813253AGT [IDT]

Clock Generator, 340MHz, PDSO24, 4.40 X 7.80 MM, 0.92 MM HEIGHT, TSSOP-24;
813253AGT
型号: 813253AGT
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Clock Generator, 340MHz, PDSO24, 4.40 X 7.80 MM, 0.92 MM HEIGHT, TSSOP-24

光电二极管
文件: 总22页 (文件大小:710K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
FEMTOCLOCK™ JITTER ATTENUATOR &  
FREQUENCY TRANSLATOR W/LVPECL OUTPUTS  
ICS813253  
GENERAL DESCRIPTION  
FEATURES  
Three differential LVPECL outputs  
The ICS813253 is a member of the HiperClockS™  
ICS  
family of high performance clock solutions from  
IDT. The ICS813253 is a PLL based synchronous  
clock generator that is optimized for Gigabit  
Ethernet and PCI-Express clock jitter attenuation  
One differential input supports the following input types:  
LVPECL, LVDS, LVHSTL, SSTL, HCSL  
HiPerClockS™  
Accepts input frequencies from 19.6MHz to 136MHz, includ-  
ing: 25MHz, 62.5MHz, 100MHz and 125MHz input clocks  
and frequency translation. The device contains two internal  
frequency multiplication stages that are cascaded in series.The  
first stage is a VCXO PLL that is optimized to provide  
reference clock jitter attenuation. The second stage is a  
FemtoClock frequency multiplier that provides the low  
jitter, high frequency Gigabit Ethernet or PCI-Express  
output clock.  
Attenuates the phase jitter of the input clock by using a low-  
cost pullable funamental mode VCXO crystal  
Outputs common Gigabit Ethernet or PCI-Express clock rates  
VCXO PLL bandwidth can be optimized for jitter attenuation  
and reference tracking using external loop filter connection  
Absolute pull range: 110ppm  
FemtoClock frequency multiplier provides low jitter,  
Predivider and output divider multiplication ratios are selected  
using device selection control pins. The multiplication ratios are  
optimized to support most common clock rates used in Gigabit  
Ethernet and PCI-Express applications. The VCXO requires  
the use of an external, inexpensive pullable crystal. The VCXO  
uses external passive loop filter components which allows  
configuration of the PLL loop bandwidth and damping  
characteristics.  
high frequency output  
FemtoClock range: 490MHz - 680MHz  
RMS phase jitter @ 156.25MHz, using a 25MHz crystal  
(1.875MHz - 20MHz): 0.37ps (typical)  
Full 3.3Vsupply, or 3.3V Core/2.5V output supply  
0°C to 70°C ambient operating temperature  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
OE  
LF  
VCCA  
VCC  
VCCO  
nQ0  
Q0  
PSEL0  
VEE  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
PIN ASSIGNMENT  
VCCO  
nQ2  
Q2  
nQ1  
Q1  
ICS813253  
24-Lead TSSOP  
4.40mm x 7.8mm x 0.92mm  
package body  
FSEL0  
VEE  
G Package  
Top View  
PSEL1  
9
16  
15  
14  
13  
FSEL1  
nBypass  
CLK  
XTAL_OUT  
XTAL_IN  
VEE  
10  
11  
12  
nCLK  
BLOCK DIAGRAM  
External  
Loop Filter Input  
Q0  
Pullup  
nBypass  
nQ0  
Q1  
0
Output  
Divider  
2, 4, 5, 25  
Pulldown  
CLK  
FemtoClock  
Frequency  
Multiplier x25  
Pre-Divider  
1, 2.5,  
Phase  
Detector  
VCXO  
1
Pullup/Pulldown  
nCLK  
4, 5  
nQ1  
Q2  
Pullup  
PSEL0  
Pullup  
Pullup  
VCXO Jitter Attenuation PLL  
PSEL1  
FSEL0  
nQ2  
Pullup  
Pullup  
FSEL1  
OE  
IDT/ ICSJITTER ATTENUATOR/FREQUENCY TRANSLATOR  
1
ICS813253AG REV. A JANUARY 5, 2007  
ICS813253  
FEMTOCLOCK™ JITTER ATTENUATOR & FREQUENCY TRANSLATOR W/LVPECL OUTPUTS  
PRELIMINARY  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Analog  
Input/Output  
Description  
1
LF  
Loop filter connection node pin.  
2
3
VCCA  
VCC  
Power  
Analog supply pin.  
Power  
Power  
Output  
Core power supply pin.  
4, 23  
5, 6  
VCCO  
Output power supply pins.  
nQ0, Q0  
Differential clock outputs. LVPECL interface levels.  
7,  
9
PSEL0,  
PSEL1  
Input  
Power  
Input  
Pullup  
Pre-divider select pins. See Table 3A.  
8, 12, 17  
VEE  
Negative supply pins.  
10,  
11  
XTAL_OUT,  
XTAL_IN  
VCXO crystal oscillator interface. XTAL_IN is the input.  
XTAL_OUT is the output.  
Pullup/  
Pulldown  
13  
nCLK  
Input  
Inverting differential clock input. VCC/2 bias voltage when left floating.  
14  
15  
CLK  
Input  
Input  
Pulldown Non-inverting differential clock input.  
nBypass  
Pullup  
Pullup  
PLL Bypass control pin. See Table 3D.  
Select pins. See Table 3B.  
16,  
18  
FSEL1,  
FSEL0  
Input  
19, 20  
21, 22  
Q1, nQ1  
Q2, nQ2  
Output  
Output  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Output enable. When logic LOW, the clock outputs are HiZ.  
When logic HIGH, the clock outputs are enabled.  
LVCMOS/LVTTL interface levels. See Table 3C.  
24  
OE  
Input  
Pullup  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
CIN  
Input Capacitance  
4
pF  
k  
kΩ  
RPULLDOWN Input Pulldown Resistor  
RPULLUP Input Pullup Resistor  
51  
51  
TABLE 3A. PRE-DIVIDER FUNCTION TABLE  
Inputs  
TABLE 3B. FSEL FUNCTION TABLE  
Inputs  
Output Divider  
Function  
FSEL1  
FSEL0  
PSEL1  
PSEL0  
Pre-divider Function  
0
0
1
1
0
1
0
1
÷2  
÷4  
0
0
÷1  
0
1
1
1
0
1
÷2.5  
÷4  
÷5  
÷25  
÷5  
IDT/ ICSJITTER ATTENUATOR/FREQUENCY TRANSLATOR  
2
ICS813253AG REV. A JANUARY 5, 2007  
ICS813253  
FEMTOCLOCK™ JITTER ATTENUATOR & FREQUENCY TRANSLATOR W/LVPECL OUTPUTS  
PRELIMINARY  
TABLE 3C. OE FUNCTION TABLE  
Input  
OE  
0
Clock Outputs  
Q0:Q2  
nQ0:nQ2  
HIGH  
LOW  
1
Enabled  
Enabled  
TABLE 3D. BYPASS FUNCTION TABLE  
nBypass Input  
Operation  
0
VCXO jitter attenuation PLL and FemtoClock multiplier bypassed. Input passed directly to N divider.  
Normal operation mode.  
1 (default)  
TABLE 3E. FREQUENCY FUNCTION TABLE  
Input  
VCXO  
Frequency  
(MHz)  
FemtoClock  
Frequency  
(MHz)  
Output  
Frequency  
(MHz)  
Frequency  
(MHz)  
Input  
Divider  
Output  
Divider  
PSEL1:0  
FSEL1:0  
25  
00  
1
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
20  
20  
20  
20  
25  
25  
25  
25  
625  
625  
625  
625  
625  
625  
625  
625  
625  
625  
625  
625  
500  
500  
500  
500  
625  
625  
625  
625  
00  
2
312.5  
156.25  
125  
25  
00  
00  
00  
01  
01  
01  
01  
10  
10  
10  
10  
11  
11  
11  
11  
11  
11  
11  
11  
1
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
4
25  
1
5
25  
1
25  
2
25  
62.5  
62.5  
62.5  
62.5  
100  
100  
100  
100  
100  
100  
100  
100  
125  
125  
125  
125  
2.5  
2.5  
2.5  
2.5  
4
312.5  
156.25  
125  
4
5
25  
2
25  
312.5  
156.25  
125  
4
4
4
5
4
25  
2
25  
5
250  
5
4
125  
5
5
100  
5
25  
2
20  
5
312.5  
156.25  
125  
5
4
5
5
5
25  
25  
IDT/ ICSJITTER ATTENUATOR/FREQUENCY TRANSLATOR  
3
ICS813253AG REV. A JANUARY 5, 2007  
ICS813253  
FEMTOCLOCK™ JITTER ATTENUATOR & FREQUENCY TRANSLATOR W/LVPECL OUTPUTS  
PRELIMINARY  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, VCC  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device. These ratings are stress specifications only. Functional op-  
eration of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not  
implied. Exposure to absolute maximum rating conditions for ex-  
tended periods may affect product reliability.  
Inputs, V  
-0.5V to VCC + 0.5V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, θ  
70°C/W (0 mps)  
-65°C to 150°C  
JA  
Storage Temperature, T  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5ꢀ, TA=0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical  
Maximum Units  
VCC  
VCCA  
VCCO  
IEE  
Core Supply Voltage  
3.135  
VCC – 0.12  
3.135  
3.3  
3.3  
3.3  
3.465  
VCC  
V
V
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
Output Supply Current  
3.465  
132  
12  
V
mA  
mA  
mA  
ICCA  
ICCO  
19  
TABLE 4B. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = 3.3V 5ꢀ, VCCO = 2.5V 5ꢀ, TA=0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VCC  
VCCA  
VCCO  
IEE  
Core Supply Voltage  
3.135  
VCC – 0.12  
2.375  
3.3  
3.3  
2.5  
3.465  
VCC  
V
V
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
Output Supply Current  
2.625  
132  
12  
V
mA  
mA  
mA  
ICCA  
ICCO  
19  
TABLE 4C. LVCMOS/LVTTL DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VIH  
VIL  
IIH  
Input High Voltage  
2
VCC + 0.3  
V
V
Input Low Voltage  
Input High Current  
Input Low Current  
-0.3  
0.8  
5
VCC = VIN = 3.465V  
µA  
µA  
IIL  
VCC = 3.465V, VIN = 0V  
-150  
IDT/ ICSJITTER ATTENUATOR/FREQUENCY TRANSLATOR  
4
ICS813253AG REV. A JANUARY 5, 2007  
ICS813253  
FEMTOCLOCK™ JITTER ATTENUATOR & FREQUENCY TRANSLATOR W/LVPECL OUTPUTS  
PRELIMINARY  
TABLE 4D. DIFFERENTIAL DC CHARACTERISTICS, VCC = VCCA = 3.3V 5ꢀ, TA=0°C TO 70°C  
Symbol Parameter  
Test Conditions  
VIN = VCC = 3.465V  
VIN = 0V, VCC = 3.465V  
Minimum Typical Maximum Units  
IIH  
Input High Current nCLK, CLK  
150  
µA  
µA  
µA  
V
nCLK  
CLK  
-150  
-5  
IIL  
Input Low Current  
V
IN = 0V, VCC = 3.465V  
VPP  
Peak-to-Peak Input Voltage  
0.15  
1.3  
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
VEE + 0.5  
VCC - 0.85  
V
NOTE 1: Common mode voltage is defined as VIH.  
NOTE 2: For single ended applications, the maximum input voltage for CLK, nCLK is VCC + 0.3V.  
TABLE 4E. LVPECL DC CHARACTERISTICS, VCC = VCCA = 3.3V 5ꢀ, VCCO = 3.3V 5ꢀ OR 2.5V 5ꢀ, TA=0°C TO 70°C  
Symbol  
VOH  
Parameter  
Test Conditions  
Minimum  
VCCO - 1.4  
VCCO - 2.0  
0.6  
Typical  
Maximum Units  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Output Voltage Swing  
VCCO - 0.9  
VCCO - 1.7  
1.0  
V
V
V
VOL  
VSWING  
NOTE 1: Outputs terminated with 50to VCCO - 2V.  
TABLE 5A. AC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5ꢀ, TA=0°C TO 70°C  
Symbol Parameter  
Test Conditions  
PSEL = ÷1  
PSEL = ÷2.5  
PSEL = ÷4  
PSEL = ÷5  
FSEL = ÷2  
FSEL = ÷4  
FSEL = ÷5  
FSEL = ÷25  
Minimum Typical Maximum Units  
19.6  
49  
27.2  
68  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
fIN  
Input Frequency  
78.4  
98  
108.8  
136  
340  
170  
136  
27.2  
245  
122.5  
98  
fOUT  
Output Frequency  
19.6  
156.25MHz, 25MHz crystal  
Integration Range:  
RMS Phase Jitter (Random);  
NOTE 1  
tjit(Ø)  
0.37  
ps  
1.875MHz - 20MHz  
tR / tF  
tjit(cc)  
tjit(per)  
tsk(o)  
odc  
Output Rise/Fall Time  
Cycle-to-Cycle Jitter; NOTE 2, 3  
Period Jitter; NOTE 4  
Output Skew; NOTE 3, 5  
Output Duty Cycle  
20ꢀ to 80ꢀ  
400  
8
800  
40  
3
ps  
ps  
ps  
ps  
1
60  
52  
48  
tLOCK  
PLL Lock Time  
ms  
NOTE 1: Please refer to the Phase Noise Plot.  
NOTE 2: Outputs terminated with 50to VCCO - 2V.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 4: Jitter performance using crystal inputs.  
NOTE 5: Defined as skew between outputs at the same supply voltage and with equal load condtions.  
Measured at the output differential cross points.  
IDT/ ICSJITTER ATTENUATOR/FREQUENCY TRANSLATOR  
5
ICS813253AG REV. A JANUARY 5, 2007  
ICS813253  
FEMTOCLOCK™ JITTER ATTENUATOR & FREQUENCY TRANSLATOR W/LVPECL OUTPUTS  
PRELIMINARY  
TABLE 5B. AC CHARACTERISTICS, VCC = VCCA = 3.3V 5ꢀ, VCCO = 2.5V 5ꢀ, TA=0°C TO 70°C  
Symbol Parameter  
Test Conditions  
PSEL = ÷1  
PSEL = ÷2.5  
PSEL = ÷4  
PSEL = ÷5  
FSEL = ÷2  
FSEL = ÷4  
FSEL = ÷5  
FSEL = ÷25  
Minimum Typical Maximum Units  
19.6  
49  
27.2  
68  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
fIN  
Input Frequency  
78.4  
98  
108.8  
136  
340  
170  
136  
27.2  
245  
122.5  
98  
fOUT  
Output Frequency  
19.6  
156.25MHz, 25MHz crystal  
Integration Range:  
RMS Phase Jitter (Random);  
NOTE 1  
tjit(Ø)  
0.35  
ps  
1.875MHz - 20MHz  
tR / tF  
tjit(cc)  
tjit(per)  
tsk(o)  
odc  
Output Rise/Fall Time  
Cycle-to-Cycle Jitter; NOTE 2, 3  
Period Jitter; NOTE 4  
Output Skew; NOTE 3, 5  
Output Duty Cycle  
20ꢀ to 80ꢀ  
350  
7.5  
0.5  
700  
40  
ps  
ps  
ps  
ps  
2.5  
60  
48  
52  
tLOCK  
PLL Lock Time  
ms  
NOTE 1: Please refer to the Phase Noise Plot.  
NOTE 2: Outputs terminated with 50to VCCO - 2V.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 4: Jitter performance using crystal inputs.  
NOTE 5: Defined as skew between outputs at the same supply voltage and with equal load condtions.  
Measured at the output differential cross points.  
IDT/ ICSJITTER ATTENUATOR/FREQUENCY TRANSLATOR  
6
ICS813253AG REV. A JANUARY 5, 2007  
ICS813253  
FEMTOCLOCK™ JITTER ATTENUATOR & FREQUENCY TRANSLATOR W/LVPECL OUTPUTS  
PRELIMINARY  
TYPICAL PHASE NOISE AT 156.25MHZ (3.3V/3.3V)  
156.25MHz  
RMS Phase Jitter (Random)  
1.875MHz to 20MHz = 0.37ps (typical)  
OFFSET FREQUENCY (HZ)  
TYPICAL PHASE NOISE AT 156.25MHZ (3.3V/2.5V)  
156.25MHz  
RMS Phase Jitter (Random)  
1.875MHz to 20MHz = 0.35ps (typical)  
OFFSET FREQUENCY (HZ)  
IDT/ ICSJITTER ATTENUATOR/FREQUENCY TRANSLATOR  
7
ICS813253AG REV. A JANUARY 5, 2007  
ICS813253  
FEMTOCLOCK™ JITTER ATTENUATOR & FREQUENCY TRANSLATOR W/LVPECL OUTPUTS  
PRELIMINARY  
PARAMETER MEASUREMENT INFORMATION  
2V  
2.8V 0.04V  
2V  
2V  
2.8V 0.04V  
SCOPE  
VCC,  
VCCO  
Qx  
VCC  
SCOPE  
Qx  
VCCO  
VCCA  
VCCA  
LVPECL  
nQx  
LVPECL  
VEE  
nQx  
VEE  
-1.3V 0.165V  
-0.5V 0.125V  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
3.3V CORE/2.5V OUTPUT LOAD AC TEST CIRCUIT  
VCC  
Phase Noise Plot  
nCLK  
VPP  
VCMR  
Cross Points  
CLK  
VEE  
Phase Noise Mask  
Offset Frequency  
f1  
f2  
RMS Jitter = Area Under the Masked Phase Noise Plot  
RMS PHASE JITTER  
DIFFERENTIAL INPUT LEVEL  
VOH  
VREF  
nQ0:nQ2  
Q0:Q2  
VOL  
tcycle n  
tcycle n+1  
1σ contains 68.26ꢀ of all measurements  
2σ contains 95.4ꢀ of all measurements  
3σ contains 99.73ꢀ of all measurements  
4σ contains 99.99366ꢀ of all measurements  
6σ contains (100-1.973x10-7)ꢀ of all measurements  
tjit(cc) = tcycle n – tcycle n+1  
1000 Cycles  
Histogram  
Reference Point  
(Trigger Edge)  
Mean Period  
(First edge after trigger)  
CYCLE-TO-CYCLE JITTER  
PERIOD JITTER  
IDT/ ICSJITTER ATTENUATOR/FREQUENCY TRANSLATOR  
8
ICS813253AG REV. A JANUARY 5, 2007  
ICS813253  
FEMTOCLOCK™ JITTER ATTENUATOR & FREQUENCY TRANSLATOR W/LVPECL OUTPUTS  
PRELIMINARY  
nQ0:nQ2  
Q0:Q2  
nFOUTx  
FOUTx  
tPW  
tPERIOD  
nFOUTy  
FOUTy  
tPW  
odc =  
x 100ꢀ  
tsk(o)  
tPERIOD  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
OUTPUT SKEW  
80ꢀ  
tF  
80ꢀ  
tR  
VSWING  
20ꢀ  
Clock  
Outputs  
20ꢀ  
OUTPUT RISE/FALL TIME  
IDT/ ICSJITTER ATTENUATOR/FREQUENCY TRANSLATOR  
9
ICS813253AG REV. A JANUARY 5, 2007  
ICS813253  
FEMTOCLOCK™ JITTER ATTENUATOR & FREQUENCY TRANSLATOR W/LVPECL OUTPUTS  
PRELIMINARY  
APPLICATION INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS813253 provides  
separate power supplies to isolate any high switching noise  
3.3V  
VCC  
.01µF  
.01µF  
from the outputs to the internal PLL. VCC, VCCA, and VCCO  
should be individually connected to the power supply plane  
10Ω  
through vias, and bypass capacitors should be used for each  
pin. To achieve optimum jitter performance, power supply iso-  
lation is required. Figure 1 illustrates how a 10resistor along  
with a 10mF and a .01mF bypass capacitor should be con-  
nected to each VCCA pin.  
VCCA  
10 µF  
FIGURE 1. POWER SUPPLY FILTERING  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
The ratio of R1 and R2 might need to be adjusted to position  
the V_REF in the center of the input voltage swing. For  
Figure 2 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF ~ V /2 is  
CC  
example, if the input clock swing is only 2.5V and V = 3.3V,  
V_REF should be 1.25V and R2/R1 = 0.609.  
generated by the bias resistors R1, R2 and C1. This bias  
circuit should be located as close as possible to the input pin.  
CC  
VCC  
R1  
1K  
Single Ended Clock Input  
V_REF  
CLK  
nCLK  
C1  
0.1u  
R2  
1K  
FIGURE 2. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
IDT/ ICSJITTER ATTENUATOR/FREQUENCY TRANSLATOR  
10  
ICS813253AG REV. A JANUARY 5, 2007  
ICS813253  
FEMTOCLOCK™ JITTER ATTENUATOR & FREQUENCY TRANSLATOR W/LVPECL OUTPUTS  
PRELIMINARY  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
INPUTS:  
CRYSTAL INPUT:  
OUTPUTS:  
LVPECL OUTPUT  
For applications not requiring the use of the crystal oscillator  
input, both XTAL_IN and XTAL_OUT can be left floating. Though  
not required, but for additional protection, a 1kresistor can be  
tied from XTAL_IN to ground.  
All unused LVPECL outputs can be left floating. We recommend  
that there is no trace attached. Both sides of the differential output  
pair should either be left floating or terminated.  
CLK/nCLK INPUT:  
For applications not requiring the use of the differential input,  
both CLK and nCLK can be left floating.Though not required, but  
for additional protection, a 1kresistor can be tied from CLK to  
ground.  
LVCMOS CONTROL PINS:  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional  
protection. A 1kresistor can be used.  
TERMINATION FOR 3.3V LVPECL OUTPUT  
The clock layout topology shown below is a typical termination  
for LVPECL outputs. The two different layouts mentioned are rec-  
ommended only as guidelines.  
transmission lines. Matched impedance techniques should be  
used to maximize operating frequency and minimize signal dis-  
tortion. Figures 3A and 3B show two different layouts which are  
recommended only as guidelines. Other suitable clock layouts  
may exist and it would be recommended that the board design-  
ers simulate to guarantee compatibility across all printed circuit  
and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must be  
used for functionality. These outputs are designed to drive 50Ω  
3.3V  
Zo = 50  
125Ω  
125Ω  
FOUT  
FIN  
Z
o = 50Ω  
o = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
Z
VCC - 2V  
1
RTT =  
Zo  
RTT  
84Ω  
84Ω  
((VOH + VOL) / (VCC – 2)) – 2  
FIGURE 3A. LVPECL OUTPUT TERMINATION  
FIGURE 3B. LVPECL OUTPUT TERMINATION  
IDT/ ICSJITTER ATTENUATOR/FREQUENCY TRANSLATOR  
11  
ICS813253AG REV. A JANUARY 5, 2007  
ICS813253  
FEMTOCLOCK™ JITTER ATTENUATOR & FREQUENCY TRANSLATOR W/LVPECL OUTPUTS  
PRELIMINARY  
TERMINATION FOR 2.5V LVPECL OUTPUT  
Figure 4A and Figure 4B show examples of termination for 2.5V  
LVPECL driver. These terminations are equivalent to terminating  
50to V - 2V. For V = 2.5V, the V - 2V is very close to ground  
level. The R3 in Figure 4B can be eliminated and the termination  
is shown in Figure 4C.  
CC  
CC  
CC  
2.5V  
VCC=2.5V  
2.5V  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
R1  
R3  
250  
250  
+
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
Zo = 50 Ohm  
-
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
2,5V LVPECL  
Driv er  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 4A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
FIGURE 4B. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
+
Zo = 50 Ohm  
-
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
FIGURE 4C. 2.5V LVPECL TERMINATION EXAMPLE  
IDT/ ICSJITTER ATTENUATOR/FREQUENCY TRANSLATOR  
12  
ICS813253AG REV. A JANUARY 5, 2007  
ICS813253  
FEMTOCLOCK™ JITTER ATTENUATOR & FREQUENCY TRANSLATOR W/LVPECL OUTPUTS  
PRELIMINARY  
DESCRIPTION OF THE PLL STAGES  
The ICS813253 is a two stage device, a VCXO PLL followed by  
a low phase noise FemtoClock frequency multiplier. The VCXO  
uses an external pullable crystal which can be pulled 110ppm  
by the VCXO PLL circuitry to phase lock it to the input reference  
frequency.  
To prevent jitter on the clock output due to modulation of the  
VCXO PLL by the phase detector frequency, the following general  
rule should be observed:  
ƒ (Phase Detector)  
NBW (VCXO PLL) ≤  
20  
VCXO PLL LOOP RESPONSE CONSIDERATIONS  
ƒ(Phase Detector) = Input Frequency ÷ Pre-Divider)  
The PLL loop damping factor is determined by:  
Loop response characteristics of the VCXO PLL is affected by  
the VCXO feedback divider value (bandwidth and damping  
factor), and by the external loop filter components (bandwidth,  
nd  
damping factor, and 2 frequency response). A practical range  
of VCXO PLL bandwidth is from about 1Hz to about 1kHz. The  
setting of VCXO PLL bandwidth and damping factor is covered  
later in this document. A PC based PLL bandwidth calculator is  
also under development. For assistance with loop bandwidth  
suggestions or value calculation, please contact Idt applications.  
RS  
2
ICP x CS x KO  
DF = x  
Feedback Divider  
WHERE:  
CS = Value of capacitor CS in loop filter in Farads  
Table 3E shows frequency translation configuration examples.  
EXTERNAL VCXO PLL COMPONENTS  
Capacitors with low microphonic sensitivity should be used. PPS  
film type capacitors are one type that perform well in this  
environment. Below 5Hz, shielding should be considered to  
prevent excessive phase wander (low frequency phase jitter or  
clock phase deviation).  
In general, the loop damping factor should be 0.7 or greater to  
ensure output stability. A higher damping factor will create less  
peaking in the passband. A higher damping factor may also  
increase lock time and output clock jitter when there is excess  
digital noise in the system application, due to the reduced ability  
of the PLL to respond to and therefore compensate for phase  
noise ingress.  
SETTING THE VCXO PLL LOOP RESPONSE  
The VCXO PLL loop response is determined both by fixed device  
characteristics and by other characterizes set by the user. This  
includes the values of RS, CS, CP and RSET as shown in the External  
VCXO PLL Components figure on this page.  
The external crystal devices and loop filter components should  
be kept close to the device. Loop filter and crystal PCB  
connection traces should be kept short and well separated from  
each other and from other signal traces. Other signal traces  
shouldnot run underneath the device, the loop filter or crystal  
components.  
The VCXO PLL loop bandwidth is approximated by:  
RS x ICP x KO  
NBW (VCXO PLL) =  
2π x Feedback Divider  
WHERE:  
RS = Value of resistor RS in loop filter in Ohms  
ICP = Charge pump current in amps (see table on page 12)  
KO = VCXO Gain in Hz/V  
LF  
1
RS  
CP  
CS  
The above equation calculates the “normalized” loop bandwidth  
(denoted as “NBW”) which is approximately equal to the - 3dB  
bandwidth. NBW does not take into account the effects of damping  
factor or the second pole imposed by CP. It does, however, provide  
a useful approximation of filter performance.  
11  
12  
IDT/ ICSJITTER ATTENUATOR/FREQUENCY TRANSLATOR  
13  
ICS813253AG REV. A JANUARY 5, 2007  
ICS813253  
FEMTOCLOCK™ JITTER ATTENUATOR & FREQUENCY TRANSLATOR W/LVPECL OUTPUTS  
PRELIMINARY  
NOTES ON SETTING THE VALUE OF CP  
As another general rule, the following relationship should be  
maintained between components CS and CP in the loop filter:  
VCXO PLL input voltage can hit the supply or ground rail  
resulting in non-linear loop response.  
CS  
CP =  
CP should be increased in value until it just starts affecting the  
passband peak.  
20  
CP establishes a second pole in the VCXO PLL loop filter. For  
higher damping factors (> 1), calculate the value of CP based  
on a CS value that would be used for a damping factor of 1.  
This will minimize baseband peaking and loop instability that  
can lead to output jitter.  
NOTES ON EXTERNAL CRYSTAL LOAD CAPACITORS  
In the loop filter schematic diagram, capacitors are shown  
between pin 10 to ground and between pin 11 to ground. These  
are optional crystal load capacitors which can be used to center  
tune the external pullable crystal (the crystal frequency can  
only be lowered by adding capacitance, it cannot be raised).  
Note that the addition of external load capacitors will decrease  
the crystal pull range and the Kvco value.  
CP also dampens VCXO PLL input voltage modulation by the  
charge pump correction pulses. A CP value that is too low will  
result in increased output phase noise at the phase detector  
frequency due to this. In extreme cases where input jitter is  
high, charge pump current is high, and CP is too small, the  
EXAMPLE LOOP FILTER COMPONENT VALUES FOR VARIOUS VCXO DIVIDER SELECTIONS  
Input Frequency  
25MHz  
Bandwidth  
1000  
Dampening  
RS (K)  
CS (µF)  
1.0  
CS (µF)  
0.01  
2.4  
3.0  
5
5
25MHz  
400  
10.0  
0.1  
IDT/ ICSJITTER ATTENUATOR/FREQUENCY TRANSLATOR  
14  
ICS813253AG REV. A JANUARY 5, 2007  
ICS813253  
FEMTOCLOCK™ JITTER ATTENUATOR & FREQUENCY TRANSLATOR W/LVPECL OUTPUTS  
PRELIMINARY  
VCXO CRYSTAL SELECTION  
Choosing a crystal with the correct characteristics is one of the  
most critical steps in using a Voltage Controlled Crystal Oscillator  
(VCXO). The crystal parameters affect the tuning range and  
accuracy of a VCXO. Below are the key variables and an example  
of using the crystal parameters to calculate the tuning range of  
the VCXO.  
Oscillator  
CV  
CV  
VCXO (Internal)  
XTAL  
CS1  
CS2  
CL1  
CL2  
Optional  
FIGURE 5: VCXO OSCILLATOR CIRCUIT EXAMPLE  
CV Varactor capacitance, varies due to the change in  
control voltage  
CL1, CL2 Load tuning capacitance used for fine tuning or  
centering nominal frequency  
CS1, CS2 Stray Capacitance caused by pads, vias, and other  
board parasitics  
CRYSTAL PARAMETER EXAMPLES  
Symbol Parameter  
Minimum Typical Maximum Units  
fN  
fT  
fS  
Nominal Frequency  
19.6  
27.2  
15  
15  
70  
8
MHz  
ppm  
ppm  
°C  
Frequency Tolerance  
Frequency Stability  
Operating Temperature Range  
Load Capacitance  
Shunt Capacitance  
Pullability Ratio  
0
CL  
pF  
CO  
7
pF  
C0/C1  
ESR  
250  
20  
1
Equivalent Series Resistance  
Drive Level  
mW  
ppm  
Aging @ 25°C  
3 per year  
Mode of Operation  
Fundemental  
VARACTOR PARAMETERS  
Symbol Parameter  
Test Condition Typical Unit  
CV LOW  
CV HIGH  
Low Varactor Capacitance  
High Varactor Capacitance  
VC = 0V  
52  
pF  
pF  
VC = 3.3V  
5.2  
IDT/ ICSJITTER ATTENUATOR/FREQUENCY TRANSLATOR  
15  
ICS813253AG REV. A JANUARY 5, 2007  
ICS813253  
FEMTOCLOCK™ JITTER ATTENUATOR & FREQUENCY TRANSLATOR W/LVPECL OUTPUTS  
PRELIMINARY  
FORMULAS  
(CL1 + CS1 + CV_LOW) · (CL2 + CS2 + CV_LOW  
)
(CL1 + CS1 + CV_HIGH · (CL2 + CS2 + CV_HIGH  
)
CLOW  
=
CHIGH  
=
(CL1 + CS1 + CV_LOW) + (CL2 + CS2 + CV_LOW  
)
(CL1 + CS1 + CV_HIGH) + (CL2 + CS2 + CV_HIGH  
)
CHigh is the effective capacitance due to the high varactor  
capacitance, load capacitance and stray capacitance.  
CLow is the effective capacitance due to the low varactor  
capacitance, load capacitance and stray capacitance.  
CLow determines the high frequency component on the  
TPR (Total Pull Range).  
CHigh determines the low frequency component on the  
TPR (Total Pull Range).  
1
1
TPR =  
· 106  
(
)
2 · C0/C1 · (1+CLOW /C0)  
2 · C0/C1 · (1+CHIGH/C0)  
AbsolutePullRange (APR) = TotalPullRange – (FrequencyTolerance + FrequencyStability + Aging)  
EXAMPLE CALCULATIONS -TBD  
IDT/ ICSJITTER ATTENUATOR/FREQUENCY TRANSLATOR  
16  
ICS813253AG REV. A JANUARY 5, 2007  
ICS813253  
FEMTOCLOCK™ JITTER ATTENUATOR & FREQUENCY TRANSLATOR W/LVPECL OUTPUTS  
PRELIMINARY  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS813253.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS813253 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for V = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
CC  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core) = V  
* I  
= 3.465V * 132mA = 457.38mW  
EE_MAX  
MAX  
CC_MAX  
Power (outputs) = 30mW/Loaded Output pair  
MAX  
If all outputs are loaded, the total power is 3 * 30mW = 90mW  
Total Power  
(3.465V, with all outputs switching) = 457.28mW + 90mW = 547.38mW  
_MAX  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
TM  
device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 1 meter per second and a multi-layer board, the appropriate value is 65°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.547W * 65°C/W = 105.6°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 6. THERMAL RESISTANCE θ FOR 24 LEAD TSSOP, FORCED CONVECTION  
JA  
θ by Velocity (Meters per Second)  
JA  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
70°C/W  
65°C/W  
62°C/W  
IDT/ ICSJITTER ATTENUATOR/FREQUENCY TRANSLATOR  
17  
ICS813253AG REV. A JANUARY 5, 2007  
ICS813253  
FEMTOCLOCK™ JITTER ATTENUATOR & FREQUENCY TRANSLATOR W/LVPECL OUTPUTS  
PRELIMINARY  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 6.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 6. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage of V - 2V.  
CC  
For logic high, V = V  
= V  
– 0.9V  
CC_MAX  
OUT  
OH_MAX  
)
= 0.9V  
OH_MAX  
(V  
- V  
CCO_MAX  
For logic low, V = V  
= V  
– 1.7V  
OUT  
OL_MAX  
CC_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CCO_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
/R ] * (V  
- V ) =  
OH_MAX  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
_MAX  
OH_MAX  
CCO_MAX  
L
CCO  
L
[(2V - 0.9V)/50] * 0.9V = 19.8mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
/R ] * (V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
L
CCO  
L
[(2V - 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
IDT/ ICSJITTER ATTENUATOR/FREQUENCY TRANSLATOR  
18  
ICS813253AG REV. A JANUARY 5, 2007  
ICS813253  
FEMTOCLOCK™ JITTER ATTENUATOR & FREQUENCY TRANSLATOR W/LVPECL OUTPUTS  
PRELIMINARY  
RELIABILITY INFORMATION  
TABLE 7. θ VS. AIR FLOW TABLE FOR 24 LEAD TSSOP  
JA  
θ by Velocity (Meters per Second)  
JA  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
70°C/W  
65°C/W  
62°C/W  
TRANSISTOR COUNT  
The transistor count for ICS813253 is: 2915  
IDT/ ICSJITTER ATTENUATOR/FREQUENCY TRANSLATOR  
19  
ICS813253AG REV. A JANUARY 5, 2007  
ICS813253  
FEMTOCLOCK™ JITTER ATTENUATOR & FREQUENCY TRANSLATOR W/LVPECL OUTPUTS  
PRELIMINARY  
PACKAGE OUTLINE - G SUFFIX FOR 24 LEAD TSSOP  
TABLE 8. PACKAGE DIMENSIONS  
Millimeters  
SYMBOL  
Minimum  
Maximum  
N
A
24  
--  
1.20  
0.15  
1.05  
0.30  
0.20  
7.90  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
7.70  
c
D
E
6.40 BASIC  
0.65 BASIC  
E1  
e
4.30  
4.50  
L
0.45  
0°  
0.75  
8°  
α
aaa  
--  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
IDT/ ICSJITTER ATTENUATOR/FREQUENCY TRANSLATOR  
20  
ICS813253AG REV. A JANUARY 5, 2007  
ICS813253  
FEMTOCLOCK™ JITTER ATTENUATOR & FREQUENCY TRANSLATOR W/LVPECL OUTPUTS  
PRELIMINARY  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
ICS813253AG  
Marking  
Package  
Shipping Packaging Temperature  
ICS813253AG  
ICS813253AG  
ICS813253AGLF  
ICS813253AGLF  
24 Lead TSSOP  
tube  
0°C to 70°C  
ICS813253AGT  
ICS813253AGLF  
ICS813253AGLFT  
24 Lead TSSOP  
2500 tape & reel  
tube  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
24 Lead "Lead-Free" TSSOP  
24 Lead "Lead-Free" TSSOP  
2500 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial  
applications. Any other applications such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not recommended without additional  
processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical  
instruments.  
IDT/ ICSJITTER ATTENUATOR/FREQUENCY TRANSLATOR  
21  
ICS813253AG REV. A JANUARY 5, 2007  
ICS813253  
FEMTOCLOCK™ JITTER ATTENUATOR & FREQUENCY TRANSLATOR W/LVPECL OUTPUTS  
PRELIMINARY  
Innovate with IDT and accelerate your future networks. Contact:  
www.IDT.com  
For Sales  
800-345-7015  
408-284-8200  
Fax: 408-284-2775  
For Tech Support  
netcom@idt.com  
480-763-2056  
Corporate Headquarters  
Integrated Device Technology, Inc.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Asia Pacific and Japan  
Integrated Device Technology  
Singapore (1997) Pte. Ltd.  
Reg. No. 199707558G  
435 Orchard Road  
Europe  
IDT Europe, Limited  
321 Kingston Road  
Leatherhead, Surrey  
KT22 7TU  
United States  
800 345 7015  
#20-03 Wisma Atria  
England  
+408 284 8200 (outside U.S.)  
Singapore 238877  
+44 (0) 1372 363 339  
Fax: +44 (0) 1372 378851  
+65 6 887 5505  
© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks  
of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be  
trademarks or registered trademarks used to identify products or services of their respective owners.  
Printed in USA  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY