwaveforms.  
SIGNALDESCRIPTION  
INPUTS:  
DATA IN (D0 - Dn)  
Datainputsfor36-bitwidedata(D0 -D35),datainputsfor18-bitwidedata  
(D0 - D17) or data inputs for 9-bit wide data (D0 - D8).  
CONTROLS:  
MASTER RESET ( MRS )  
AMasterResetisaccomplishedwhenevertheMRSinputistakentoaLOW  
state.Thisoperationsetstheinternalreadandwritepointerstothefirstlocation  
oftheRAMarray.PAEwill goLOW, PAFwillgoHIGH,and HFwillgoHIGH.  
If FWFT/SI is LOW during Master Reset then the IDT Standard mode,  
along with EF and FF are selected. EF will go LOW and FF will go HIGH. If  
FWFT/SIisHIGH,thentheFirstWordFallThroughmode(FWFT),alongwith  
IR and OR, are selected. OR will go HIGH and IR will go LOW.  
AllcontrolsettingssuchasOW,IW,BM,BE,RM,PFMandIParedefined  
duringtheMasterResetcycle.  
RETRANSMIT (RT)  
The Retransmit (RT) input is used in conjunction with the MARK input,  
togethertheyprovideameansbywhichdatapreviouslyreadoutoftheFIFO  
canberereadanynumberoftimes.Ifretransmitoperationhasbeenselected  
(i.e.theMARKinputisHIGH),arisingedgeonRCLKwhileRTisLOWwillreset  
thereadpointerbacktothememorylocationsetbytheuserviatheMARKinput.  
IfIDTstandardmodehasbeenselectedtheEFflagwillgoLOWandremain  
LOW for the time that RT is held LOW. RT can be held LOW for any number  
ofRCLKcycles,thereadpointerbeingresettothemarkedlocation.Thenext  
rising edge of RCLK afterRT has returned HIGH, will cause EF to go HIGH,  
allowingreadoperationstobeperformedontheFIFO.Thenextreadoperation  
willaccessdatafromthemarkedmemorylocation.  
Subsequentretransmitoperationsmaybeperformed,eachtimetheread  
pointerreturningtothemarkedlocation.SeeFigure18,RetransmitfromMark  
(IDT Standard mode) for the relevant timing diagram.  
IfFWFTmodehasbeenselectedtheORflagwillgoHIGHandremainHIGH  
forthetimethatRTisheldLOW.RTcanbeheldLOWforanynumberofRCLK  
cycles, thereadpointerbeingresettothemarkedlocation. ThenextRCLK  
risingedgeafterRThasreturnedHIGH,willcauseORtogoLOWanddueto  
FWFToperation,thecontentsofthemarkedmemorylocationwillbeloadedonto  
the output register, a read operation being required for all subsequent data  
reads.  
DuringaMasterReset,theoutputregisterisinitializedtoallzeroes.AMaster  
Resetisrequiredafterpowerup,beforeawriteoperationcantakeplace.MRS  
isasynchronous.  
See Figure 9, Master Reset Timing, for the relevant timing diagram.  
PARTIAL RESET (PRS)  
APartialResetisaccomplishedwheneverthePRS inputistakentoaLOW  
state.AsinthecaseoftheMasterReset,theinternalreadandwritepointers  
aresettothefirstlocationoftheRAMarray,PAEgoesLOW, PAFgoesHIGH,  
and HF goes HIGH.  
WhichevermodeisactiveatthetimeofPartialReset,IDTStandardmode  
orFirstWordFallThrough,thatmodewillremainselected. IftheIDTStandard  
mode is active, then FF will go HIGH and EF will go LOW. If the First Word  
Fall Through mode is active, then OR will go HIGH, and IR will go LOW.  
Following Partial Reset, all values held in the offset registers remain  
unchanged. Theprogrammingmethod(parallelorserial)currentlyactiveat  
thetimeofPartialResetisalsoretained. Theoutputregisterisinitializedtoall  
zeroes. PRS is asynchronous.  
A Partial Reset is useful for resetting the device during the course of  
operation,whenreprogrammingprogrammableflagoffsetsettingsmaynotbe  
convenient.  
Subsequentretransmitoperationsmaybeperformedeachtimetheread  
pointerreturningtothemarkedlocation.SeeFigure19,RetransmitfromMark  
(FWFT mode)for the relevant timing diagram.  
See Figure 10, Partial Reset Timing, for the relevant timing diagram.  
MARK  
ASYNCHRONOUS WRITE (ASYW)  
TheMARKinputisusedtoselectRetransmitmodeofoperation.AnRCLK  
rising edge while MARK is HIGH will mark the memory location of the data  
currently present on the output register, the device will also be placed into  
retransmit mode. Note, for the IDT72T36105/72T36115 there must be a  
minimum of 128 bytes, for the IDT72T36125 a minimum of 256 bytes.  
Remember,4(x9)bytes=2(x18)words=1(x36)word.Also,oncetheMARK  
isset, thewritepointerwillnotincrementpastthemarkedlocationuntilthe  
MARKisdeasserted.Thispreventsoverwritingofretransmitdata.  
TheMARKinputmustremainHIGHduringthewholeperiodofretransmit  
mode, afallingedgeofRCLKwhileMARKisLOWwilltakethedeviceoutof  
retransmitmodeandintonormalmode.AnynumberofMARKlocationscanbe  
setduringFIFOoperation,onlythelastmarkedlocationtakingeffect.Oncea  
marklocationhasbeensetthewritepointercannotbeincrementedpastthis  
markedlocation.Duringretransmitmodewriteoperationstothedevicemay  
continuewithouthindrance.  
ThewriteportcanbeconfiguredforeitherSynchronousorAsynchronous  
mode of operation. If during Master Reset the ASYW input is LOW, then  
Asynchronousoperationofthewriteportwillbeselected. DuringAsynchro-  
nousoperationofthewriteporttheWCLKinputbecomesWRinput,thisisthe  
Asynchronouswritestrobeinput.ArisingedgeonWRwillwritedatapresent  
ontheDninputsintotheFIFO.(WENmustbetiedLOWwhenusingthewrite  
portinAsynchronousmode).  
WhenthewriteportisconfiguredforAsynchronousoperationthefullflag  
(FF)operatesinanasynchronousmanner,thatis,thefullflagwillbeupdated  
based in both a write operation and read operation. Note, if Asynchronous  
modeisselected, FWFTisnotpermissable. RefertoFigures30, 31, 34and  
35forrelevanttimingandoperationalwaveforms.  
ASYNCHRONOUS READ (ASYR)  
ThereadportcanbeconfiguredforeitherSynchronousorAsynchronous  
mode of operation. If during a Master Reset the ASYR input is LOW, then  
23  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
FIRST WORD FALL THROUGH/SERIAL IN (FWFT/SI)  
input. Datacanbereadontheoutputs,ontherisingedgeoftheRCLKinput.  
This is a dual purpose pin. During Master Reset, the state of the FWFT/ ItispermissibletostoptheRCLK. NotethatwhileRCLKisidle,theEF/OR,PAE  
SIinputdetermineswhetherthedevicewilloperateinIDTStandardmodeor andHFflagswillnotbeupdated.(NotethatRCLKisonlycapableofupdating  
First Word Fall Through (FWFT) mode.  
the HF flag to HIGH). The Write and Read Clocks can be independent or  
If,atthetimeofMasterReset,FWFT/SIisLOW,thenIDTStandardmode coincident.  
will be selected. This mode uses the Empty Flag (EF) to indicate whether or  
If Asynchronous operation has been selected this input is RD (Read  
notthereareanywordspresentintheFIFOmemory. ItalsousestheFullFlag Strobe) . Data is Asynchronously read from the FIFO via the output register  
function(FF)toindicatewhetherornottheFIFOmemoryhasanyfreespace wheneverthereisarisingedgeonRD.InthismodetheRENandRCSinputs  
forwriting. InIDTStandardmode, everywordreadfromtheFIFO, including mustbetiedLOW.TheOEinputisusedtoprovideAsynchronouscontrolofthe  
the first, must be requested using the Read Enable (REN) and RCLK.  
three-stateQnoutputs.  
If,atthetimeofMasterReset,FWFT/SIisHIGH,thenFWFTmodewillbe  
selected. ThismodeusesOutputReady(OR)toindicatewhetherornotthere WRITE CHIP SELECT (WCS)  
isvaliddataatthedataoutputs(Qn). ItalsousesInputReady(IR)toindicate  
The WCS disables all Write Port inputs (data only) if it is held HIGH. To  
whetherornottheFIFOmemoryhasanyfreespaceforwriting. IntheFWFT performnormaloperationsonthewriteport,theWCSmustbeenabled,held  
mode,thefirstwordwrittentoanemptyFIFOgoesdirectlytoQnafterthreeRCLK LOW.  
rising edges, REN = LOW is not necessary. Subsequent words must be  
accessed using the Read Enable (REN) and RCLK.  
READ ENABLE (REN)  
AfterMasterReset,FWFT/SIactsasaserialinputforloadingPAEandPAF  
offsetsintotheprogrammableregisters. Theserialinputfunctioncanonlybe outputregisterontherisingedgeofeveryRCLKcycleifthedeviceisnotempty.  
When Read Enable is LOW, data is loaded from the RAM array into the  
usedwhentheserialloadingmethodhasbeenselectedduringMasterReset.  
SerialprogrammingusingtheFWFT/SIpinfunctionsthesamewayinbothIDT and no new data is loaded into the output register. The data outputs Q0-Qn  
WhentheRENinputisHIGH,theoutputregisterholdsthepreviousdata  
StandardandFWFTmodes.  
maintainthepreviousdatavalue.  
IntheIDTStandardmode,everywordaccessedatQn,includingthefirst  
word written to an empty FIFO, must be requested using REN provided that  
WRITE STROBE & WRITE CLOCK (WR/WCLK)  
IfSynchronousoperationofthewriteporthasbeenselectedviaASYW,this RCSisLOW. WhenthelastwordhasbeenreadfromtheFIFO,theEmptyFlag  
inputbehavesasWCLK.  
(EF)willgoLOW,inhibitingfurtherreadoperations. RENisignoredwhenthe  
AwritecycleisinitiatedontherisingedgeoftheWCLKinput. Datasetup FIFOisempty.Onceawriteisperformed,EFwillgoHIGHallowingareadto  
andholdtimesmustbemetwithrespecttotheLOW-to-HIGHtransitionofthe occur. TheEFflagisupdatedbytwoRCLKcycles+tSKEW afterthevalidWCLK  
WCLK.ItispermissibletostoptheWCLK. NotethatwhileWCLKisidle,theFF/ cycle.BothRCSandRENmustbeactive,LOWfordatatobereadoutonthe  
IR,PAFandHFflagswillnotbeupdated. (NotethatWCLKisonlycapableof rising edge of RCLK.  
updating HF flag to LOW). The Write and Read Clocks can either be  
independentorcoincident.  
IntheFWFTmode,thefirstwordwrittentoanemptyFIFOautomaticallygoes  
totheoutputsQn,onthethirdvalidLOW-to-HIGHtransitionofRCLK+tSKEW  
IfAsynchronousoperationhasbeenselectedthisinputisWR(writestrobe). afterthefirstwrite. RENandRCSdonotneedtobeassertedLOW fortheFirst  
DataisAsynchronouslywrittenintotheFIFOviatheDninputswheneverthere Wordtofallthroughtotheoutputregister. Inordertoaccessallotherwords,  
isarisingedgeonWR. InthismodetheWENinputmustbetiedLOW.  
a read must be executed using REN and RCS. The RCLK LOW-to-HIGH  
transitionafterthelastword hasbeenreadfromtheFIFO,OutputReady(OR)  
willgoHIGHwithatrueread(RCLKwithREN=LOW;RCS=LOW),inhibiting  
further read operations. REN is ignored when the FIFO is empty.  
IfAsynchronousoperationoftheReadporthasbeenselected,thenREN  
mustbeheldactive,(tiedLOW).  
WRITE ENABLE (WEN)  
WhentheWENinput isLOW,datamaybeloadedintotheFIFORAMarray  
ontherisingedgeofeveryWCLKcycleifthedeviceisnotfull. Dataisstored  
in the RAM array sequentially and independently of any ongoing read  
operation.  
WhenWENisHIGH,nonewdataiswrittenintheRAMarrayoneachWCLK  
cycle.  
To prevent data overflow in the IDT Standard mode, FF will go LOW,  
inhibitingfurtherwriteoperations. Uponthecompletionofavalidreadcycle,  
FF will go HIGH allowing a write to occur. The FF is updated by two WCLK  
cycles + tSKEW after the RCLK cycle.  
Topreventdataoverflow intheFWFTmode, IR willgoHIGH, inhibiting  
furtherwriteoperations. Uponthecompletionofavalidreadcycle, IRwillgo  
LOWallowingawritetooccur. TheIRflagisupdatedbytwoWCLKcycles+  
tSKEW after the valid RCLK cycle.  
SERIAL ENABLE ( SEN )  
TheSENinput isanenableusedonlyforserialprogrammingoftheoffset  
registers. The serial programming method must be selected during Master  
Reset. SENisalwaysusedinconjunctionwithLD. Whentheselinesareboth  
LOW,dataattheSIinputcanbeloadedintotheprogramregisteronebitforeach  
LOW-to-HIGHtransitionofSCLK.  
When SEN is HIGH, the programmable registers retains the previous  
settingsandnooffsetsareloaded. SENfunctionsthesamewayinbothIDT  
StandardandFWFTmodes.  
WENisignoredwhentheFIFOisfullineitherFWFTorIDTStandardmode.  
IfAsynchronousoperationofthewriteporthasbeenselected,thenWEN  
mustbeheldactive,(tiedLOW).  
OUTPUT ENABLE (OE)  
WhenOutputEnableisenabled(LOW),theparalleloutputbuffersreceive  
datafromtheoutputregister. WhenOEisHIGH,theoutputdatabus(Qn)goes  
intoahighimpedancestate.DuringMasteroraPartialResettheOEistheonly  
inputthatcanplacetheoutputbusQn,intoHigh-Impedance.DuringResetthe  
RCS input can be HIGH or LOW, it has no effect on the Qn outputs.  
READ STROBE & READ CLOCK (RD/RCLK)  
IfSynchronousoperationofthereadporthasbeenselectedviaASYR,this  
inputbehavesasRCLK.A readcycleisinitiatedontherisingedgeoftheRCLK  
24  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
READ CHIP SELECT ( RCS )  
thePAEandPAFflags,alongwiththemethodbywhichtheseoffsetregisters  
The Read Chip Select input provides synchronous control of the Read canbeprogrammed,parallelorserial(seeTable2). AfterMasterReset,LD  
outputport. WhenRCSgoesLOW,thenextrisingedgeofRCLKcausesthe enableswriteoperationstoandreadoperationsfromtheoffsetregisters.Only  
QnoutputstogototheLow-Impedancestate. WhenRCSgoesHIGH,thenext theoffsetloadingmethodcurrentlyselectedcanbeusedtowritetotheregisters.  
RCLKrisingedgecausestheQnoutputstoreturntoHIGHZ.DuringaMaster Offsetregisterscanbereadonlyinparallel.  
orPartialResettheRCSinputhasnoeffectontheQnoutputbus,OEistheonly  
AfterMasterReset,theLDpinisusedtoactivatetheprogrammingprocess  
inputthatprovidesHigh-ImpedancecontroloftheQnoutputs.IfOEisLOWthe oftheflagoffsetvaluesPAEandPAF.PullingLDLOWwillbeginaserialloading  
QndataoutputswillbeLow-ImpedanceregardlessofRCSuntilthefirstrising or parallel load or read of these offset values. THIS PIN MUST BE HIGH  
edgeofRCLKafteraResetiscomplete.ThenifRCSisHIGHthedataoutputs AFTERMASTERRESETTOWRITEORREADDATATO/FROMTHEFIFO  
willgotoHigh-Impedance.  
MEMORY.  
TheRCSinputdoesnoteffecttheoperationoftheflags. Forexample,when  
thefirstwordiswrittentoanemptyFIFO,theEFwillstillgofromLOWtoHIGH BUS-MATCHING (BM, IW, OW)  
based on a rising edge of RCLK, regardless of the state of the RCS input.  
ThepinsBM,IWandOWareusedtodefinetheinputandoutputbuswidths.  
Also,whenoperatingtheFIFOinFWFTmodethefirstwordwrittentoan DuringMasterReset,thestateofthesepinsisusedtoconfigurethedevicebus  
emptyFIFOwillstillbeclockedthroughtotheoutputregisterbasedonRCLK, sizes. SeeTable1forcontrolsettings. Allflagswilloperateontheword/byte  
regardlessofthestateofRCS.Forthisreasontheusermusttakecarewhen sizeboundaryasdefinedbytheselectionofbuswidth.SeeFigure5forBus-  
adatawordiswrittentoanemptyFIFOinFWFTmode.IfRCSisdisabledwhen MatchingByteArrangement.  
anemptyFIFOiswritteninto,thefirstwordwillfallthroughtotheoutputregister,  
butwillnotbeavailableontheQnoutputswhichareinHIGH-Z.Theusermust BIG-ENDIAN/LITTLE-ENDIAN ( BE )  
takeRCSactiveLOWtoaccessthisfirstword,placetheoutputbusinLOW-Z.  
During Master Reset, a LOW on BE will select Big-Endian operation. A  
RENmustremaindisabledHIGHforatleastonecycleafterRCShasgoneLOW. HIGHonBEduringMasterResetwillselectLittle-Endianformat.Thisfunction  
ArisingedgeofRCLKwithRCSandRENactiveLOW, willreadoutthenext isusefulwhenthefollowinginputtooutputbuswidthsareimplemented:x36to  
word. Care must be taken so as not to lose the first word written to an empty x18,x36tox9,x18tox36andx9tox36.IfBig-Endianmodeisselected,then  
FIFOwhenRCSisHIGH.RefertoFigure17,RCSandRENReadOperation themostsignificantbyte(word)ofthelongwordwrittenintotheFIFOwillberead  
(FWFT Mode). The RCS pin must also be active (LOW) in order to perform outoftheFIFOfirst,followedbytheleastsignificantbyte.IfLittle-Endianformat  
aRetransmit. SeeFigure13forReadCycleandReadChipSelectTiming(IDT isselected,thentheleastsignificantbyteofthelongwordwrittenintotheFIFO  
StandardMode). SeeFigure16forReadCycleandReadChipSelectTiming willbereadoutfirst,followedbythemostsignificantbyte.Themodedesired  
(First Word Fall Through Mode).  
isconfiguredduringmasterresetbythestateoftheBig-Endian(BE)pin.See  
IfAsynchronousoperationoftheReadporthasbeenselected,thenRCS Figure 5 for Bus-Matching Byte Arrangement.  
mustbeheldactive,(tiedLOW).OEprovidesthree-statecontrolofQn.  
PROGRAMMABLEFLAGMODE(PFM)  
WRITE PORT HSTL SELECT (WHSTL)  
DuringMasterReset,aLOWonPFMwillselectAsynchronousProgram-  
Thecontrolinputs,datainputsandflagoutputsassociatedwiththewriteport mable flag timing mode. A HIGH on PFM will select Synchronous Program-  
canbesetuptobeeitherHSTLorLVTTL.IfWHSTLisHIGHduringtheMaster mableflagtimingmode.IfasynchronousPAF/PAEconfigurationisselected  
Reset,thenHSTLoperationofthewriteportwillbeselected.IfWHSTLisLOW (PFM, LOW during MRS), the PAE is asserted LOW on the LOW-to-HIGH  
atMasterReset,thenLVTTLwillbeselected.  
transition of RCLK. PAE is reset to HIGH on the LOW-to-HIGH transition of  
TheinputsandoutputsassociatedwiththewriteportarelistedinTable5. WCLK.Similarly,thePAFisassertedLOWontheLOW-to-HIGHtransitionof  
WCLKandPAFisresettoHIGHontheLOW-to-HIGHtransitionofRCLK.  
READ PORT HSTL SELECT (RHSTL)  
If synchronous PAE/PAF configuration is selected (PFM, HIGH during  
Thecontrolinputs,datainputsandflagoutputsassociatedwiththereadport MRS),thePAEisassertedandupdatedontherisingedgeofRCLKonlyand  
canbesetuptobeeitherHSTLorLVTTL.IfRHSTLisHIGHduringtheMaster notWCLK.Similarly,PAFisassertedandupdatedontherisingedgeofWCLK  
Reset,thenHSTLoperationofthereadportwillbeselected.IfRHSTLisLOW only and not RCLK. The mode desired is configured during master reset by  
atMasterReset,thenLVTTLwillbeselectedforthereadport,thenechoclock thestateoftheProgrammableFlagMode(PFM)pin.  
and echo read enable will not be provided.  
TheinputsandoutputsassociatedwiththereadportarelistedinTable5. INTERSPERSED PARITY (IP)  
During Master Reset, a LOW on IP will select Non-Interspersed Parity  
SYSTEM HSTL SELECT (SHSTL)  
mode.A HIGHwillselectInterspersedParitymode.TheIPbitfunctionallows  
Allinputsnotassociatedwiththewriteandreadportcanbesetuptobeeither theusertoselecttheparitybitinthewordloadedintotheparallelport(D0-Dn)  
HSTLorLVTTL.IfSHSTLisHIGHduringMasterReset,thenHSTLoperation whenprogrammingtheflagoffsets.IfInterspersedParitymodeisselected,then  
ofalltheinputsnotassociatedwiththewriteandreadportwillbeselected.If theFIFOwillassumethattheparitybitsarelocatedinbitpositionD8,D17,D26  
SHSTL is LOW at Master Reset, then LVTTL will be selected. The inputs andD35duringtheparallelprogrammingoftheflagoffsets. IfNon-Interspersed  
associated with SHSTL are listed in Table 5.  
Paritymodeisselected,thenD8,D17 andD28 areisassumedtobevalidbits  
and D32, D33, D34 and D35 are ignored. IP mode is selected during Master  
ResetbythestateoftheIPinputpin.  
LOAD (LD)  
Thisisadualpurposepin. DuringMasterReset,thestateoftheLDinput,  
alongwithFSEL0andFSEL1,determinesoneofeightdefaultoffsetvaluesfor  
25  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
SeeFigure23,SynchronousProgrammableAlmost-FullFlagTiming(IDT  
StandardandFWFTMode), fortherelevanttiminginformation.  
IfasynchronousPAFconfigurationisselected,thePAFisassertedLOW  
ontheLOW-to-HIGHtransitionoftheWriteClock(WCLK). PAFisresettoHIGH  
ontheLOW-to-HIGHtransitionoftheReadClock(RCLK). IfsynchronousPAF  
configurationisselected,thePAFisupdatedontherisingedgeofWCLK. See  
Figure25,AsynchronousAlmost-FullFlagTiming(IDTStandardandFWFT  
Mode).  
OUTPUTS:  
FULL FLAG ( FF/IR )  
Thisisadualpurposepin. InIDTStandardmode,theFullFlag (FF) function  
is selected. When the FIFO is full, FF will go LOW, inhibiting further write  
operations. WhenFFisHIGH,theFIFOisnotfull. Ifnoreadsareperformed  
after a reset (either MRS or PRS), FF will go LOW after D writes to the FIFO  
(D = 65,536fortheIDT72T36105,131,072fortheIDT72T36115and262,144  
fortheIDT72T36125). SeeFigure11, WriteCycleandFullFlagTiming(IDT  
StandardMode),fortherelevanttiminginformation.  
In FWFT mode, the Input Ready (IR) function is selected. IRgoesLOW  
whenmemoryspaceisavailableforwritingindata. Whenthereisnolonger  
anyfreespaceleft,IRgoesHIGH,inhibitingfurtherwriteoperations. Ifnoreads  
areperformedafterareset(eitherMRSorPRS),IRwillgoHIGHafterD writes  
totheFIFO(D = 65,537fortheIDT72T36105,131,073fortheIDT72T36115  
and 262,145 for the IDT72T36125). See Figure 14, Write Timing (FWFT  
Mode),fortherelevanttiminginformation.  
TheIRstatusnotonlymeasuresthecontentsoftheFIFOmemory,butalso  
countsthepresenceofawordintheoutputregister. Thus,inFWFTmode,the  
totalnumberofwritesnecessarytodeassertIRisonegreaterthanneededto  
assert FF in IDT Standard mode.  
FF/IRissynchronousandupdatedontherisingedgeofWCLK.FF/IRare  
doubleregister-bufferedoutputs.  
Note,whenthedeviceisinRetransmitmode,thisflagisacomparisonofthe  
writepointertothemarkedlocation.Thisdiffersfromnormalmodewherethis  
flagisacomparisonofthewritepointertothereadpointer.  
PROGRAMMABLEALMOST-EMPTYFLAG(PAE)  
TheProgrammableAlmost-Emptyflag(PAE)willgoLOWwhentheFIFO  
reachesthealmost-emptycondition.InIDTStandardmode,PAEwillgoLOW  
when there are n words or less in the FIFO. The offset “n” is the empty offset  
value.ThedefaultsettingforthisvalueisstatedinthefootnoteofTable 1.  
In FWFT mode, the PAE will go LOW when there are n+1 words or less  
in the FIFO. The default setting for this value is stated in Table 2.  
See Figure 24, Synchronous Programmable Almost-Empty Flag Timing  
(IDT Standard and FWFT Mode), for the relevant timing information.  
IfasynchronousPAEconfigurationisselected,thePAEisassertedLOW  
ontheLOW-to-HIGHtransitionoftheReadClock(RCLK). PAEisresettoHIGH  
ontheLOW-to-HIGHtransitionoftheWriteClock(WCLK). IfsynchronousPAE  
configurationisselected,thePAEisupdatedontherisingedgeofRCLK. See  
Figure 26, Asynchronous Programmable Almost-Empty Flag Timing (IDT  
Standard and FWFT Mode).  
Note,whenthedeviceisinRetransmitmode,thisflagisacomparisonofthe  
writepointertothemarkedlocation.Thisdiffersfromnormalmodewherethis  
flagisacomparisonofthewritepointertothereadpointer.  
EMPTY FLAG ( EF/OR )  
Thisisadualpurposepin. IntheIDTStandardmode,theEmptyFlag(EF)  
functionisselected. WhentheFIFOisempty,EFwillgoLOW,inhibitingfurther  
readoperations. WhenEFisHIGH,theFIFOisnotempty.SeeFigure12,Read  
Cycle, Empty Flag and First Word Latency Timing (IDT Standard Mode), for  
therelevanttiminginformation.  
InFWFTmode,theOutputReady(OR)functionisselected.ORgoesLOW  
atthesametimethatthefirstwordwrittentoanemptyFIFOappearsvalidon  
theoutputs. ORstaysLOWaftertheRCLKLOWtoHIGHtransitionthatshifts  
thelastwordfromtheFIFOmemorytotheoutputs. ORgoesHIGHonlywith  
atrueread(RCLKwithREN=LOW). Thepreviousdatastaysattheoutputs,  
indicatingthelastwordwasread. FurtherdatareadsareinhibiteduntilORgoes  
LOWagain.SeeFigure15,ReadTiming(FWFTMode),fortherelevanttiming  
information.  
HALF-FULL FLAG ( HF )  
Thisoutputindicatesahalf-fullFIFO.TherisingWCLKedgethatfillstheFIFO  
beyondhalf-fullsetsHFLOW.TheflagremainsLOWuntilthedifferencebetween  
thewriteandreadpointersbecomeslessthanorequaltohalfofthetotaldepth  
ofthedevice;therisingRCLKedgethataccomplishesthisconditionsetsHF  
HIGH.  
InIDTStandardmode,ifnoreadsareperformedafterreset(MRSorPRS),  
HF will go LOW after (D/2 + 1) writes to the FIFO, where D = 65,536 for the  
IDT72T36105,131,072fortheIDT72T36115and262,144fortheIDT72T36125.  
In FWFT mode, if no reads are performed after reset (MRS or PRS), HF  
will go LOW after (D-1/2 + 2) writes to the FIFO, where D = 65,537 for the  
IDT72T36105,131,073fortheIDT72T36115and262,145fortheIDT72T36125.  
See Figure 27, Half-Full Flag Timing (IDT Standard and FWFT Modes),  
fortherelevanttiminginformation.BecauseHFisupdatedbybothRCLKand  
WCLK,itisconsideredasynchronous.  
EF/OR is synchronous and updated on the rising edge of RCLK.  
In IDT Standard mode, EF is a double register-buffered output. In FWFT  
mode,ORisatripleregister-bufferedoutput.  
ECHO READ CLOCK (ERCLK)  
PROGRAMMABLE ALMOST-FULL FLAG ( PAF )  
TheEchoReadClockoutputisprovidedinbothHSTLandLVTTLmode,  
selectableviaRHSTL.TheERCLKisafree-runningclockoutput,itwillalways  
follow the RCLK input regardless of REN and RCS.  
TheERCLKoutputfollowstheRCLKinputwithanassociateddelay. This  
delayprovidestheuserwithamoreeffectivereadclocksourcewhenreading  
datafromtheQnoutputs.Thisisespeciallyhelpfulathighspeedswhenvariables  
withinthedevicemaycausechangesinthedataaccesstimes. Thesevariations  
inaccesstimemaybecausedbyambienttemperature,supplyvoltage,device  
characteristics. The ERCLK output also compensates for any trace length  
delaysbetweentheQndataoutputsandreceivingdevicesinputs.  
The Programmable Almost-Full flag (PAF) will go LOW when the FIFO  
reaches the almost-full condition. In IDT Standard mode, if no reads are  
performedafterreset(MRS),PAFwillgoLOWafter(D - m)wordsarewritten  
totheFIFO.ThePAFwillgoLOWafter(65,536-m)writesfortheIDT72T36105,  
(131,072-m) writes for the IDT72T36115 and (262,144-m) writes for the  
IDT72T36125.Theoffsetmisthefulloffsetvalue.Thedefaultsettingforthis  
valueisstatedinthefootnoteofTable3.  
In FWFT mode, the PAF will go LOW after (65,537-m) writes for the  
IDT72T36105, (131,073-m) writes for the IDT72T36115 and (262,145-m)  
writesfortheIDT72T36125,wheremisthefulloffsetvalue.Thedefaultsetting  
for this value is stated in Table 4.  
26  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
Anyvariationseffectingthedataaccesstimewillalsohaveacorresponding  
effectontheERCLKoutputproducedbytheFIFOdevice,thereforetheERCLK  
outputleveltransitionsshouldalwaysbeatthesamepositionintimerelativeto  
thedataoutputs.Note,thatERCLKisguaranteedbydesigntobeslowerthan  
the slowest Qn, data output. Refer to Figure 4, Echo Read Clock and Data  
OutputRelationship,Figure28,EchoReadClock&ReadEnableOperation  
and Figure 29, Echo RCLK & Echo REN Operation for timing information.  
datafromtheQnoutputportathighspeeds.TheERENoutputiscontrolledby  
internallogicthatbehavesasfollows:TheERENoutputisactiveLOWforthe  
RCLK cycle that a new word is read out of the FIFO. That is, a rising edge of  
RCLKwillcauseERENtogoactive,LOWifbothRENandRCSareactive,LOW  
and the FIFO is NOT empty.  
SERIAL CLOCK (SCLK)  
Duringserialloadingoftheprogrammingflagoffsetregisters,arisingedge  
ontheSCLKinputisusedtoloadserialdatapresentontheSIinputprovided  
thattheSENinputisLOW.  
ECHO READ ENABLE (EREN)  
TheEchoReadEnableoutputisprovidedinbothHSTLandLVTTLmode,  
selectableviaRHSTL.  
DATAOUTPUTS(Q0-Qn)  
The EREN output is provided to be used in conjunction with the ERCLK  
outputandprovidesthereadingdevicewithamoreeffectiveschemeforreading  
(Q0-Q35)aredataoutputsfor36-bitwidedata,(Q0-Q17)aredataoutputs  
for 18-bit wide data or (Q0-Q8) are data outputs for 9-bit wide data.  
RCLK  
tERCLK  
tERCLK  
ERCLK  
tD  
tA  
Q
SLOWEST(3)  
5907 drw08  
NOTES:  
1. REN is LOW.  
2. tERCLK > tA, guaranteed by design.  
3. Qslowest is the data output with the slowest access time, tA.  
4. Time, tD is greater than zero, guaranteed by design.  
Figure 4. Echo Read Clock and Data Output Relationship  
27  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
D35-D27  
D26-D18  
D17-D9  
D8-D0  
BYTE ORDER ON INPUT PORT:  
Write to FIFO  
A
B
C
D
BYTE ORDER ON OUTPUT PORT:  
Q17-Q9  
Q35-Q27  
Q26-Q18  
Q8-Q0  
BE BM IW  
OW  
L
A
B
C
D
Read from FIFO  
X
L
L
(a) x36 INPUT to x36 OUTPUT  
Q17-Q9  
Q35-Q27  
Q35-Q27  
Q26-Q18  
Q26-Q18  
Q8-Q0  
BE BM IW  
OW  
L
1st: Read from FIFO  
2nd: Read from FIFO  
A
B
L
H
L
Q17-Q9  
Q8-Q0  
C
D
(b) x36 INPUT to x18 OUTPUT - BIG-ENDIAN  
Q17-Q9  
Q35-Q27  
Q26-Q18  
Q8-Q0  
BE BM IW  
OW  
L
1st: Read from FIFO  
2nd: Read from FIFO  
C
D
H
H
L
Q17-Q9  
Q35-Q27  
Q26-Q18  
Q8-Q0  
A
B
(c) x36 INPUT to x18 OUTPUT - LITTLE-ENDIAN  
Q17-Q9  
Q35-Q27  
Q26-Q18  
Q8-Q0  
BE BM IW  
OW  
H
A
1st: Read from FIFO  
2nd: Read from FIFO  
L
H
L
Q35-Q27  
Q35-Q27  
Q17-Q9  
Q17-Q9  
Q26-Q18  
Q26-Q18  
Q8-Q0  
B
Q8-Q0  
C
3rd: Read from FIFO  
4th: Read from FIFO  
Q35-Q27  
Q17-Q9  
Q26-Q18  
Q8-Q0  
D
(d) x36 INPUT to x9 OUTPUT - BIG-ENDIAN  
Q35-Q27  
Q8-Q0  
Q26-Q18  
Q26-Q18  
Q26-Q18  
Q26-Q18  
Q17-Q9  
BE BM IW  
OW  
H
D
1st: Read from FIFO  
H
H
L
Q35-Q27  
Q35-Q27  
Q17-Q9  
Q17-Q9  
Q17-Q9  
Q8-Q0  
C
2nd: Read from FIFO  
3rd: Read from FIFO  
Q8-Q0  
B
Q35-Q27  
Q8-Q0  
A
4th: Read from FIFO  
5907 drw09  
(e) x36 INPUT to x9 OUTPUT - LITTLE-ENDIAN  
Figure 5. Bus-Matching Byte Arrangement  
28  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
                                                                                     
36-BIT FIFO  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
BYTE ORDER ON INPUT PORT:  
D8-D0  
D35-D27  
D26-D18  
D26-D18  
D17-D9  
1st: Write to FIFO  
2nd: Write to FIFO  
A
B
D8-D0  
D35-D27  
D17-D9  
C
D
BYTE ORDER ON OUTPUT PORT:  
Q17-Q9  
Q35-Q27  
Q26-Q18  
Q8-Q0  
BM IW  
OW  
L
BE  
B
D
Read from FIFO  
Read from FIFO  
A
C
L
H
H
(a) x18 INPUT to x36 OUTPUT - BIG-ENDIAN  
Q17-Q9  
Q8-Q0  
Q35-Q27  
Q26-Q18  
BM IW  
OW  
L
BE  
D
B
C
A
H
H
H
(b) x18 INPUT to x36 OUTPUT - LITTLE-ENDIAN  
BYTE ORDER ON INPUT PORT:  
D8-D0  
D26-D18  
D26-D18  
D26-D18  
D26-D18  
D17-D9  
D17-D9  
D17-D9  
D17-D9  
D35-D27  
A
1st: Write to FIFO  
2nd: Write to FIFO  
D8-D0  
D35-D27  
D35-D27  
B
D8-D0  
3rd: Write to FIFO  
4th: Write to FIFO  
C
D35-D27  
D8-D0  
D
Q17-Q9  
Q26-Q18  
Q8-Q0  
BYTE ORDER ON OUTPUT PORT:  
Q35-Q27  
BE BM IW  
OW  
H
A
B
C
D
Read from FIFO  
L
H
H
(a) x9 INPUT to x36 OUTPUT - BIG-ENDIAN  
Q17-Q9  
Q26-Q18  
Q35-Q27  
Q8-Q0  
BM IW  
OW  
H
BE  
C
A
Read from FIFO  
D
B
H
H
H
(b) x9 INPUT to x36 OUTPUT - LITTLE-ENDIAN  
5907 drw10  
Figure 5. Bus-Matching Byte Arrangement (Continued)  
29  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
JTAGTIMINGSPECIFICATION  
tTCK  
t4  
t1  
t2  
TCK  
t3  
TDI/  
TMS  
tDS  
tDH  
TDO  
TDO  
tDO  
t6  
TRST  
5907 drw11  
Notes to diagram:  
t1 = tTCKLOW  
t2 = tTCKHIGH  
t
5
t3 = tTCKFALL  
t4 = tTCKRISE  
t5 = tRST (reset pulse width)  
t6 = tRSR (reset recovery)  
Figure 6. Standard JTAG Timing  
JTAG  
ACELECTRICALCHARACTERISTICS  
(vcc = 2.5V 5%; Tcase = 0°C to +85°C)  
Parameter  
Symbol  
Test  
Conditions  
Min. Max. Units  
SYSTEMINTERFACEPARAMETERS  
JTAGClockInputPeriod tTCK  
-
-
-
-
-
-
-
100  
40  
40  
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IDT72T36105  
IDT72T36115  
IDT72T36125  
JTAGClockHIGH  
JTAG Clock Low  
tTCKHIGH  
tTCKLOW  
tTCKRISE  
tTCKFALL  
tRST  
-
Parameter  
Symbol Test Conditions Min. Max. Units  
JTAGClockRiseTime  
JTAGClockFallTime  
JTAGReset  
5(1)  
5(1)  
-
DataOutput  
tDO(1)  
-
20  
-
ns  
ns  
ns  
-
DataOutputHold tDOH(1)  
0
50  
50  
DataInput  
tDS  
tDH  
trise=3ns  
tfall=3ns  
10  
10  
-
-
JTAG Reset Recovery  
tRSR  
-
NOTE:  
1. 50pf loading on external output signals.  
NOTE:  
1. Guaranteed by design.  
30  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
TheStandardJTAGinterfaceconsistsoffourbasicelements:  
JTAGINTERFACE  
Test Access Port (TAP)  
TAP controller  
Instruction Register (IR)  
Data Register Port (DR)  
Five additional pins (TDI, TDO, TMS, TCK and TRST) are provided to  
support the JTAG boundary scan interface. The IDT72T36105/72T36115/  
72T36125incorporatesthenecessarytapcontrollerandmodifiedpadcellsto  
implementtheJTAG facility.  
Thefollowingsectionsprovideabriefdescriptionofeachelement. Fora  
completedescriptionrefertotheIEEEStandardTestAccessPortSpecification  
(IEEE Std. 1149.1-1990).  
NotethatIDTprovidesappropriateBoundaryScanDescriptionLanguage  
programfilesforthesedevices.  
The Figure below shows the standard Boundary-Scan Architecture  
DeviceID Reg.  
Mux  
Boundary Scan Reg.  
Bypass Reg.  
TDO  
TDI  
T
A
clkDR, ShiftDR  
UpdateDR  
P
TMS  
TAP  
TCLK  
Cont-  
roller  
TRST  
Instruction Decode  
clklR, ShiftlR  
UpdatelR  
Instruction Register  
Control Signals  
5907 drw12  
Figure 7. Boundary Scan Architecture  
THETAPCONTROLLER  
TEST ACCESS PORT (TAP)  
TheTapcontrollerisasynchronousfinitestatemachinethatrespondsto  
TMSandTCLKsignalstogenerateclockandcontrolsignalstotheInstruction  
andDataRegistersforcaptureandupdateofdata.  
The Tap interface is a general-purpose port that provides access to the  
internaloftheprocessor. Itconsistsoffourinputports(TCLK,TMS,TDI,TRST)  
and one output port (TDO).  
31  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
1
0
Test-Logic  
Reset  
0
1
Select-  
IR-Scan  
1
1
Run-Test/  
Idle  
Select-  
DR-Scan  
0
0
1
1
Capture-DR  
Capture-IR  
0
0
0
0
Shift-DR  
Shift-IR  
1
1
1
1
Input = TMS  
Exit1-IR  
EXit1-DR  
0
0
0
0
Pause-DR  
Pause-IR  
1
1
Exit2-IR  
Exit2-DR  
0
0
1
1
Update-DR  
Update-IR  
1
0
1
0
5907 drw13  
NOTES:  
1. Five consecutive TCK cycles with TMS = 1 will reset the TAP.  
2. TAP controller does not automatically reset upon power-up. The user must provide a reset to the TAP controller (either by TRST or TMS).  
3. TAP controller must be reset before normal FIFO operations can begin.  
Figure 8. TAP Controller State Diagram  
Capture-IRInthiscontrollerstate,theshiftregisterbankintheInstruction  
RegisterparallelloadsapatternoffixedvaluesontherisingedgeofTCK.The  
lasttwosignificantbitsarealwaysrequiredtobe01”.  
Shift-IR In this controller state, the instruction register gets connected  
betweenTDIandTDO,andthecapturedpatterngetsshiftedoneachrisingedge  
ofTCK.TheinstructionavailableontheTDIpinisalsoshiftedintotheinstruction  
register.  
Exit1-IRThisisacontrollerstatewhereadecisiontoentereitherthePause-  
IRstateorUpdate-IRstateismade.  
Pause-IR This state is provided in order to allow the shifting of instruction  
registertobetemporarilyhalted.  
Exit2-DRThisisacontrollerstatewhereadecisiontoentereithertheShift-  
IRstateorUpdate-IRstateismade.  
Update-IRInthiscontrollerstate,theinstructionintheinstructionregisteris  
latchedintothelatchbankoftheInstructionRegisteroneveryfallingedgeof  
TCK.Thisinstructionalsobecomesthecurrentinstructiononceitislatched.  
Capture-DRInthiscontrollerstate,thedataisparallelloadedintothedata  
registersselectedbythecurrentinstructionontherisingedgeofTCK.  
Shift-DR, Exit1-DR, Pause-DR, Exit2-DR and Update-DR These  
controller states are similar to the Shift-IR, Exit1-IR, Pause-IR, Exit2-IR and  
Update-IRstatesintheInstructionpath.  
Refer to the IEEE Standard Test Access Port Specification (IEEE Std.  
1149.1)forthefullstatediagram  
AllstatetransitionswithintheTAPcontrolleroccurattherisingedgeofthe  
TCLKpulse. TheTMSsignallevel(0or1)determinesthestateprogression  
thatoccursoneachTCLKrisingedge.TheTAPcontrollertakesprecedence  
over the FIFO memory and must be reset after power up of the device. See  
TRSTdescriptionformoredetailsonTAPcontrollerreset.  
Test-Logic-ResetAlltestlogicisdisabledinthiscontrollerstateenablingthe  
normaloperationoftheIC.TheTAPcontrollerstatemachineisdesignedinsuch  
awaythat,nomatterwhattheinitialstateofthecontrolleris,theTest-Logic-Reset  
statecanbeenteredbyholdingTMSathighandpulsingTCKfivetimes.This  
is the reason why the Test Reset (TRST) pin is optional.  
Run-Test-IdleInthiscontrollerstate,thetestlogicintheICisactiveonlyif  
certaininstructionsarepresent.Forexample,ifaninstructionactivatestheself  
test,thenitwillbeexecutedwhenthecontrollerentersthisstate.Thetestlogic  
in the IC is idles otherwise.  
Select-DR-Scan This is a controller state where the decision to enter the  
DataPathortheSelect-IR-Scanstateismade.  
Select-IR-Scan This is a controller state where the decision to enter the  
InstructionPathismade.TheControllercanreturntotheTest-Logic-Resetstate  
otherwise.  
32  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
THE INSTRUCTION REGISTER  
Definetheserialtestdataregisterpaththatisusedtoshiftdatabetween  
TDI and TDO during data register scanning.  
TheInstructionregisterallowsaninstructiontobeshiftedinseriallyintothe  
processor at the rising edge of TCLK.  
TheInstructionisusedtoselectthetesttobeperformed, orthetestdata  
registertobeaccessed,orboth. Theinstructionshiftedintotheregisterislatched  
atthecompletionoftheshiftingprocesswhentheTAPcontrollerisatUpdate-  
IRstate.  
Theinstructionregistermustcontain4bitinstructionregister-basedcells  
whichcanholdinstructiondata. Thesemandatorycellsarelocatednearestthe  
serialoutputstheyaretheleastsignificantbits.  
TheInstructionRegisterisa4bitfield(i.e.IR3,IR2,IR1,IR0)todecode16  
differentpossibleinstructions. Instructionsaredecodedasfollows.  
Hex  
Instruction  
Function  
Value  
0x00  
0x02  
0x01  
0x03  
0x0F  
EXTEST  
IDCODE  
SAMPLE/PRELOAD  
HIGH-IMPEDANCE  
BYPASS  
SelectBoundaryScanRegister  
SelectChipIdentificationdataregister  
SelectBoundaryScanRegister  
JTAG  
SelectBypassRegister  
TESTDATAREGISTER  
JTAG Instruction Register Decoding  
TheTestDataregistercontainsthreetestdataregisters:theBypass,the  
Boundary Scan register and Device ID register.  
Theseregistersareconnectedinparallelbetweenacommonserialinput  
andacommonserialdataoutput.  
Thefollowingsectionsprovideabriefdescriptionofeachelement. Fora  
completedescription,refertotheIEEEStandardTestAccessPortSpecification  
(IEEE Std. 1149.1-1990).  
Thefollowingsectionsprovideabriefdescriptionofeachinstruction. For  
acompletedescriptionrefertotheIEEEStandardTestAccessPortSpecification  
(IEEE Std. 1149.1-1990).  
EXTEST  
TherequiredEXTESTinstructionplacestheICintoanexternalboundary-  
testmodeandselectstheboundary-scanregistertobeconnectedbetweenTDI  
and TDO. During this instruction, the boundary-scan register is accessed to  
drivetestdataoff-chipviatheboundaryoutputsandreceivetestdataoff-chip  
viatheboundaryinputs.Assuch,theEXTESTinstructionistheworkhorseof  
IEEE.Std1149.1,providingforprobe-lesstestingofsolder-jointopens/shorts  
andoflogicclusterfunction.  
TEST BYPASS REGISTER  
TheregisterisusedtoallowtestdatatoflowthroughthedevicefromTDI  
toTDO. Itcontainsasinglestageshiftregisterforaminimumlengthinserialpath.  
Whenthebypassregisterisselectedbyaninstruction,theshiftregisterstage  
is set to a logic zero on the rising edge of TCLK when the TAP controller is in  
theCapture-DRstate.  
The operation of the bypass register should not have any effect on the  
operationofthedeviceinresponsetotheBYPASSinstruction.  
IDCODE  
TheoptionalIDCODEinstructionallowstheICtoremaininitsfunctionalmode  
andselectstheoptionaldeviceidentificationregistertobeconnectedbetween  
TDIandTDO.Thedeviceidentificationregisterisa32-bitshiftregistercontaining  
information regarding the IC manufacturer, device type, and version code.  
Accessingthedeviceidentificationregisterdoesnotinterferewiththeoperation  
oftheIC.Also,accesstothedeviceidentificationregistershouldbeimmediately  
available,viaaTAPdata-scanoperation,afterpower-upoftheICorafterthe  
TAPhasbeenresetusingtheoptionalTRSTpinorbyotherwisemovingtothe  
Test-Logic-Resetstate.  
THE BOUNDARY-SCAN REGISTER  
TheBoundaryScanRegisterallowsserialdataTDIbeloadedintoorread  
outoftheprocessorinput/outputports. TheBoundaryScanRegisterisapart  
oftheIEEE1149.1-1990StandardJTAGImplementation.  
THE DEVICE IDENTIFICATION REGISTER  
The Device Identification Register is a Read Only 32-bit register used to  
specify the manufacturer, part number and version of the processor to be  
determinedthroughtheTAPinresponsetotheIDCODEinstruction.  
IDT JEDEC ID number is 0xB3. This translates to 0x33 when the parity  
isdroppedinthe11-bitManufacturerIDfield.  
SAMPLE/PRELOAD  
FortheIDT72T36105/72T36115/72T36125, thePartNumberfieldcon-  
tainsthefollowingvalues:  
TherequiredSAMPLE/PRELOADinstructionallowstheICtoremainina  
normalfunctionalmodeandselectstheboundary-scanregistertobeconnected  
betweenTDIandTDO.Duringthisinstruction,theboundary-scanregistercan  
beaccessedviaadatescanoperation,totakeasampleofthefunctionaldata  
enteringandleavingtheIC.Thisinstructionisalsousedtopreloadtestdatainto  
theboundary-scanregisterbeforeloadinganEXTESTinstruction.  
Device  
Part# Field  
0416  
IDT72T36105  
IDT72T36115  
IDT72T36125  
0415  
0414  
HIGH-IMPEDANCE  
31(MSB)  
Version (4 bits) Part Number (16-bit) Manufacturer ID (11-bit)  
0X0 0X33  
28 27  
12 11  
1 0(LSB)  
TheoptionalHigh-Impedanceinstructionsetsalloutputs(includingtwo-state  
aswellasthree-statetypes)ofanICtoadisabled(high-impedance)stateand  
selects the one-bit bypass register to be connected between TDI and TDO.  
Duringthisinstruction,datacanbeshiftedthroughthebypassregisterfromTDI  
toTDOwithoutaffectingtheconditionoftheICoutputs.  
1
IDT72T36105/72T36115/72T36125JTAGDeviceIdentificationRegister  
JTAG INSTRUCTION REGISTER  
BYPASS  
TheInstructionregisterallowsinstructiontobeseriallyinputintothedevice  
whentheTAPcontrollerisintheShift-IRstate. Theinstructionisdecodedto  
performthefollowing:  
The required BYPASS instruction allows the IC to remain in a normal  
functional mode and selects the one-bit bypass register to be connected  
between TDI and TDO. The BYPASS instruction allows serial data to be  
transferredthroughtheICfromTDItoTDOwithoutaffectingtheoperationof  
theIC.  
Selecttestdataregistersthatmayoperatewhiletheinstructionis  
current. Theothertestdataregistersshouldnotinterferewithchip  
operationandtheselecteddataregister.  
33  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
                                                                                     
36-BIT FIFO  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
tRS  
MRS  
t
RSR  
RSR  
t
RSS  
REN  
WEN  
t
tRSS  
tRSS  
tRSR  
FWFT/SI  
t
t
t
RSS  
tRSR  
LD  
RSS  
RSS  
FSEL0,  
FSEL1  
OW,  
IW, BM  
t
t
t
HRSS  
WHSTL  
RHSTL  
HRSS  
HRSS  
SHSTL  
BE  
t
RSS  
RSS  
RSS  
t
t
PFM  
IP  
RT  
t
RSS  
RSS  
t
SEN  
t
RSF  
If FWFT = HIGH, OR = HIGH  
If FWFT = LOW, EF = LOW  
EF/OR  
t
RSF  
If FWFT = LOW, FF = HIGH  
If FWFT = HIGH, IR = LOW  
FF/IR  
PAE  
t
t
RSF  
RSF  
PAF, HF  
t
RSF  
OE = HIGH  
OE = LOW  
Q0 - Qn  
5907 drw14  
NOTE:  
1. During Master Reset the High-Impedance control of the Qn data outputs is provided by OE only, RCS can be HIGH or LOW until the first rising edge of RCLK after Master Reset  
is complete.  
Figure 9. Master Reset Timing  
34  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
tRS  
PRS  
tRSS  
tRSR  
REN  
tRSS  
tRSR  
WEN  
RT  
tRSS  
tRSS  
SEN  
If FWFT = HIGH, OR = HIGH  
If FWFT = LOW, EF = LOW  
If FWFT = LOW, FF = HIGH  
If FWFT = HIGH, IR = LOW  
t
RSF  
EF/OR  
t
RSF  
FF/IR  
PAE  
t
RSF  
t
RSF  
PAF, HF  
t
RSF  
OE = HIGH  
OE = LOW  
Q0 - Qn  
5907 drw15  
NOTE:  
1. During Partial Reset the High-Impedance control of the Qn data outputs is provided by OE only, RCS can be HIGH or LOW until the first rising edge of RCLK after Master Reset  
is complete.  
Figure 10. Partial Reset Timing  
35  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
t
CLK  
t
CLKH  
t
CLKL  
NO WRITE  
NO WRITE  
WCLK  
2
1
(1)  
1
(1)  
2
t
SKEW1  
t
DH  
t
SKEW1  
tDS  
t
DH  
tDS  
DX+1  
DX  
D0 - Dn  
tWFF  
tWFF  
tWFF  
tWFF  
FF  
WEN  
RCLK  
tENS  
tENS  
t
ENH  
tENH  
REN  
RCS  
tENS  
tA  
tA  
Q0  
- Qn  
NEXT DATA READ  
DATA READ  
5907 drw16  
tRCSLZ  
NOTES:  
1. tSKEW1 is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that FF will go HIGH (after one WCLK cycle pus tWFF). If the time between the  
rising edge of the RCLK and the rising edge of the WCLK is less than tSKEW1, then the FF deassertion may be delayed one extra WCLK cycle.  
2. LD = HIGH, OE = LOW, EF = HIGH.  
3. WCS = LOW.  
Figure 11. Write Cycle and Full Flag Timing (IDT Standard Mode)  
tCLK  
tCLKH  
tCLKL  
1
2
RCLK  
REN  
tENH  
tENS  
tENS  
tENH  
tENH  
tENS  
NO OPERATION  
NO OPERATION  
tREF  
tREF  
tREF  
EF  
tA  
tA  
tA  
D0  
LAST WORD  
D1  
LAST WORD  
Q0 - Qn  
tOLZ  
tOHZ  
t
OLZ  
tOE  
OE  
WCLK  
WEN  
t
SKEW1(1)  
tENS  
tENH  
tENH  
tENS  
tWCSS  
tWCSH  
WCS  
tDS  
tDH  
tDH  
tDS  
D0  
D1  
D0 - Dn  
5907 drw17  
NOTES:  
1. tSKEW1 is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that EF will go HIGH (after one RCLK cycle plus tREF). If the time between the  
rising edge of WCLK and the rising edge of RCLK is less than tSKEW1, then EF deassertion may be delayed one extra RCLK cycle.  
2. LD = HIGH.  
3. First data word latency = tSKEW1 + 1*TRCLK + tREF.  
4. RCS is LOW.  
Figure 12. Read Cycle, Output Enable, Empty Flag and First Data Word Latency (IDT Standard Mode)  
36  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
                                                                                     
36-BIT FIFO  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
2
1
RCLK  
tENS  
REN  
RCS  
tENS  
tENS  
tENS  
tENH  
tREF  
tREF  
EF  
tRCSHZ  
tRCSHZ  
tA  
tA  
tRCSLZ  
tRCSLZ  
LAST DATA-1  
LAST DATA  
Q0 - Qn  
t
SKEW1(1)  
WCLK  
tENS  
tENH  
WEN  
tDS  
tDH  
Dn  
Dx  
5907 drw 18  
NOTES:  
1. tSKEW1 is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that EF will go HIGH (after one RCLK cycle plus tREF). If the time between the  
rising edge of WCLK and the rising edge of RCLK is less than tSKEW1, then EF deassertion may be delayed one extra RCLK cycle.  
2. LD = HIGH.  
3. First data word latency = tSKEW1 + 1*TRCLK + tREF.  
4. OE is LOW.  
Figure 13. Read Cycle and Read Chip Select (IDT Standard Mode)  
37  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
38  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
39  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
40  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
41  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
42  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
43  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
t
SCLK  
tSCKH  
t
SCKL  
SENS  
SCLK  
tSENH  
t
tENH  
SEN  
LD  
tLDS  
tLDS  
tLDH  
t
SDH  
t
SDS  
BIT 1  
BIT X(1)  
BIT X(1)  
BIT 1  
SI  
5907 drw25  
FULL OFFSET  
EMPTY OFFSET  
NOTE:  
1. X = 16 for the IDT72T36105, X = 17 for the IDT72T36115 and X = 18 for the IDT72T36125.  
Figure 20. Serial Loading of Programmable Flag Registers (IDT Standard and FWFT Modes)  
tCLK  
tCLKH  
tCLKL  
WCLK  
LD  
tLDH  
tLDS  
tLDH  
tENH  
t
ENS  
tENH  
WEN  
t
DS  
tDH  
t
DH  
PAF  
OFFSET  
PAE  
OFFSET  
D0 - Dn  
5907 drw26  
NOTE:  
1. This timing diagram illustrates programming with an input bus width of 36 bits.  
Figure 21. Parallel Loading of Programmable Flag Registers (IDT Standard and FWFT Modes)  
tCLK  
tCLKH  
tCLKL  
RCLK  
tLDH  
tLDH  
tLDH  
tLDS  
tLDS  
tLDS  
LD  
tENH  
tENH  
tENH  
t
ENS  
t
ENS  
tENS  
REN  
t
A
t
A
tA  
DATA IN OUTPUT REGISTER  
PAE OFFSET VALUE  
PAF OFFSET VALUE  
PAE OFFSET  
Q0 - Qn  
5907 drw27  
NOTES:  
1. OE = LOW.  
2. The timing diagram illustrates reading of offset registers with an output bus width of 36 bits.  
3. The offset registers cannot be read on consecutive RCLK cycles. The read must be disabled (REN = HIGH) for a minimum of one RCLK cycle in between register accesses.  
Figure 22. Parallel Read of Programmable Flag Registers (IDT Standard and FWFT Modes)  
44  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
                                                                                     
36-BIT FIFO  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
tCLKL  
tCLKL  
WCLK  
WEN  
PAF  
1
2
2
1
t
ENS  
tENH  
t
PAFS  
tPAFS  
D - m words in FIFO(2)  
D-(m+1) words  
in FIFO(2)  
D - (m +1) words in FIFO(2)  
t
SKEW2(3)  
RCLK  
tENH  
t
ENS  
5907 drw28  
REN  
NOTES:  
1. m = PAF offset.  
2. D = maximum FIFO depth.  
In IDT Standard mode: D = 65,536 for the IDT72T36105, 131,072 for the IDT72T36115 and 262,144 for the IDT72T36125.  
In FWFT mode: D = 65,537 for the IDT72T36105, 131,073 for the IDT72T36115 and 262,145 for the IDT72T36125.  
3. tSKEW2 is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that PAF will go HIGH (after one WCLK cycle plus tPAFS). If the time between the  
rising edge of RCLK and the rising edge of WCLK is less than tSKEW2, then the PAF deassertion time may be delayed one extra WCLK cycle.  
4. PAF is asserted and updated on the rising edge of WCLK only.  
5. Select this mode by setting PFM HIGH during Master Reset.  
Figure 23. Synchronous Programmable Almost-Full Flag Timing (IDT Standard and FWFT Modes)  
tCLKH  
tCLKL  
WCLK  
t
ENS  
tENH  
WEN  
PAE  
n words in FIFO(2)  
n + 1 words in FIFO(3)  
,
n words in FIFO(2)  
n + 1 words in FIFO(3)  
,
n + 1 words in FIFO(2)  
n + 2 words in FIFO(3)  
,
SKEW2(4)  
t
PAES  
t
PAES  
t
1
2
1
2
RCLK  
REN  
t
ENS  
tENH  
5907 drw29  
NOTES:  
1. n = PAE offset.  
2. For IDT Standard mode  
3. For FWFT mode.  
4. tSKEW2 is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that PAE will go HIGH (after one RCLK cycle plus tPAES). If the time between the  
rising edge of WCLK and the rising edge of RCLK is less than tSKEW2, then the PAE deassertion may be delayed one extra RCLK cycle.  
5. PAE is asserted and updated on the rising edge of WCLK only.  
6. Select this mode by setting PFM HIGH during Master Reset.  
7. RCS = LOW.  
Figure 24. Synchronous Programmable Almost-Empty Flag Timing (IDT Standard and FWFT Modes)  
45  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
tCLKH  
tCLKL  
WCLK  
tENS  
tENH  
WEN  
tPAFA  
D - m words  
in FIFO  
D - (m + 1) words  
in FIFO  
D - (m + 1) words in FIFO  
PAF  
RCLK  
REN  
tPAFA  
tENS  
5907 drw30  
NOTES:  
1. m = PAF offset.  
2. D = maximum FIFO Depth.  
In IDT Standard Mode: D = 65,536 for the IDT72T36105, 131,072 for the IDT72T36115 and 262,144 for the IDT72T36125.  
In FWFT Mode: D = 65,537 for the IDT72T36105, 131,073 for the IDT72T36115 and 262,145 for the IDT72T36125.  
3. PAF is asserted to LOW on WCLK transition and reset to HIGH on RCLK transition.  
4. Select this mode by setting PFM LOW during Master Reset.  
5. RCS = LOW.  
Figure 25. Asynchronous Programmable Almost-Full Flag Timing (IDT Standard and FWFT Modes)  
tCLKH  
tCLKL  
WCLK  
tENS  
tENH  
WEN  
tPAEA  
(2)  
(2)  
n words in FIFO  
,
n words in FIFO  
,
(2)  
n + 1 words in FIFO  
n + 2 words in FIFO  
,
(3)  
PAE  
RCLK  
REN  
(3)  
n + 1 words in FIFO  
n + 1 words in FIFO  
(3)  
tPAEA  
tENS  
5907 drw31  
NOTES:  
1. n = PAE offset.  
2. For IDT Standard Mode.  
3. For FWFT Mode.  
4. PAE is asserted LOW on RCLK transition and reset to HIGH on WCLK transition.  
5. Select this mode by setting PFM LOW during Master Reset.  
6. RCS = LOW.  
Figure 26. Asynchronous Programmable Almost-Empty Flag Timing (IDT Standard and FWFT Modes)  
46  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
tCLKH  
tCLKL  
WCLK  
tENH  
tENS  
WEN  
tHF  
D/2 + 1 words in FIFO(1),  
D/2 words in FIFO(1)  
,
D/2 words in FIFO(1)  
,
D-1  
HF  
[
+ 2]  
words in FIFO(2)  
D-1  
2
2
D-1  
[
+ 1  
]
words in FIFO(2)  
[
+ 1  
words in FIFO(2)  
]
2
tHF  
RCLK  
tENS  
REN  
5907 drw32  
NOTES:  
1. In IDT Standard mode: D = maximum FIFO depth. D = 65,536 for the IDT72T36105, 131,072 for the IDT72T36115 and 262,144 for the IDT72T36125.  
2. In FWFT mode: D = maximum FIFO depth. D = 65,537 for the IDT72T36105, 131,073 for the IDT72T36115 and 262,145 for the IDT72T36125.  
3. RCS = LOW.  
Figure 27. Half-Full Flag Timing (IDT Standard and FWFT Modes)  
47  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
48  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
WCLK  
tENS  
tENH  
WEN  
tDS  
t
DH  
tDS  
t
DH  
tDS  
tDH  
Wn+1  
Wn+2  
Wn+3  
D0 - Dn  
tSKEW1  
1
2
RCLK  
b
e
h
a
d
g
c
i
f
tERCLK  
ERCLK  
tENS  
tENH  
REN  
RCS  
tENS  
tCLKEN  
tCLKEN  
tCLKEN  
tCLKEN  
EREN  
Qn  
tA  
tA  
t
RCSLZ  
HIGH-Z  
Wn+1  
Wn+2  
Wn+3  
tREF  
tREF  
OR  
tA  
tA  
tA  
O/P  
Reg.  
Wn  
Last Word  
Wn+1  
Wn+2  
Wn+3  
5907 drw34  
NOTE:  
1. The O/P Register is the internal output register. Its contents are available on the Qn output bus only when RCS and OE are both active, LOW, that is the bus is not in High-  
Impedance state.  
2. OE is LOW.  
Cycle:  
a&b. At this point the FIFO is empty, OR is HIGH.  
RCS and REN are both disabled, the output bus is High-Impedance.  
c.  
Word Wn+1 falls through to the output register, OR goes active, LOW.  
RCS is HIGH, therefore the Qn outputs are High-Impedance. EREN goes LOW to indicate that a new word has been placed on the output register.  
EREN goes HIGH, no new word has been placed on the output register on this cycle.  
No Operation.  
RCS is LOW on this cycle, therefore the Qn outputs go to Low-Impedance and the contents of the output register (Wn+1) are made available.  
NOTE: In FWFT mode is important to take RCS active LOW at least one cycle ahead of REN, this ensures the word (Wn+1) currently in the output register is made  
available for at least one cycle.  
d.  
e.  
f.  
g.  
h.  
i.  
REN goes active LOW, this reads out the second word, Wn+2.  
EREN goes active LOW to indicate a new word has been placed into the output register.  
Word Wn+3 is read out, EREN remains active, LOW indicating a new word has been read out.  
NOTE: Wn+3 is the last word in the FIFO.  
This is the next enabled read after the last word, Wn+3 has been read out. OR flag goes HIGH and EREN goes HIGH to indicate that there is no new word available.  
Figure 29. Echo RCLK and Echo REN Operation (FWFT Mode Only)  
49  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
RCLK  
tENS  
tENH  
REN  
tA  
Qn  
W0  
W1  
tFFA  
FF  
tFFA  
tFFA  
tCYC  
WR  
Dn  
tCYH  
tDS  
t
DH  
W
D
WD+1  
5907 drw35  
NOTE:  
1. OE = LOW, WEN = LOW and RCS = LOW.  
Figure 30. Asynchronous Write, Synchronous Read, Full Flag Operation (IDT Standard Mode)  
1
2
RCLK  
tENS  
tENH  
REN  
tA  
tA  
Last Word  
W1  
W0  
Qn  
tREF  
tREF  
EF  
tCYL  
tSKEW  
WR  
tCYH  
tCYC  
tDH  
tDH  
tDS  
tDS  
W0  
W1  
Dn  
5907 drw36  
NOTE:  
1. OE = LOW, WEN = LOW and RCS = LOW.  
Figure 31. Asynchronous Write, Synchronous Read, Empty Flag Operation (IDT Standard Mode)  
50  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
                                                                                     
36-BIT FIFO  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
No Write  
1
WCLK  
WEN  
Dn  
2
DF+1  
tWFF  
DF  
tWFF  
FF  
tCYC  
tSKEW  
tAA  
tCYL  
tCYH  
RD  
Qn  
tAA  
Last Word  
WX  
WX+1  
5907 drw37  
NOTE:  
1. OE = LOW, RCS = LOW and REN = LOW.  
2. Asynchronous Read is available in IDT Standard Mode only.  
Figure 32. Synchronous Write, Asynchronous Read, Full Flag Operation (IDT Standard Mode)  
WCLK  
WEN  
Dn  
tENS  
tDS  
tENH  
tDH  
W0  
tEFA  
EF  
tEFA  
tRPE  
RD  
tCYH  
tAA  
Qn  
Last Word in Output Register  
W0  
5907 drw38  
NOTE:  
1. OE = LOW, REN = LOW and RCS = LOW.  
2. Asynchronous Read is available in IDT Standard Mode only.  
Figure 33. Synchronous Write, Asynchronous Read, Empty Flag Operation (IDT Standard Mode)  
51  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
tCYC  
tCYH  
tCYL  
WR  
Dn  
tDH  
tDH  
tDS  
W0  
W1  
RD  
Qn  
tAA  
tAA  
W1  
W0  
Last Word in O/P Register  
tRPE  
tEFA  
tEFA  
EF  
5907 drw39  
NOTES:  
1. OE = LOW, WEN = LOW, REN = LOW and RCS = LOW  
2. Asynchronous Read is available in IDT Standard Mode only.  
Figure 34. Asynchronous Write, Asynchronous Read, Empty Flag Operation (IDT Standard Mode)  
tCYC  
tCYH  
tCYL  
WR  
Dn  
tDH  
tDH  
tDS  
tDS  
Wy+1  
Wy  
tCYC  
tCYH  
tCYL  
RD  
Qn  
tAA  
tAA  
Wx  
Wx+1  
Wx+2  
tFFA  
tFFA  
FF  
5907 drw40  
NOTES:  
1. OE = LOW, WEN = LOW, REN = LOW and RCS = LOW.  
2. Asynchronous Read is available in IDT Standard Mode only.  
Figure 35. Asynchronous Write, Asynchronous Read, Full Flag Operation (IDT Standard Mode)  
52  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
avoided by creating composite flags, that is, ANDing EF of every FIFO, and  
separately ANDing FF of every FIFO. In FWFT mode, composite flags can  
be created by ORing OR of every FIFO, and separately ORing IR of every  
FIFO.  
Figure 36 demonstrates a width expansion using two IDT72T36105/  
72T36115/72T36125 devices. D0 - D35 fromeachdeviceforma72-bitwide  
inputbusandQ0-Q35fromeachdeviceforma72-bitwideoutputbus.Anyword  
widthcanbeattainedbyaddingadditionalIDT72T36105/72T36115/72T36125  
devices.  
OPTIONALCONFIGURATIONS  
WIDTH EXPANSION CONFIGURATION  
Word width may be increased simply by connecting together the control  
signalsofmultipledevices. Statusflagscanbedetectedfromanyonedevice.  
TheexceptionsaretheEFandFFfunctionsinIDTStandardmodeandtheIR  
andORfunctionsinFWFTmode. BecauseofvariationsinskewbetweenRCLK  
and WCLK, it is possible for EF/FF deassertion and IR/OR assertion to vary  
byonecyclebetweenFIFOs. InIDTStandardmode, suchproblemscanbe  
SERIAL CLOCK  
(SCLK)  
PARTIAL RESET (PRS)  
MASTER RESET (MRS)  
FIRST WORD FALL THROUGH/  
SERIAL INPUT (FWFT/SI)  
RETRANSMIT (RT)  
D
m+1 - D  
n
m + n  
m
n
D0 - Dm  
DATA IN  
READ CLOCK (RCLK)  
READ CHIP SELECT (RCS)  
WRITE CLOCK (WCLK)  
WRITE ENABLE (WEN)  
LOAD (LD)  
READ ENABLE (REN)  
IDT  
OUTPUT ENABLE (OE)  
PROGRAMMABLE (PAE)  
IDT  
72T36105  
72T36115  
72T36125  
72T36105  
72T36115  
72T36125  
#1  
FULL FLAG/INPUT READY (FF/IR)  
(1)  
EMPTY FLAG/OUTPUT READY (EF/OR) #1  
EMPTY FLAG/OUTPUT READY (EF/OR) #2  
(1)  
GATE  
FULL FLAG/INPUT READY (FF/IR) #2  
GATE  
FIFO  
#2  
m + n  
PROGRAMMABLE (PAF)  
HALF-FULL FLAG (HF)  
n
FIFO  
#1  
Qm+1 - Qn  
DATA OUT  
m
5907 drw41  
Q0 - Qm  
NOTES:  
1. Use an AND gate in IDT Standard mode, an OR gate in FWFT mode.  
2. Do not connect any output control signals directly together.  
3. FIFO #1 and FIFO #2 must be the same depth, but may be different word widths.  
Figure 36. Block Diagram of 65,536 x 72, 131,072 x 72 and 262,144 x 72 Width Expansion  
53  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
                                                                                     
36-BIT FIFO  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
FWFT/SI  
TRANSFER CLOCK  
FWFT/SI  
FWFT/SI  
WRITE CLOCK  
WRITE ENABLE  
READ CLOCK  
READ CHIP SELECT  
READ ENABLE  
WCLK  
WEN  
IR  
RCLK  
WCLK  
RCLK  
RCS  
REN  
IDT  
IDT  
OR  
WEN  
72T36105  
72T36115  
72T36125  
72T36105  
72T36115  
72T36125  
INPUT READY  
REN  
RCS  
OE  
OUTPUT READY  
IR  
OR  
OE  
OUTPUT ENABLE  
GND  
n
DATA OUT  
n
n
DATA IN  
Dn  
Qn  
Qn  
Dn  
5907 drw42  
Figure 37. Block Diagram of 131,072 x 36, 262,144 x 36 and 524,288 x 36 Depth Expansion  
DEPTH EXPANSION CONFIGURATION (FWFT MODE ONLY)  
TheIDT72T36105caneasilybeadaptedtoapplicationsrequiringdepths  
65,536,131,072fortheIDT72T36115and262,144fortheIDT72T36125with  
an18-bitbuswidth.InFWFTmode,theFIFOscanbeconnectedinseries(the  
data outputs of one FIFO connected to the data inputs of the next) with no  
externallogicnecessary. Theresultingconfigurationprovidesatotaldepth  
equivalenttothesumofthedepthsassociatedwitheachsingleFIFO. Figure  
37showsadepthexpansionusingtwoIDT72T36105/72T36115/72T36125  
devices.  
CareshouldbetakentoselectFWFTmodeduringMasterResetforallFIFOs  
in the depth expansion configuration. The first word written to an empty  
configurationwillpassfromoneFIFOtothenext("rippledown")untilitfinally  
appears at the outputs of the last FIFO in the chain – no read operation is  
necessarybuttheRCLKofeachFIFOmustbefree-running. Eachtimethe  
datawordappearsattheoutputsofoneFIFO,thatdevice'sORlinegoesLOW,  
enabling a write to the next FIFO in line.  
period. NotethatextracyclesshouldbeaddedforthepossibilitythatthetSKEW1  
specificationisnotmetbetweenWCLKandtransferclock,orRCLKandtransfer  
clock,fortheORflag.  
The"rippledown"delayisonlynoticeableforthefirstwordwrittentoanempty  
depthexpansionconfiguration. Therewillbenodelayevidentforsubsequent  
wordswrittentotheconfiguration.  
The first free location created by reading from a full depth expansion  
configurationwill"bubbleup"fromthelastFIFOtothepreviousoneuntilitfinally  
movesintothefirstFIFOofthechain. Eachtimeafreelocationiscreatedinone  
FIFOofthechain,thatFIFO'sIRlinegoesLOW,enablingtheprecedingFIFO  
to write a word to fill it.  
Forafullexpansionconfiguration,theamountoftimeittakesforIRofthefirst  
FIFOinthechaintogoLOWafterawordhasbeenreadfromthelastFIFO is  
the sum of the delays for each individual FIFO:  
(N – 1)*(3*transfer clock) + 2 TWCLK  
where N is the number of FIFOs in the expansion and TWCLK is the WCLK  
period. NotethatextracyclesshouldbeaddedforthepossibilitythatthetSKEW1  
specificationisnotmetbetweenRCLKandtransferclock,orWCLKandtransfer  
clock,fortheIRflag.  
TheTransferClocklineshouldbetiedtoeitherWCLKorRCLK,whichever  
isfaster. Boththeseactionsresultindatamoving,asquicklyaspossible,tothe  
endofthechainandfreelocationstothebeginningofthechain.  
Foranemptyexpansionconfiguration,theamountoftimeittakesforORof  
thelastFIFOinthechaintogoLOW(i.e.validdatatoappearonthelastFIFO's  
outputs)afterawordhasbeenwrittentothefirstFIFOisthesumofthedelays  
for each individual FIFO:  
(N – 1)*(4*transfer clock) + 3*TRCLK  
where N is the number of FIFOs in the expansion and TRCLK is the RCLK  
54  
IDT72T36105/115/125 2.5V TeraSync  
64K x 36, 128K x 36 and 256K x 36  
                                                                                     
36-BIT FIFO  
                                                                                     
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
ORDERINGINFORMATION  
XXXXX  
X
XX  
X
X
X
Process /  
Temperature  
Range  
Device Type  
Power  
Speed Package  
BLANK  
I(1)  
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
G(2)  
BB  
Green  
Plastic Ball Grid Array (BB240, BBG240)  
Commercial Only  
Commercial and Industrial  
4-4  
5
Clock Cycle Time (tCLK  
Speed in Nanoseconds  
)
Commercial Only  
Commercial Only  
6-7  
10  
Low Power  
L
72T36105 65,536 x 36 2.5V TeraSyncFIFO  
72T36115 131,072 x 36 2.5V TeraSyncFIFO  
72T36125 262,144 x 36 2.5V TeraSyncFIFO  
5907 drw43  
NOTES:  
1. Industrial temperature range product for 5ns speed is available as a standard device. All other speed grades are available by special order.  
2. Green parts available. For specific speeds and packages contact your sales office.  
ORDERABLEPARTINFORMATION  
Speed  
(ns)  
Pkg.  
Code  
Pkg.  
Temp.  
Grade  
Speed  
(ns)  
Pkg.  
Code  
Pkg.  
Type  
Temp.  
Grade  
Orderable Part ID  
Orderable Part ID  
Type  
PBGA  
PBGA  
PBGA  
PBGA  
PBGA  
PBGA  
PBGA  
PBGA  
4-4  
4-4  
5
72T36105L4-4BB  
72T36105L4-4BBG  
72T36105L5BB  
BB240  
BB240  
BB240  
BB240  
BB240  
BB240  
PBGA  
PBGA  
PBGA  
PBGA  
PBGA  
PBGA  
C
C
C
I
4-4  
4-4  
5
72T36125L4-4BB  
72T36125L4-4BBG  
72T36125L5BB  
BB240  
BBG240  
BB240  
C
C
C
I
5
72T36105L5BBI  
72T36105L6-7BB  
72T36105L10BB  
5
72T36125L5BBI  
72T36125L5BBG  
72T36125L5BBGI  
72T36125L6-7BB  
72T36125L10BB  
BB240  
6-7  
10  
C
C
5
BBG240  
BBG240  
BB240  
C
I
5
6-7  
10  
C
C
Speed  
(ns)  
Pkg.  
Code  
Pkg.  
Type  
Temp.  
Grade  
BB240  
Orderable Part ID  
4-4  
4-4  
5
72T36115L4-4BB  
72T36115L4-4BBG  
72T36115L5BB  
BB240  
BBG240  
BB240  
BB240  
BB240  
BB240  
PBGA  
PBGA  
PBGA  
PBGA  
PBGA  
PBGA  
C
C
C
I
5
72T36115L5BBI  
72T36115L6-7BB  
72T36115L10BB  
6-7  
10  
C
C
55  
DATASHEETDOCUMENTHISTORY  
05/30/2001  
07/09/2001  
09/07/2001  
09/11/2001  
11/19/2001  
11/29/2001  
01/15/2002  
03/04/2002  
06/05/2002  
02/11/2003  
03/03/2003  
09/02/2003  
01/11/2007  
02/04/2009  
06/06/2017  
pgs. 17, and 18.  
pgs. 1, 7, 8, 19, and 51.  
pgs. 1-53.  
pg. 8.  
pgs. 1, 9, 12, 40, and 41.  
pgs. 1, 40, and 41.  
pg. 42.  
pgs. 9, 10, and 29.  
pgs. 9, 10, and 14.  
pgs. 8, 9, and 33.  
pgs. 1, 11-13, 31, and 33-35.  
pgs. 7, 17, and 26.  
pgs. 1, 12, 13, and 57.  
pg. 57.  
pgs 1-56.  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
408-360-1753  
email:FIFOhelp@idt.com  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
56  

相关型号:

72T36125L6-7BB

2.5 VOLT HIGH-SPEED TeraSyncTM FIFO 36-BIT CONFIGURATIONS
IDT

72T36125L6-7BBG

2.5 VOLT HIGH-SPEED TeraSync FIFO 36-BIT CONFIGURATIONS
IDT

72T36125L6-7BBGI

2.5 VOLT HIGH-SPEED TeraSync FIFO 36-BIT CONFIGURATIONS
IDT

72T36135ML5BB

PBGA-240, Tray
IDT

72T36135ML5BBG

2.5V 18M-BIT HIGH-SPEED TeraSync
IDT

72T36135ML5BBGI

2.5V 18M-BIT HIGH-SPEED TeraSync
IDT

72T36135ML6BB

PBGA-240, Tray
IDT

72T36135ML6BBG

2.5V 18M-BIT HIGH-SPEED TeraSync
IDT

72T36135ML6BBGI

FIFO, 512KX36, 3.8ns, Synchronous, CMOS, PBGA240, 19 X 19 MM, 1 MM PITCH, GREEN, PLASTIC, BGA-240
IDT

72T36135ML6BBI

PBGA-240, Tray
IDT

72T3645L10BB

FIFO, 1KX36, 4.5ns, Synchronous/Asynchronous, CMOS, PBGA208
IDT

72T3645L10BBG

2.5 VOLT HIGH-SPEED TeraSync FIFO 36-BIT CONFIGURATIONS
IDT