82V2052EPF8 [IDT]

PCM Transceiver, 1-Func, PQFP80, TQFP-80;
82V2052EPF8
型号: 82V2052EPF8
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

PCM Transceiver, 1-Func, PQFP80, TQFP-80

PC 电信 电信集成电路
文件: 总70页 (文件大小:726K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DUAL CHANNEL E1  
IDT82V2052E  
SHORT HAUL LINE INTERFACE UNIT  
FEATURES:  
Dual channel E1 short haul line interfaces  
Supports HPS (Hitless Protection Switching) for 1+1 protection  
without external relays  
- PRBS (Pseudo Random Bit Sequence) generation and detection  
15  
with 2 -1 PRBS polynomials  
- 16-bit BPV (Bipolar Pulse Violation) / Excess Zero/ PRBS error  
counter  
- Analog loopback, Digital loopback, Remote loopback  
Adaptive receive sensitivity up to -20 dB (Host Mode only)  
Non-intrusive monitoring per ITU G.772 specification  
Short circuit protection and internal protection diode for line  
drivers  
LOS (Loss Of Signal) detection with programmable LOS levels  
(Host Mode only)  
AIS (Alarm Indication Signal) detection  
JTAG interface  
Supports serial control interface, Motorola and Intel Non-Multi-  
plexed interfaces and hardware control mode  
Pin compatible to 82V2082 T1/E1/J1 Long Haul/Short Haul LIU  
and 82V2042E T1/E1/J1 Short Haul LIU  
Available in 80-pin TQFP  
Single 3.3 V power supply with 5 V tolerance on digital interfaces  
Meets or exceeds specifications in  
- ANSI T1.102  
- ITU I.431, G.703, G.736, G.775 and G.823  
- ETSI 300-166, 300-233 and TBR12/13  
Software programmable or hardware selectable on:  
- Wave-shaping templates  
- Line terminating impedance (E1: 75 Ω/120 Ω)  
- Adjustment of arbitrary pulse shape  
- JA (Jitter Attenuator) position (receive path or transmit path)  
- Single rail/dual rail system interfaces  
- HDB3/AMI line encoding/decoding  
- Active edge of transmit clock (TCLK) and receive clock (RCLK)  
- Active level of transmit data (TDATA) and receive data (RDATA)  
- Receiver or transmitter power down  
- High impedance setting for line drivers  
Green package options available  
DESCRIPTION:  
The IDT82V2052E is a dual channel E1 Line Interface Unit. The  
IDT82V2052Eperformsclock/datarecovery, AMI/HDB3linedecodingand  
detects and reports the LOS conditions. An integrated Adaptive Equalizer  
is available to increase the receive sensitivity and enable programming of  
LOS levels. In transmit path, thereis anAMI/HDB3encoder andWaveform  
Shaper. There is one Jitter Attenuator, which can be placed in either the  
receivepathorthetransmitpath.TheJitterAttenuatorcanalsobedisabled.  
The IDT82V2052E supports both Single Rail and Dual Rail system inter-  
faces. Tofacilitatethenetworkmaintenance,aPRBSgeneration/detection  
circuit is integrated in the chip, and different types of loopbacks can be set  
accordingtotheapplications. Twodifferentkindsoflineterminatingimped-  
ance, 75 and 120 are selectable on a per channel basis. The chip also  
provides driver short-circuit protection and internal protection diode and  
supports JTAG boundary scanning. The chip can be controlled by either  
software or hardware.  
The IDT82V2052E can be used in LAN, WAN, Routers, Wireless Base  
Stations, IADs, IMAs, IMAPs, Gateways, Frame Relay Access Devices,  
CSU/DSU equipment, etc.  
IDT and the IDT logo are trademarks of Integrated Device Technology, Inc.  
.
1
December 12, 2005  
2005 Integrated Device Technology, Inc.  
DSC-6779/1  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
FUNCTIONAL BLOCK DIAGRAM  
One of the Two Identical Channels  
LOSn  
LOS/AIS  
Detector  
Receiver  
Internal  
Termination  
RCLKn  
RDn/RDPn  
CVn/RDNn  
Data and  
Clock  
Recovery  
Adaptive  
Equalizer  
RTIPn  
Data  
Slicer  
Jitter  
Attenuator  
HDB3/AMI  
Decoder  
RRINGn  
PRBS Detector  
Remote  
Loopback  
Analog  
Loopback  
Digital  
Loopback  
TCLKn  
TDn/TDPn  
TDNn  
TTIPn  
Transmitter  
Internal  
Termination  
Jitter  
Attenuator  
Line  
Driver  
Waveform  
Shaper  
HDB3/AMI  
Decoder  
TRINGn  
PRBS Generator  
TAOS  
Clock  
Generator  
Register  
Files  
JTAG TAP  
Software Control Interface  
Pin Control  
G.772  
Monitor  
VDDIO  
VDDD  
VDDA  
VDDT  
VDDR  
Figure-1 Block Diagram  
FUNCTIONAL BLOCK DIAGRAM  
2
December 12, 2005  
 
Table of Contents  
1
2
3
IDT82V2052E PIN CONFIGURATIONS ....................................................................................... 8  
PIN DESCRIPTION ....................................................................................................................... 9  
FUNCTIONAL DESCRIPTION .................................................................................................... 17  
3.1  
3.2  
CONTROL MODE SELECTION ....................................................................................... 17  
TRANSMIT PATH ............................................................................................................. 17  
3.2.1 TRANSMIT PATH SYSTEM INTERFACE.............................................................. 17  
3.2.2 ENCODER.............................................................................................................. 17  
3.2.3 PULSE SHAPER .................................................................................................... 17  
3.2.3.1 Preset Pulse Templates .......................................................................... 17  
3.2.3.2 User-Programmable Arbitrary Waveform ................................................ 18  
3.2.4 TRANSMIT PATH LINE INTERFACE..................................................................... 20  
3.2.5 TRANSMIT PATH POWER DOWN........................................................................ 20  
3.3  
RECEIVE PATH ............................................................................................................... 20  
3.3.1 RECEIVE INTERNAL TERMINATION.................................................................... 20  
3.3.2 LINE MONITOR...................................................................................................... 21  
3.3.3 ADAPTIVE EQUALIZER......................................................................................... 22  
3.3.4 RECEIVE SENSITIVITY ......................................................................................... 22  
3.3.5 DATA SLICER ........................................................................................................ 22  
3.3.6 CDR (Clock & Data Recovery)................................................................................ 22  
3.3.7 DECODER.............................................................................................................. 22  
3.3.8 RECEIVE PATH SYSTEM INTERFACE ................................................................ 22  
3.3.9 RECEIVE PATH POWER DOWN........................................................................... 23  
3.3.10 G.772 NON-INTRUSIVE MONITORING ................................................................ 23  
JITTER ATTENUATOR .................................................................................................... 24  
3.4.1 JITTER ATTENUATION FUNCTION DESCRIPTION ............................................ 24  
3.4.2 JITTER ATTENUATOR PERFORMANCE ............................................................. 24  
LOS AND AIS DETECTION ............................................................................................. 25  
3.5.1 LOS DETECTION................................................................................................... 25  
3.5.2 AIS DETECTION .................................................................................................... 26  
TRANSMIT AND DETECT INTERNAL PATTERNS ........................................................ 27  
3.6.1 TRANSMIT ALL ONES........................................................................................... 27  
3.6.2 TRANSMIT ALL ZEROS......................................................................................... 27  
3.6.3 PRBS GENERATION AND DETECTION............................................................... 27  
LOOPBACK ...................................................................................................................... 27  
3.7.1 ANALOG LOOPBACK ............................................................................................ 27  
3.7.2 DIGITAL LOOPBACK ............................................................................................. 27  
3.7.3 REMOTE LOOPBACK............................................................................................ 27  
3.4  
3.5  
3.6  
3.7  
Table of Contents  
3
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
3.8  
ERROR DETECTION/COUNTING AND INSERTION ...................................................... 30  
3.8.1 DEFINITION OF LINE CODING ERROR ............................................................... 30  
3.8.2 ERROR DETECTION AND COUNTING ................................................................ 30  
3.8.3 BIPOLAR VIOLATION AND PRBS ERROR INSERTION ...................................... 31  
LINE DRIVER FAILURE MONITORING ........................................................................... 31  
3.9  
3.10 MCLK AND TCLK ............................................................................................................. 32  
3.10.1 MASTER CLOCK (MCLK) ...................................................................................... 32  
3.10.2 TRANSMIT CLOCK (TCLK).................................................................................... 32  
3.11 MICROCONTROLLER INTERFACES ............................................................................. 33  
3.11.1 PARALLEL MICROCONTROLLER INTERFACE................................................... 33  
3.11.2 SERIAL MICROCONTROLLER INTERFACE ........................................................ 33  
3.12 INTERRUPT HANDLING .................................................................................................. 34  
3.13 5V TOLERANT I/O PINS .................................................................................................. 35  
3.14 RESET OPERATION ........................................................................................................ 35  
3.15 POWER SUPPLY ............................................................................................................. 35  
4
PROGRAMMING INFORMATION .............................................................................................. 36  
4.1  
4.2  
4.3  
REGISTER LIST AND MAP ............................................................................................. 36  
Reserved Registers .......................................................................................................... 36  
REGISTER DESCRIPTION .............................................................................................. 38  
4.3.1 GLOBAL REGISTERS............................................................................................ 38  
4.3.2 TRANSMIT AND RECEIVE TERMINATION REGISTER....................................... 39  
4.3.3 JITTER ATTENUATION CONTROL REGISTER ................................................... 39  
4.3.4 TRANSMIT PATH CONTROL REGISTERS........................................................... 40  
4.3.5 RECEIVE PATH CONTROL REGISTERS ............................................................. 42  
4.3.6 NETWORK DIAGNOSTICS CONTROL REGISTERS ........................................... 43  
4.3.7 INTERRUPT CONTROL REGISTERS................................................................... 45  
4.3.8 LINE STATUS REGISTERS................................................................................... 47  
4.3.9 INTERRUPT STATUS REGISTERS ...................................................................... 48  
4.3.10 COUNTER REGISTERS ........................................................................................ 49  
5
6
HARDWARE CONTROL PIN SUMMARY .................................................................................. 50  
IEEE STD 1149.1 JTAG TEST ACCESS PORT ........................................................................ 52  
6.1  
6.2  
JTAG INSTRUCTIONS AND INSTRUCTION REGISTER ............................................... 53  
JTAG DATA REGISTER ................................................................................................... 53  
6.2.1 DEVICE IDENTIFICATION REGISTER (IDR)........................................................ 53  
6.2.2 BYPASS REGISTER (BR)...................................................................................... 53  
6.2.3 BOUNDARY SCAN REGISTER (BSR) .................................................................. 53  
6.2.4 TEST ACCESS PORT CONTROLLER .................................................................. 53  
7
8
TEST SPECIFICATIONS ............................................................................................................ 56  
MICROCONTROLLER INTERFACE TIMING CHARACTERISTICS ......................................... 65  
8.1  
8.2  
SERIAL INTERFACE TIMING .......................................................................................... 65  
PARALLEL INTERFACE TIMING ..................................................................................... 66  
Table of Contents  
4
December 12, 2005  
List of Tables  
Table-1  
Pin Description................................................................................................................ 9  
Transmit Waveform Value For E1 75 Ohm................................................................... 19  
Transmit Waveform Value For E1 120 Ohm................................................................. 19  
Impedance Matching for Transmitter ............................................................................ 20  
Impedance Matching for Receiver ................................................................................ 21  
Criteria of Starting Speed Adjustment........................................................................... 24  
LOS Declare and Clear Criteria, Adaptive Equalizer Disabled ..................................... 25  
LOS Declare and Clear Criteria, Adaptive Equalizer Enabled ...................................... 26  
AIS Condition ................................................................................................................ 26  
Criteria for Setting/Clearing the PRBS_S Bit ................................................................ 27  
EXZ Definition ............................................................................................................... 30  
Interrupt Event............................................................................................................... 34  
Global Register List and Map........................................................................................ 36  
Per Channel Register List and Map .............................................................................. 37  
ID: Device Revision Register ........................................................................................ 38  
RST: Reset Register ..................................................................................................... 38  
GCF: Global Configuration Register ............................................................................. 38  
INTCH: Interrupt Channel Indication Register............................................................... 38  
TERM: Transmit and Receive Termination Configuration Register .............................. 39  
JACF: Jitter Attenuation Configuration Register ........................................................... 39  
TCF0: Transmitter Configuration Register 0 ................................................................. 40  
TCF1: Transmitter Configuration Register 1 ................................................................. 40  
TCF2: Transmitter Configuration Register 2 ................................................................. 41  
TCF3: Transmitter Configuration Register 3 ................................................................. 41  
TCF4: Transmitter Configuration Register 4 ................................................................. 41  
RCF0: Receiver Configuration Register 0..................................................................... 42  
RCF1: Receiver Configuration Register 1..................................................................... 42  
RCF2: Receiver Configuration Register 2..................................................................... 43  
MAINT0: Maintenance Function Control Register 0...................................................... 43  
MAINT1: Maintenance Function Control Register 1...................................................... 44  
MAINT6: Maintenance Function Control Register 6...................................................... 44  
INTM0: Interrupt Mask Register 0................................................................................. 45  
INTM1: Interrupt Masked Register 1............................................................................. 45  
INTES: Interrupt Trigger Edge Select Register............................................................. 46  
STAT0: Line Status Register 0 (real time status monitor)............................................. 47  
STAT1: Line Status Register 1 (real time status monitor)............................................. 48  
INTS0: Interrupt Status Register 0................................................................................ 48  
INTS1: Interrupt Status Register 1................................................................................ 49  
CNT0: Error Counter L-byte Register 0......................................................................... 49  
CNT1: Error Counter H-byte Register 1........................................................................ 49  
Hardware Control Pin Summary ................................................................................... 50  
Table-2  
Table-3  
Table-4  
Table-5  
Table-6  
Table-7  
Table-8  
Table-9  
Table-10  
Table-11  
Table-12  
Table-13  
Table-14  
Table-15  
Table-16  
Table-17  
Table-18  
Table-19  
Table-20  
Table-21  
Table-22  
Table-23  
Table-24  
Table-25  
Table-26  
Table-27  
Table-28  
Table-29  
Table-30  
Table-31  
Table-32  
Table-33  
Table-34  
Table-35  
Table-36  
Table-37  
Table-38  
Table-39  
Table-40  
Table-41  
List of Tables  
5
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
Table-42  
Table-43  
Table-44  
Table-45  
Table-46  
Table-47  
Table-48  
Table-49  
Table-50  
Table-51  
Table-52  
Table-53  
Table-54  
Table-55  
Table-56  
Table-57  
Table-58  
Table-59  
Instruction Register Description .................................................................................... 53  
Device Identification Register Description..................................................................... 53  
TAP Controller State Description .................................................................................. 54  
Absolute Maximum Rating ............................................................................................ 56  
Recommended Operation Conditions........................................................................... 56  
Power Consumption...................................................................................................... 57  
DC Characteristics ........................................................................................................ 57  
Receiver Electrical Characteristics................................................................................ 58  
Transmitter Electrical Characteristics............................................................................ 59  
Transmitter and Receiver Timing Characteristics ......................................................... 60  
Jitter Tolerance ............................................................................................................. 61  
Jitter Attenuator Characteristics.................................................................................... 62  
JTAG Timing Characteristics ........................................................................................ 63  
Serial Interface Timing Characteristics ......................................................................... 65  
Non-Multiplexed Motorola Read Timing Characteristics............................................... 66  
Non-Multiplexed Motorola Write Timing Characteristics ............................................... 67  
Non-Multiplexed Intel Read Timing Characteristics ...................................................... 68  
Non-Multiplexed Intel Write Timing Characteristics ...................................................... 69  
List of Tables  
6
December 12, 2005  
List of Figures  
Figure-1  
Block Diagram ................................................................................................................. 2  
IDT82V2052E TQFP80 Package Pin Assignment .......................................................... 8  
E1 Waveform Template Diagram .................................................................................. 17  
E1 Pulse Template Test Circuit ..................................................................................... 18  
Receive Path Function Block Diagram .......................................................................... 21  
Transmit/Receive Line Circuit ....................................................................................... 21  
Monitoring Receive Line in Another Chip ...................................................................... 22  
Monitor Transmit Line in Another Chip .......................................................................... 22  
G.772 Monitoring Diagram ............................................................................................ 23  
Jitter Attenuator ............................................................................................................. 24  
LOS Declare and Clear ................................................................................................. 25  
Analog Loopback .......................................................................................................... 28  
Digital Loopback ............................................................................................................ 28  
Remote Loopback ......................................................................................................... 29  
Auto Report Mode ......................................................................................................... 30  
Manual Report Mode ..................................................................................................... 31  
TCLK Operation Flowchart ............................................................................................ 32  
Serial Microcontroller Interface Function Timing ........................................................... 33  
JTAG Architecture ......................................................................................................... 52  
JTAG State Diagram ..................................................................................................... 55  
Transmit System Interface Timing ................................................................................ 60  
Receive System Interface Timing ................................................................................. 61  
E1 Jitter Tolerance Performance .................................................................................. 62  
E1 Jitter Transfer Performance ..................................................................................... 63  
JTAG Interface Timing .................................................................................................. 64  
Serial Interface Write Timing ......................................................................................... 65  
Serial Interface Read Timing with SCLKE=1 ................................................................ 65  
Serial Interface Read Timing with SCLKE=0 ................................................................ 65  
Non-Multiplexed Motorola Read Timing ........................................................................ 66  
Non-Multiplexed Motorola Write Timing ........................................................................ 67  
Non-Multiplexed Intel Read Timing ............................................................................... 68  
Non-Multiplexed Intel Write Timing ............................................................................... 69  
Figure-2  
Figure-3  
Figure-4  
Figure-5  
Figure-6  
Figure-7  
Figure-8  
Figure-9  
Figure-10  
Figure-11  
Figure-12  
Figure-13  
Figure-14  
Figure-15  
Figure-16  
Figure-17  
Figure-18  
Figure-19  
Figure-20  
Figure-21  
Figure-22  
Figure-23  
Figure-24  
Figure-25  
Figure-26  
Figure-27  
Figure-28  
Figure-29  
Figure-30  
Figure-31  
Figure-32  
List of Figures  
7
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
1
IDT82V2052E PIN CONFIGURATIONS  
VDDT1  
TRING1  
TTIP1  
VDDIO  
61  
62  
63  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
GNDIO  
TCLK1  
GNDT1  
GNDR1  
RRING1  
RTIP1  
TDP1 / TD1  
TDN1  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
RCLK1  
RDP1 / RD1  
RDN1 / CV1  
LOS1  
VDDR1  
VDDA  
IDT82V2052E  
IC  
VDDD  
REF  
MCLK  
GNDA  
VDDR2  
RTIP2  
GNDD  
LOS2  
RDN2 / CV2  
RDP2 / RD2  
RCLK2  
TDN2  
RRING2  
GNDR2  
GNDT2  
TTIP2  
TDP2 / TD2  
TCLK2  
TRING2  
VDDT2  
RST  
Figure-2 IDT82V2052E TQFP80 Package Pin Assignment  
IDT82V2052E PIN CONFIGURATIONS  
8
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
2
PIN DESCRIPTION  
Table-1 Pin Description  
Name  
Type  
Pin No.  
Description  
TTIPn1/TRINGn: Transmit Bipolar Tip/Ring for Channel 1~2  
These pins are the differential line driver outputs and can be set to high impedance state globally or individually. A logic high  
TTIP1  
TTIP2  
Analog  
Output  
63  
78  
on THZ pin turns all these pins into high impedance state. When THZ bit (TCF1, 03H...)2 is set to ‘1’, the TTIPn/TRINGn in  
the corresponding channel is set to high impedance state.  
In summary, these pins will become high impedance in the following conditions:  
TRING1  
TRING2  
62  
79  
THZ pin is high: all TTIPn/TRINGn enter high impedance;  
THZn bit is set to 1: the corresponding TTIPn/TRINGn become high impedance;  
Loss of MCLK: all TTIPn/TRINGn pins become high impedance;·  
Loss of TCLKn: the corresponding TTIPn/TRINGn become HZ (exceptions: Remote Loopback; Transmit internal pat-  
tern by MCLK);  
Transmitter path power down: the corresponding TTIPn/TRINGn become high impedance;  
After software reset; pin reset and power on: all TTIPn/TRINGn enter high impedance.  
RTIP1  
RTIP2  
Analog  
Input  
67  
74  
RTIPn/RRINGn: Receive Bipolar Tip/Ring for Channel 1~2  
These signals are the differential receiver inputs.  
RRING1  
RRING2  
66  
75  
TD1/TDP1  
TD2/TDP2  
I
37  
23  
TDn: Transmit Data for Channel 1~2  
When the device is in single rail mode, the NRZ data to be transmitted is input on this pin. Data on TDn pin is sampled into  
the device on the active edge of TCLKn and is encoded by AMI or HDB3 line code rules before being transmitted. In this mode,  
TDNn should be connected to ground.  
TDN1  
TDN2  
36  
24  
TDPn/TDNn: Positive/Negative Transmit Data  
When the device is in dual rail mode, the NRZ data to be transmitted for positive/negative pulse is input on these pins. Data  
on TDPn/TDNn pin is sampled into the device on the active edge of TCLKn. The active polarity is also selectable. Refer to  
3.2.1 TRANSMIT PATH SYSTEM INTERFACE for details. The line code in dual rail mode is as follows:  
TDPn  
TDNn  
Output Pulse  
Space  
0
0
1
1
0
1
0
1
Positive Pulse  
Negative Pulse  
Space  
TCLK1  
TCLK2  
I
38  
22  
TCLKn: Transmit Clock for Channel 1~2  
This pin inputs a 2.048 MHz transmit clock. The transmit data at TDn/TDPn or TDNn is sampled into the device on the active  
edge of TCLKn. If TCLKn is missing3 and the TCLKn missing interrupt is not masked, an interrupt will be generated.  
Notes:  
1. The footprint ‘n’ (n = 1~2) represents one of the two channels.  
2. The name and address of the registers that contain the preceding bit. Only the address of channel 1 register is listed, the rest addresses are represented by ‘...’. Users can find  
these omitted addresses in the Register Description section.  
3. TCLKn missing: the state of TCLKn continues to be high level or low level over 70 MCLK cycles.  
PIN DESCRIPTION  
9
December 12, 2005  
 
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
Table-1 Pin Description (Continued)  
Name  
Type  
O
Pin No.  
Description  
RD1/RDP1  
RD2/RDP2  
34  
26  
RDn: Receive Data output for Channel 1~2  
In single rail mode, this pin outputs NRZ data. The data is decoded according to AMI or HDB3 line code rules.  
CV1/RDN1  
CV2/RDN2  
33  
27  
CVn: Code Violation indication  
In single rail mode, the BPV/CV errors in received data stream will be reported by driving the CVn pin to high level for a full  
clock cycle. HDB3 line code violation can be indicated if the HDB3 decoder is enabled. When AMI decoder is selected, bipolar  
violation will be indicated.  
In hardware control mode, the EXZ, BPV/CV errors in received data stream are always monitored by the CVn pin if single rail  
mode is chosen.  
RDPn/RDNn: Positive/Negative Receive Data output for Channel 1~2  
In dual rail mode, these pins output the re-timed NRZ data when CDR is enabled, or directly outputs the raw RZ slicer data  
if CDR is bypassed.  
Active edge and level select:  
Data on RDPn/RDNn or RDn is clocked with either the rising or the falling edge of RCLKn. The active polarity is also select-  
able. Refer to 3.3.8 RECEIVE PATH SYSTEM INTERFACE for details.  
RCLK1  
RCLK2  
O
35  
25  
RCLKn: Receive Clock output for Channel 1~2  
This pin outputs a 2.048 MHz receive clock. Under LOS conditions with AIS enabled (bit AISE=1), RCLKn is derived from  
MCLK.  
In clock recovery mode, this signal provides the clock recovered from the RTIPn/RRINGn signal. The receive data (RDn in  
single rail mode or RDPn and RDNn in dual rail mode) is clocked out of the device on the active edge of RCLKn.  
If clock recovery is bypassed, RCLKn is the exclusive OR (XOR) output of the dual rail slicer data RDPn and RDNn. This signal  
can be used in applications with external clock recovery circuitry.  
MCLK  
I
30  
MCLK: Master Clock input  
A built-in clock system that accepts a 2.048 MHz reference clock. This reference clock is used to generate several internal  
reference signals:  
Timing reference for the integrated clock recovery unit.  
Timing reference for the integrated digital jitter attenuator.  
Timing reference for microcontroller interface.  
Generation of RCLKn signal during a loss of signal condition.  
Reference clock to transmit All Ones, all zeros and PRBS pattern. Note that for ATAO and AIS, MCLK is always used  
as the reference clock.  
Reference clock during Transmit All Ones (TAO) condition or sending PRBS in hardware control mode.  
The loss of MCLK will turn TTIP/TRING into high impedance status.  
LOS1  
LOS2  
O
I
32  
28  
LOSn: Loss of Signal Output for Channel 1~2  
These pins are used to indicate the loss of received signals. When LOSn pin becomes high, it indicates the loss of received  
signal in channel n. The LOS pin will become low automatically when valid received signal is detected again. The criteria of  
loss of signal are described in 3.5 LOS AND AIS DETECTION.  
REF  
71  
REF: reference resister  
An external resistor (3k, 1%) is used to connect this pin to ground to provide a standard reference current for internal circuit.  
PIN DESCRIPTION  
10  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
Table-1 Pin Description (Continued)  
Name  
Type  
I
Pin No.  
Description  
MODE1  
MODE0  
9
10  
MODE[1:0]: operation mode of control interface select  
The level on this pin determines which control mode is used to control the device as follows:  
MODE[1:0]  
Control Interface mode  
Hardware interface  
00  
01  
10  
11  
Serial Microcontroller Interface  
Motorola non-multiplexed  
Intel non-multiplexed  
The serial microcontroller interface consists of CS, SCLK, SCLKE, SDI, SDO and INT pins. SCLKE is used for the  
selection of the active edge of SCLK.  
The parallel non-multiplexed microcontroller interface consists of CS, A[5:0], D[7:0], DS/RD, R/W/WR and INT pins.  
(Refer to 3.11 MICROCONTROLLER INTERFACES for details)  
Hardware interface consists of PULSn, THZ, RCLKE, LPn[1:0], PATTn[1:0], JA[1:0], MONTn, TERMn, RPDn,  
MODE[1:0] and RXTXM[1:0] (n=1, 2).  
RCLKE  
I
I
11  
RCLKE: the active edge of RCLKn select  
In hardware control mode, this pin selects the active edge of RCLKn  
L= update RDPn/RDNn on the rising edge of RCLKn  
H= update RDPn/RDNn on the falling edge of RCLKn  
In software control mode, this pin should be connected to GNDIO.  
RXTXM1  
RXTXM0  
14  
15  
RXTXM[1:0]: Receive and transmit path operation mode select  
In hardware control mode, these pins are used to select the single rail or dual rail operation modes as well as AMI or HDB3  
line coding:  
00= single rail with HDB3 coding  
01= single rail with AMI coding  
10= dual rail interface with CDR enabled  
11= slicer mode (dual rail interface with CDR disabled)  
In software control mode, these pins should be connected to ground.  
CS  
I
42  
CS: Chip Select  
In serial or parallel microcontroller interface mode, this is the active low enable signal. A low level on this pin enables serial  
or parallel microcontroller interface.  
LP11  
LP11/LP10: Loopback mode select for channel 1  
When the chip is configured by hardware, this pin is used to select loopback operation modes for channel 1.:  
00 = no loopback  
01 = analog loopback  
10 = digital loopback  
11 = remote loopback  
INT  
O
41  
INT: Interrupt Request  
In software control mode, this pin outputs the general interrupt request for all interrupt sources. If INTM_GLB bit (GCF, 20H)  
is set to ‘1’, all the interrupt sources will be masked. These interrupt sources can be masked individually via registers (INTM0,  
13H...) and (INTM1, 14H...). The interrupt status is reported via the registers (INTCH, 21H), (INTS0, 18H...) and (INTS1,  
19H...).  
Output characteristics of this pin can be defined to be push-pull (active high or active low) or open-drain (active low) by setting  
bits INT_PIN[1:0] (GCF, 20H)  
LP10  
I
LP11/LP10: Loopback mode select for channel 1  
See above LP11.  
PIN DESCRIPTION  
11  
December 12, 2005  
 
 
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
Table-1 Pin Description (Continued)  
Name  
SCLK  
Type  
I
Pin No.  
46  
Description  
SCLK: Shift Clock  
In serial microcontroller interface mode, this signal is the shift clock for the serial interface. Configuration data on SDI pin is  
sampled on the rising edge of SCLK. Configuration and status data on SDO pin is clocked out of the device on the rising edge  
of SCLK if SCLKE pin is low, or on the falling edge of SCLK if SCLKE pin is high.  
In parallel non-multiplexed interface mode, this pin should be connected to ground.  
PATT11  
SCLKE  
PATT11/PATT10: Transmit pattern select for channel 1  
In hardware control mode, this pin selects the transmit pattern  
00 = normal  
01= All Ones  
10= PRBS  
11= transmitter power down  
I
45  
SCLKE: Serial Clock Edge Select  
In serial microcontroller interface mode, this signal selects the active edge of SCLK for outputting SDO. The output data is  
valid after some delay from the active clock edge. It can be sampled on the opposite edge of the clock. The active clock edge  
which clocks the data out of the device is selected as shown below:  
SCLKE  
Low  
SCLK  
Rising edge is the active edge.  
Falling edge is the active edge.  
High  
DS: Data Strobe  
DS  
RD  
In Motorola parallel non-multiplexed interface mode, this signal is the data strobe of the parallel interface. In a write operation  
(R/W = 0), the data on D[7:0] is sampled into the device. In a read operation (R/W = 1), the data is driven to D[7:0] by the  
device.  
RD: Read Strobe  
In Intel parallel non-Multiplexed interface mode, the data is driven to D[7:0] by the device during low level of RD in a read oper-  
ation.  
PATT11/PATT10: Transmit pattern select for channel 1  
See above PATT11.  
PATT10  
SDI  
I
44  
SDI: Serial Data Input  
In serial microcontroller interface mode, this signal is the input data to the serial interface. Configuration data at SDI pin is sam-  
pled by the device on the rising edge of SCLK.  
R/W  
R/W: Read/Write Select  
In Motorola parallel non-multiplexed interface mode, this pin is low for write operation and high for read operation.  
WR  
WR: Write Strobe  
In Intel parallel non-multiplexed interface mode, this pin is asserted low by the microcontroller to initiate a write cycle. The data  
on D[7:0] is sampled into the device in a write operation.  
LP21  
LP21/LP20: loopback mode select for channel 2  
When the chip is configured by hardware, this pin is used to select loopback operation modes for channel 2:.  
00 = no loopback  
01 = analog loopback  
10 = digital loopback  
11 = remote loopback  
PIN DESCRIPTION  
12  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
Table-1 Pin Description (Continued)  
Name  
SDO  
Type  
O
Pin No.  
43  
Description  
SDO: Serial Data Output  
In serial microcontroller interface mode, this signal is the output data of the serial interface. Configuration or Status data at  
SDO pin is clocked out of the device on the rising edge of SCLK if SCLKE pin is low, or on the falling edge of SCLK if SCLKE  
pin is high.  
In parallel non-multiplexed interface mode, this pin should be left open.  
LP20  
D7  
I
LP21/LP20: loopback mode select for channel 2  
See above LP21.  
I/O  
54  
53  
52  
51  
D7: Data Bus bit7  
In Intel/Motorola non-multiplexed interface mode, this signal is the bi-directional data bus of the microcontroller interface.  
In serial microcontroller interface mode, this pin should be connected to ground through a 10 kresistor.  
In Hardware mode, this pin has to be tied to GND.  
D6  
D5  
I/O  
I/O  
D6: Data Bus bit6  
In Intel/Motorola non-multiplexed interface mode, this signal is the bi-directional data bus of the microcontroller interface.  
In serial microcontroller interface mode, this pin should be connected to ground through a 10 kresistor.  
In Hardware mode, this pin has to be tied to GND.  
D5: Data Bus bit5  
In Intel/Motorola non-multiplexed interface mode, this signal is the bi-directional data bus of the microcontroller interface.  
In serial microcontroller interface mode, this pin should be connected to ground through a 10 kresistor.  
In Hardware mode, this pin has to be tied to GND.  
D4  
I/O  
I
D4: Data Bus bit4  
In Intel/Motorola non-multiplexed interface mode, this signal is the bi-directional data bus of the microcontroller interface.  
In serial microcontroller interface mode, this pin should be connected to ground through a 10 kresistor.  
PULS1  
PULS1: This pin is used to select the following functions for Channel 1 in Hardware control mode:  
Transmit pulse template  
Internal termination impedance (75 / 120 )  
Refer to 5 HARDWARE CONTROL PIN SUMMARY for details.  
D3  
D2  
D1  
I/O  
I/O  
I/O  
50  
49  
48  
D3: Data Bus bit3  
In Intel/Motorola non-multiplexed interface mode, this signal is the bi-directional data bus of the microcontroller interface.  
In serial microcontroller interface mode, this pin should be connected to ground through a 10 kresistor.  
In Hardware mode, this pin has to be tied to GND.  
D2: Data Bus bit2  
In Intel/Motorola non-multiplexed interface mode, this signal is the bi-directional data bus of the microcontroller interface.  
In serial microcontroller interface mode, this pin should be connected to ground through a 10 kresistor.  
In Hardware mode, this pin has to be tied to GND.  
D1: Data Bus bit1  
In Intel/Motorola non-multiplexed interface mode, this signal is the bi-directional data bus of the microcontroller interface.  
In serial microcontroller interface mode, this pin should be connected to ground through a 10 kresistor.  
In Hardware mode, this pin has to be tied to GND.  
PIN DESCRIPTION  
13  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
Table-1 Pin Description (Continued)  
Name  
D0  
Type  
I/O  
Pin No.  
47  
Description  
D0: Data Bus bit0  
In Intel/Motorola non-multiplexed interface mode, this signal is the bi-directional data bus of the microcontroller interface.  
In serial microcontroller interface mode, this pin should be connected to ground through a 10 kresistor.  
PULS2  
A5  
I
I
PULS2: This pin is used to select the following functions for Channel 2 in Hardware control mode:  
Transmit pulse template  
Internal termination impedance (75 / 120 )  
Refer to 5 HARDWARE CONTROL PIN SUMMARY for details.  
60  
59  
A5: Address Bus bit5  
In Intel/Motorola non-multiplexed interface mode, this signal is the address bus of the microcontroller interface.  
In serial microcontroller interface mode, this pin should be connected to ground.  
In Hardware mode, this pin has to be tied to GND.  
A4  
I
A4: Address Bus bit4  
In Intel/Motorola non-multiplexed interface mode, this signal is the address bus of the microcontroller interface.  
In serial microcontroller interface mode, this pin should be connected to ground.  
RPD2  
A3  
RPD2: Power down control for receiver2 in hardware control mode  
0= receiver 2 normal operation  
1= receiver 2 power down  
I
I
58  
57  
A3: Address Bus bit3  
In Intel/Motorola non-multiplexed interface mode, this signal is the address bus of the microcontroller interface.  
In serial microcontroller interface mode, this pin should be connected to ground.  
In Hardware mode, this pin has to be tied to GND.  
A2  
A2: Address Bus bit2  
In Intel/Motorola non-multiplexed interface mode, this signal is the address bus of the microcontroller interface.  
In serial microcontroller interface mode, this pin should be connected to ground.  
RPD1  
A1  
RPD1: Power down control for receiver1 in hardware control mode  
0= receiver 1 normal operation  
1= receiver 1 power down  
I
56  
A1: Address Bus bit1  
In Intel/Motorola non-multiplexed interface mode, this signal is the address bus of the microcontroller interface.  
In serial microcontroller interface mode, this pin should be connected to ground.  
PATT21  
PATT21/PATT20: Transmit pattern select for channel 2  
In hardware control mode, this pin selects the transmit pattern  
00 = normal  
01= All Ones  
10= PRBS  
11= transmitter power down  
A0  
I
I
55  
A0: Address Bus bit 0  
In Intel/Motorola non-multiplexed interface mode, this signal is the address bus of the microcontroller interface.  
In serial microcontroller interface mode, this pin should be connected to ground.  
PATT20  
See above  
TERM1  
TERM2  
13  
12  
TERMn: Selects internal or external impedance matching for channel 1 and channel 2 in hardware control mode  
0 = ternary interface with internal impedance matching network  
1 = ternary interface with external impedance matching network  
In software control mode, this pin should be connected to ground.  
PIN DESCRIPTION  
14  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
Table-1 Pin Description (Continued)  
Name  
JA1  
Type  
I
Pin No.  
16  
Description  
JA[1:0]: Jitter attenuation position, bandwidth and the depth of FIFO select for channel 1 and channel 2 (only used  
in hardware control mode)  
00 = JA is disabled  
01= JA in receiver, broad bandwidth, FIFO=64 bits  
10 = JA in receiver, narrow bandwidth, FIFO=128 bits  
11= JA in transmitter, narrow bandwidth, FIFO=128 bits  
In software control mode, this pin should be connected to ground.  
JA0  
I
I
17  
18  
See above.  
MONT2  
MONT2: Receive Monitor gain select for channel 2  
In hardware control mode with ternary interface, this pin selects the receive monitor gain of receiver:  
0= 0dB  
1= 26dB  
In software control mode, this pin should be connected to ground.  
MONT1  
I
19  
MONT1: Receive Monitor gain select for channel 1  
In hardware control mode with ternary interface, this pin selects the receive monitor gain of receiver:  
0= 0dB  
1= 26dB  
In software control mode, this pin should be connected to ground.  
RST  
I
I
21  
20  
RST: Hardware Reset  
The chip is forced to reset state if a low signal is input on this pin for more than 100ns. MCLK must be active during reset.  
THZ  
THZ: Transmitter Driver High Impedance Enable  
This signal enables or disables all transmitter drivers on a global basis. A low level on this pin enables the driver while a high  
level on this pin places all drivers in high impedance state. Note that the functionality of the internal circuits is not affected by  
this signal.  
JTAG Signals  
TRST  
I
1
TRST: JTAG Test Port Reset  
Pullup  
This is the active low asynchronous reset to the JTAG Test Port. This pin has an internal pull-up resistor. To ensure determin-  
istic operation of the test logic, TMS should be held high while the signal applied to TRST changes from low to high.  
For normal signal processing, this pin should be connected to ground.  
If JTAG is not used, this pin must be connected to ground.  
TMS  
TCK  
I
2
3
TMS: JTAG Test Mode Select  
This pin is used to control the test logic state machine and is sampled on the rising edge of TCK. TMS has an internal pull-  
up resistor.  
Pullup  
If JTAG is not used, this pin may be left unconnected.  
I
TCK: JTAG Test Clock  
This is the input clock for JTAG. The data on TDI and TMS are clocked into the device on the rising edge of TCK while the  
data on TDO is clocked out of the device on the falling edge of TCK. When TCK is idle at low state, all the stored-state devices  
contained in the test logic will retain their state indefinitely.  
If JTAG is not used, this pin may be left unconnected.  
TDO  
TDI  
O
4
5
TDO: JTAG Test Data Output  
This output pin is high impedance normally and is used for reading all the serial configuration and test data from the test logic.  
The data on TDO is clocked out of the device on the falling edge of TCK.  
If JTAG is not used, this pin should be left unconnected.  
I
TDI: JTAG Test Data Input  
Pullup  
This pin is used for loading instructions and data into the test logic and has an internal pull-up resistor. The data on TDI is  
clocked into the device on the rising edge of TCK.  
If JTAG is not used, this pin may be left unconnected.  
Power Supplies and Grounds  
3.3 V I/O power supply  
VDDIO  
GNDIO  
-
-
7,40  
8,39  
I/O ground  
PIN DESCRIPTION  
15  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
Table-1 Pin Description (Continued)  
Name  
Type  
-
Pin No.  
Description  
VDDT1  
VDDT2  
61  
80  
3.3 V power supply for transmitter driver  
Analog ground for transmitter driver  
Power supply for receive analog circuit  
Analog ground for receive analog circuit  
GNDT1  
GNDT2  
-
-
-
64  
77  
VDDR1  
VDDR2  
68  
73  
GNDR1  
GNDR2  
65  
76  
VDDD  
GNDD  
VDDA  
GNDA  
-
-
-
-
31  
29  
69  
72  
3.3V digital core power supply  
Digital core ground  
Analog core circuit power supply  
Analog core circuit ground  
Others  
IC  
IC  
-
-
70  
6
IC: Internal Connection  
Internal Use. This pin should be left open in normal operation.  
IC: Internal Connection  
Internal Use. This pin should be connected to ground in normal operation.  
PIN DESCRIPTION  
16  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
3.2.2 ENCODER  
3
FUNCTIONAL DESCRIPTION  
In Single Rail mode, the Encoder can be configured to be a HDB3  
encoder or an AMI encoder by setting T_MD[0] bit (TCF0, 04H...).  
3.1 CONTROL MODE SELECTION  
The IDT82V2052E can be configured by software or by hardware. The  
softwarecontrolmodesupportsSerialControlInterface,Motorolanon-Mul-  
tiplexed Control Interface and Intel non-Multiplexed Control Interface. The  
Control mode is selected by MODE1 and MODE0 pins as follows:  
In Dual Rail mode, the Encoder is by-passed. In Dual Rail mode, a logic  
‘1ontheTDPnpinandalogic0ontheTDNnpinresultsinanegativepulse  
on the TTIPn/TRINGn; a logic ‘0’ on TDPn pin and a logic ‘1’ on TDNn pin  
results in a positive pulse on the TTIPn/TRINGn. If both TDPn and TDNn  
are high or low, the TTIPn/TRINGn outputs a space (Refer to TDn/TDPn,  
TDNn Pin Description).  
Control Interface Mode  
00  
01  
10  
11  
Hardware interface  
In hardware control mode, the operation mode of receive and transmit  
path can be selected by setting RXTXM1 and RXTXM0 pins on a global  
basis. Refer to 5 HARDWARE CONTROL PIN SUMMARY for details.  
Serial Microcontroller Interface.  
Parallel -non-Multiplexed -Motorola Interface  
Parallel -non-Multiplexed -Intel Interface  
3.2.3 PULSE SHAPER  
The IDT82V2052E provides two ways of manipulating the pulse shape  
before sending it. One is to use preset pulse templates; the other is to use  
user-programmable arbitrary waveform template.  
The serial microcontroller Interface consists of CS, SCLK, SCLKE,  
SDI, SDO and INT pins. SCLKE is used for the selection of active  
edge of SCLK.  
The parallel non-Multiplexed microcontroller Interface consists of  
CS, A[5:0], D[7:0], DS/RD, R/W/WR and INT pins.  
Hardware interface consists of PULSn, THZ, RCLKE, LPn[1:0],  
PATTn[1:0], JA[1:0], MONTn, TERMn, RPDn, MODE[1:0] and  
RXTXM[1:0] (n=1, 2). Refer to 5 HARDWARE CONTROL PIN SUM-  
MARY for details about hardware control.  
In software control mode, the pulse shape can be selected by setting  
the related registers.  
In hardware control mode, the pulse shape can be selected by setting  
PULSn pins on a per channel basis. Refer to 5 HARDWARE CONTROL PIN  
SUMMARY for details.  
3.2.3.1 Preset Pulse Templates  
3.2 TRANSMIT PATH  
The pulse shape is shown in Figure-3 according to the G.703 and the  
measuring diagram is shown in Figure-4. In internal impedance matching  
mode, if the cable impedance is 75 , the PULS[3:0] bits (TCF1, 05H...)  
shouldbesetto0000’;ifthecableimpedanceis120 , thePULS[3:0]bits  
(TCF1, 05H...) should be set to ‘0001’. In external impedance matching  
mode,forbothE1/75andE1/120cableimpedance,PULS[3:0]should  
be set to ‘0001’.  
The transmit path of each channel of IDT82V2052E consists of an  
Encoder, an optional Jitter Attenuator, a Waveform Shaper, a Line Driver  
and a Programmable Transmit Termination.  
3.2.1 TRANSMIT PATH SYSTEM INTERFACE  
The transmit path system interface consists of TCLKn pin, TDn/TDPn  
pinandTDNnpin.TCLKnisa2.048MHzclock.IfTCLKnismissingformore  
than 70 MCLK cycles, an interrupt will be generated if it is not masked.  
1 .20  
1.00  
TransmitdataissampledontheTDn/TDPnandTDNnpinsbytheactive  
edge of TCLKn. The active edge of TCLKn can be selected by the  
TCLK_SELbit(TCF0,04H...).AndtheactivelevelofthedataonTDn/TDPn  
and TDNn can be selected by the TD_INV bit (TCF0, 04H...). In hardware  
controlmode, thefallingedgeofTCLKnandtheactivehighoftransmitdata  
are always used.  
0.8 0  
0.6 0  
0.4 0  
0.2 0  
The transmit data from the system side can be provided in two different  
ways: Single Rail and Dual Rail. In Single Rail mode, only TDn pin is used  
for transmitting data and the T_MD[1] bit (TCF0, 04H...) should be set to  
‘0’.InDualRailMode,bothTDPnpinandTDNnpinareusedfortransmitting  
data, the T_MD[1] bit (TCF0, 04H...) should be set to ‘1’.  
0.00  
-0 .20  
0 .6  
-0 .6  
-0 .4  
-0 .2  
0
0.2  
0.4  
T im e in U nit Intervals  
Figure-3 E1 Waveform Template Diagram  
FUNCTIONAL DESCRIPTION  
17  
December 12, 2005  
 
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
User can change the wave shape and the amplitude to get the desired  
pulse shape. In order to do this, firstly, users can choose a set of waveform  
value from the following two tables, which is the most similar to the desired  
pulse shape. Table-2 and Table-3 list the sample data and scaling data of  
each of the two templates. Then modify the corresponding sample data to  
get the desired transmit pulse shape.  
TTIPn  
IDT82V2052E  
RLOAD  
VOUT  
TRINGn  
Secondly, through the value of SCAL[5:0] bits increased or decreased  
by 1, the pulse amplitude can be scaled up or down at the percentage ratio  
againstthestandardpulseamplitudeifneeded. Fordifferentpulseshapes,  
the value of SCAL[5:0] bits and the scaling percentage ratio are different.  
The following two tables list these values.  
Note: 1. For RLOAD = 75 (nom), Vout (Peak)=2.37V (nom)  
2. For RLOAD =120 (nom), Vout (Peak)=3.00V (nom)  
Figure-4 E1 Pulse Template Test Circuit  
Do the followings step by step, the desired waveform can be pro-  
grammed, based on the selected waveform template:  
(1).Select the UI by UI[1:0] bits (TCF3, 07H...)  
3.2.3.2 User-Programmable Arbitrary Waveform  
WhenthePULS[3:0]bitsaresetto11xx’, user-programmablearbitrary  
waveform generator modecanbe used in thecorresponding channel. This  
allowsthetransmitterperformancetobetunedforawidevarietyoflinecon-  
dition or special application.  
(2).Specify the sample address in the selected UI by SAMP [3:0] bits  
(TCF3, 07H...)  
(3).Write sample data to WDAT[6:0] bits (TCF4, 08H...). It contains the  
data to be stored in the RAM, addressed by the selected UI and the  
corresponding sample address.  
(4).SettheRWbit(TCF3,07H...)to0toimplementwritingdatatoRAM,  
or to ‘1’ to implement read data from RAM  
(5).Implement the Read from RAM/Write to RAM by setting the DONE  
bit (TCF3, 07H...)  
Each pulse shape can extend up to 4 UIs (Unit Interval), addressed by  
UI[1:0] bits (TCF3, 07H...) and each UI is divided into 16 sub-phases,  
addressed by the SAMP[3:0] bits (TCF3, 07H...). The pulse amplitude of  
each phase is represented by a binary byte, within the range from +63 to -  
63, stored in WDAT[6:0] bits (TCF4, 08H...) in signed magnitude form. The  
most positive number +63 (D) represents the maximum positive amplitude  
ofthetransmitpulsewhilethemostnegativenumber-63(D)representsthe  
maximum negative amplitude of the transmit pulse. Therefore, up to 64  
bytes are used. For each channel, a 64 bytes RAM is available.  
There are two standard templates which are stored in an on-chip ROM.  
User can select one of them as reference and make some changes to get  
the desired waveform.  
Repeat the above steps until all the sample data are written to or read  
from the internal RAM.  
(6).Write the scaling data to SCAL[5:0] bits (TCF2, 06H...) to scale the  
amplitude of the waveform based on the selected standard pulse  
amplitude  
WhenmorethanoneUIisusedtocomposethepulsetemplate,theover-  
lap of two consecutive pulses could make the pulse amplitude overflow  
(exceed the maximum limitation) if the pulse amplitude is not set properly.  
This overflow is captured by DAC_OV_IS bit (INTS1, 19H...), and, if  
enabled by the DAC_OV_IM bit (INTM1, 14H...), an interrupt will be gen-  
erated.  
FUNCTIONAL DESCRIPTION  
18  
December 12, 2005  
 
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
The following tables give all the sample data based on the preset pulse  
templates in detail for reference. For preset pulse templates, scaling up/  
down against the pulse amplitude is not supported.  
Table-3 Transmit Waveform Value For E1 120 Ohm  
Sample  
UI 1  
UI 2  
UI 3  
UI 4  
1.Table-2 Transmit Waveform Value for E1 75 Ω  
2.Table-3 Transmit Waveform Value for E1 120 Ω  
1
2
0000000  
0000000  
0000000  
0001111  
0111100  
0111100  
0111100  
0111100  
0111100  
0111100  
0111100  
0111100  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
3
Table-2 Transmit Waveform Value For E1 75 Ohm  
4
Sample  
UI 1  
UI 2  
UI 3  
UI 4  
5
1
2
0000000  
0000000  
0000000  
0001100  
0110000  
0110000  
0110000  
0110000  
0110000  
0110000  
0110000  
0110000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
6
7
3
8
4
9
5
10  
11  
12  
13  
14  
15  
16  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
SCAL[5:0] = 100001 (default), One step change of this value of SCAL[5:0]  
results in 3% scaling up/down against the pulse amplitude.  
SCAL[5:0] = 100001 (default), One step change of this value of SCAL[5:0]  
results in 3% scaling up/down against the pulse amplitude.  
FUNCTIONAL DESCRIPTION  
19  
December 12, 2005  
 
 
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
3.2.4 TRANSMIT PATH LINE INTERFACE  
workisused,PULSnpinsshouldbesettoselectthespecificinternalimped-  
ance in the corresponding channel. Refer to 5 HARDWARE CONTROL PIN  
SUMMARY for details.  
The transmit line interface consists of TTIPn and TRINGn pins. The  
impedance matching can be realized by the internal impedance matching  
circuit or the external impedance matching circuit. If T_TERM[2] is set to  
‘0’, the internal impedance matching circuit will be selected. In this case,  
the T_TERM[1:0] bits (TERM, 02H...) can be set to choose 75 or 120 Ω  
internalimpedanceofTTIPn/TRINGn.IfT_TERM[2]issetto1’,theinternal  
impedance matching circuit will be disabled. In this case, the external  
impedancematchingcircuitwillbeusedtorealizetheimpedancematching.  
The TTIPn/TRINGn can also be turned into high impedance globally by  
pulling THZ pin to high or individually by setting the THZ bit (TCF1, 05H...)  
to ‘1’. In this state, the internal transmit circuits are still active.  
In hardware control mode, TTIPn/TRINGn pins can be turned into high  
impedance globally by pulling THZ pin to high. Refer to 5 HARDWARE CON-  
TROL PIN SUMMARY for details.  
Figure-6 shows the appropriate external components to connect with  
the cable for one channel. Table-4 is the list of the recommended imped-  
ance matching for transmitter.  
Besides, in the following cases, TTIPn/TRINGn will also become high  
impedance:  
Loss of MCLK;  
Inhardwarecontrolmode, TERMnpincanbeusedtoselectimpedance  
matchingforbothreceiverandtransmitteronaperchannelbasis.IfTERMn  
pin is low, internal impedance network will be used. If TERMn pin is high,  
external impedance network will be used. When internal impedance net-  
Loss of TCLKn (exceptions: Remote Loopback; Transmit internal  
pattern by MCLK);  
Transmit path power down;  
After software reset; pin reset and power on.  
Table-4 Impedance Matching for Transmitter  
Cable  
Internal Termination  
PULS[3:0]  
External Termination  
Configuration  
T_TERM[2:0]  
RT  
T_TERM[2:0]  
PULS[3:0]  
RT  
E1 / 75 Ω  
000  
001  
0000  
0001  
0 Ω  
1XX  
0001  
0001  
9.4 Ω  
E1 / 120 Ω  
Note: The precision of the resistors should be better than ± 1%  
3.2.5 TRANSMIT PATH POWER DOWN  
3.3 RECEIVE PATH  
The transmit path can be powered down individually by setting the  
T_OFF bit (TCF0, 04H...) to ‘1’. In this case, the TTIPn/TRINGn pins are  
turned into high impedance.  
The receive path consists of Receive Internal Termination, Monitor  
Gain,Amplitude/WaveShapeDetector,DigitalTuningController,Adaptive  
Equalizer,DataSlicer,CDR(Clock&DataRecovery),OptionalJitterAtten-  
uator, Decoder and LOS/AIS Detector. Refer to Figure-5.  
In hardware control mode, the transmit path can be powered down by  
setting PATTn[1:0] pins to ‘11’ on a per channel basis. Refer to 5 HARD-  
WARE CONTROL PIN SUMMARY for details.  
3.3.1 RECEIVE INTERNAL TERMINATION  
The impedance matching can be realized by the internal impedance  
matching circuit or the external impedance matching circuit. If R_TERM[2]  
is set to ‘0’, the internal impedance matching circuit will be selected. In this  
case, the R_TERM[1:0] bits (TERM, 02H...) can be set to choose 75 or  
120internalimpedanceofRTIPn/RRINGn.IfR_TERM[2]issetto1’,the  
internalimpedancematching circuitwillbedisabled. Inthiscase, theexter-  
nal impedance matching circuit will be used to realize the impedance  
matching.  
Figure-6 shows the appropriate external components to connect with  
the cable for one channel. Table-5 is the list of the recommended imped-  
ance matching for receiver.  
FUNCTIONAL DESCRIPTION  
20  
December 12, 2005  
 
 
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
LOS/AIS  
LOS  
Detector  
RCLK  
Receive  
Internal  
termination  
Clock  
Jitter  
RTIP  
Monitor Gain/  
Adaptive Equalizer  
Data Slicer  
Decoder  
RDP  
RDN  
and Data  
Recovery  
Attenuator  
RRING  
Figure-5 Receive Path Function Block Diagram  
Table-5 Impedance Matching for Receiver  
Cable Configuration  
Internal Termination  
R_TERM[2:0]  
External Termination  
RR  
R_TERM[2:0]  
RR  
E1 / 75 Ω  
000  
001  
120 Ω  
1XX  
75 Ω  
E1 / 120 Ω  
120 Ω  
VDDRn  
One of the Two Identical Channels  
D8  
1:1  
·
3.3 V  
68µF1  
RTIPn  
A
VDDRn  
D7  
RX Line  
4
VDDRn  
RR  
0.1µF  
0.1µF  
D6  
GNDRn  
RRINGn  
·
B
VDDTn  
D4  
D5  
4
2:1  
RT  
·  
TTIPn  
3.3 V  
68µF1  
D3  
VDDTn  
2
Cp  
TX Line  
VDDTn  
D2  
GNDTn  
TRINGn  
·
D13  
4
RT  
Note:  
1. Common decoupling capacitor. One per chip  
2. Cp 0-560 (pF)  
3. D1 - D8, Motorola - MBR0540T1; International Rectifier - 11DQ04 or 10BQ060  
4. RT/ RR: refer to Table-4 and Table-5 respecivley for RT and RR values  
Figure-6 Transmit/Receive Line Circuit  
In hardware control mode, TERMn, PULSn pins can be used to select  
impedance matching for both receiver and transmitter on a per channel  
basis. If TERMn pin is low, internal impedance network will be used. If  
TERMnpinishigh,externalimpedancenetworkwillbeused.Wheninternal  
impedance network is used, PULSn pins should be set to select specific  
internal impedance for the corresponding channel. Refer to 5 HARDWARE  
CONTROL PIN SUMMARY for details.  
After a high resistance bridging circuit, the signal arriving at the RTIPn/  
RRINGn is dramatically attenuated. To compensate this attenuation, the  
Monitor Gain can be used to boost the signal by 22 dB, 26 dB and 32 dB,  
selectedbyMG[1:0]bits(RCF2, 0BH...). Fornormaloperation, theMonitor  
Gain should be set to 0 dB.  
In hardware control mode, MONTn pin can be used to set the Monitor  
Gain on a per channel basis. When MONTn pin is low, the Monitor Gain for  
the specific channel is 0 dB. When MONTn pin is high, the Monitor Gain for  
the specific channel is 26 dB. Refer to 5 HARDWARE CONTROL PIN SUM-  
MARY for details.  
3.3.2 LINE MONITOR  
The non-intrusive monitoring on channels located in other chips can be  
performed by tapping the monitored channel through a high impedance  
bridging circuit. Refer to Figure-7 and Figure-8.  
FUNCTIONAL DESCRIPTION  
21  
December 12, 2005  
 
 
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
3.3.3 ADAPTIVE EQUALIZER  
DSX cross connect  
point  
The Adaptive Equalizer can be enabled to increase the receive sensi-  
tivity and to allow programming of the LOS level up to -24 dB. See section  
3.5 LOS AND AIS DETECTION. It can be enabled or disabled by setting  
EQ_ON bit to ‘1’ or ‘0’ (RCF1, 0AH...).  
RTIP  
monitor  
gain=0dB  
RRING  
R
3.3.4 RECEIVE SENSITIVITY  
normal receive mode  
InHostmode,theReceiveSensitivityis-10dB.WiththeAdaptiveEqual-  
izer enabled, the receive sensitivity will be -20 dB.  
RTIP  
monitor gain  
=22/26/32dB  
In Hardware mode, the Adaptive Equalizer can not be enabled and the  
receive sensitivity is fixed at -10 dB. Refer to 5 HARDWARE CONTROL PIN  
SUMMARY for details.  
RRING  
monitor mode  
3.3.5 DATA SLICER  
Figure-7 Monitoring Receive Line in Another Chip  
The Data Slicer is used to generate a standard amplitude mark or a  
space according to the amplitude of the input signals. The threshold can  
be 40%, 50%, 60% or 70%, as selected by the SLICE[1:0] bits (RCF2,  
0BH...).TheoutputoftheDataSlicerisforwardedtotheCDR(Clock&Data  
Recovery) unit or to the RDPn/RDNn pins directly if the CDR is disabled.  
DSX cross connect  
point  
TTIP  
3.3.6 CDR (Clock & Data Recovery)  
TRING  
R
TheCDRisusedtorecovertheclockanddatafromthereceivedsignal.  
The recovered clock tracks the jitter in the data output from the Data Slicer  
and keeps the phase relationship between data and clock during the  
absenceoftheincomingpulse.TheCDRcanalsobeby-passedintheDual  
Railmode. WhenCDRisby-passed, the data fromtheDataSlicer isoutput  
to the RDPn/RDNn pins directly.  
normal transmit mode  
RTIP  
monitor gain  
=22/26/32dB  
RRING  
monitor mode  
3.3.7 DECODER  
Figure-8 Monitor Transmit Line in Another Chip  
The R_MD[1:0] bits (RCF0, 09H...) are used to select the AMI decoder  
or HDB3 decoder.  
Whenthechipisconfiguredbyhardware,theoperationmodeofreceive  
and transmit path can be selected by setting RXTXM[1:0] pins on a global  
basis. Refer to 5 HARDWARE CONTROL PIN SUMMARY for details.  
3.3.8 RECEIVE PATH SYSTEM INTERFACE  
The receive path system interface consists of RCLKn pin, RDn/RDPn  
pin and RDNn pin. The RCLKn outputs a recovered 2.048 MHz clock. The  
received data is updated on the RDn/RDPn and RDNn pins on the active  
edge of RCLKn. The active edge of RCLKn can be selected by the  
RCLK_SEL bit (RCF0, 09H...). And the active level of the data on RDn/  
RDPn and RDNn can be selected by the RD_INV bit (RCF0, 09H...).  
In hardware control mode, only the active edge of RCLKn can be  
selected.IfRCLKEissettohigh,thefallingedgewillbechosenastheactive  
edge of RCLKn. If RCLKE is set to low, the rising edge will be chosen as  
the active edge of RCLKn. The active level of the data on RDn/RDPn and  
RDNn is the same as that in software control mode.  
Thereceiveddatacanbeoutputtothesystemsideintwodifferentways:  
Single Rail or Dual Rail, as selected by R_MD bit [1] (RCF0, 09H...). In Sin-  
gle Rail mode, only RDn pin is used to output data and the RDNn/CVn pin  
is used to report the received errors. In Dual Rail Mode, both RDPn pin and  
RDNn pin are used for outputting data.  
FUNCTIONAL DESCRIPTION  
22  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
InthereceiveDualRailmode,theCDRunitcanbeby-passedbysetting  
R_MD[1:0] to ‘11’ (binary). In this situation, the output data from the Data  
Slicer will be output to the RDPn/RDNn pins directly, and the RCLKn out-  
putstheexclusiveOR(XOR)oftheRDPnandRDNn.Thisiscalledreceiver  
slicer mode. In this case, the transmit path is still operating in Dual Rail  
mode.  
3.3.10 G.772 NON-INTRUSIVE MONITORING  
In applications using only one channel, channel 1 can be configured to  
monitor the data received or transmitted in channel 2. The MONT[1:0] bits  
(GCF, 20H)determinewhichdirection(transmit/receive)willbemonitored.  
The monitoring is non-intrusive per ITU-T G.772. Figure-9 illustrates the  
concept.  
3.3.9 RECEIVE PATH POWER DOWN  
The monitored line signal (transmit or receive) goes through Channel  
1’s Clock and Data Recovery. The signal can be observed digitally at the  
RCLK1,RD1/RDP1andRDN1.IfChannel1isconfiguredtoRemoteLoop-  
back while in the Monitoring mode, the monitored data will be output on  
TTIP1/TRING1.  
The receive path can be powered down individually by setting R_OFF  
bit (RCF0, 09H...) to ‘1’. In this case, the RCLKn, RDn/RDPn, RDNn and  
LOSn will be logic low.  
Inhardwarecontrolmode,receiverpowerdowncanbeselectedbypull-  
ing RPDn pin to high on a per channel basis. Refer to 5 HARDWARE CON-  
TROL PIN SUMMARY for more details.  
Channel 2  
LOS/AIS  
LOS2  
Detection  
Receiver  
RTIP2  
RCLK2  
RD2/RDP2  
CV2/RDN2  
Clock and  
Data  
Recovery  
HDB3/AMI  
Decoder  
Jitter  
Attenuator  
Data  
Slicer  
Adaptive  
Equalizer  
Internal  
RRING2  
Termination  
TTIP2  
Transmitter  
Internal  
Termination  
TCLK2  
TD2/TDP2  
TDN2  
Line  
Driver  
HDB3/AMI  
Encoder  
Jitter  
Attenuator  
Waveform  
Shaper  
TRING2  
Channel 1  
G.772  
DLOS/AIS  
Detection  
ALOS  
Detection  
Monitor  
LOS1  
Receiver  
Internal  
Termination  
RCLK1  
RD1/RDP1  
CV1/RDN1  
Clock and  
Data  
Recovery  
RTIP1  
HDB3/AMI  
Decoder  
Jitter  
Attenuator  
Data  
Slicer  
Adaptive  
Equalizer  
RRING1  
Remote  
Loopback  
TTIP1  
Transmitter  
Internal  
Termination  
TCLK1  
TD1/TDP1  
TDN1  
Line  
Driver  
HDB3/AMI  
Encoder  
Jitter  
Attenuator  
Waveform  
Shaper  
TRING1  
Figure-9 G.772 Monitoring Diagram  
FUNCTIONAL DESCRIPTION  
23  
December 12, 2005  
 
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
TheCornerFrequencyoftheDPLLcanbe0.9Hzor6.8Hz, asselected  
by the JABW bit (JACF, 03H...). The lower the Corner Frequency is, the  
longer time is needed to achieve synchronization.  
3.4 JITTER ATTENUATOR  
ThereisoneJitterAttenuatorineachchanneloftheLIU.TheJitterAtten-  
uatorcanbedeployedinthetransmitpathorthereceivepath, andcanalso  
be disabled. This is selected by the JACF[1:0] bits (JACF, 03H...).  
When the incoming data moves faster than the outgoing data, the FIFO  
will overflow. This overflow is captured by the JAOV_IS bit (INTS1, 19H...).  
If the incoming data moves slower than the outgoing data, the FIFO will  
underflow. This underflow is captured by the JAUD_IS bit (INTS1, 19H...).  
For some applications that are sensitive to data corruption, the JA limit  
mode can be enabled by setting JA_LIMIT bit (JACF, 03H...) to ‘1’. In the  
JAlimitmode, thespeedoftheoutgoingdatawillbeadjustedautomatically  
whenthe FIFO is close to its fullor emptiness. The criteria ofstarting speed  
adjustment are shown in Table-6. The JA limit mode can reduce the pos-  
sibility of FIFO overflow and underflow, but the quality of jitter attenuation  
is deteriorated.  
In hardware control mode, Jitter Attenuator position, bandwidth and the  
depth of FIFO can be selected by JA[1:0] pins on a global basis. Refer to 5  
HARDWARE CONTROL PIN SUMMARY for details.  
3.4.1 JITTER ATTENUATION FUNCTION DESCRIPTION  
The Jitter Attenuator is composed of a FIFO and a DPLL, as shown in  
Figure-10. The FIFO is used as a pool to buffer the jittered input data, then  
the data is clocked out of the FIFO by a de-jittered clock. The depth of the  
FIFO can be 32 bits, 64 bits or 128 bits, as selected by the JADP[1:0] bits  
(JACF,03H...).Inhardwarecontrolmode,thedepthofFIFOcanbeselected  
byJA[1:0]pinsonaglobalbasis.Referto5HARDWARECONTROLPINSUM-  
MARY for details. Consequently, the constant delay of the Jitter Attenuator  
will be 16 bits, 32 bits or 64 bits. Deeper FIFO can tolerate larger jitter, but  
at the cost of increasing data latency time.  
Table-6 Criteria of Starting Speed Adjustment  
FIFO Depth  
Criteria for Adjusting Data Outgoing Speed  
2 bits close to its full or emptiness  
3 bits close to its full or emptiness  
4 bits close to its full or emptiness  
32 Bits  
RDn/RDPn  
FIFO  
3.4.2 JITTER ATTENUATOR PERFORMANCE  
Jittered Data  
Jittered Clock  
De-jittered Data  
RDNn  
32/64/128  
TheperformanceoftheJitterAttenuatorintheIDT82V2052Emeetsthe  
ITU-TI.431,G.703,G.736-739,G.823,G.824, ETSI300011,ETSITBR12/  
13 specifications. Details of the Jitter Attenuator performance is shown in  
Table-52 Jitter Tolerance and Table-53 Jitter Attenuator Characteristics.  
W
R
De-jittered Clock  
RCLKn  
DPLL  
MCLK  
Figure-10 Jitter Attenuator  
FUNCTIONAL DESCRIPTION  
24  
December 12, 2005  
 
 
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
LOS detect level threshold  
3.5 LOS AND AIS DETECTION  
With the Adaptive Equalizer off, the amplitude threshold Q is fixed on  
800 mVpp, while P=Q+200 mVpp (200 mVpp is the LOS level detect hys-  
teresis).  
3.5.1 LOS DETECTION  
TheLossofSignalDetectormonitorstheamplitudeoftheincomingsig-  
nal level and pulse density of the received signal on RTIPn and RRINGn.  
With the Adaptive Equalizer on, the value of Q can be selected by  
LOS[4:0] bit (RCF1, 0AH...), while P=Q+4 dB (4 dB is the LOS level detect  
hysteresis). RefertoTable 27, “RCF1: ReceiverConfigurationRegister1,”  
on page 42 for LOS[4:0] bit values available.  
LOS declare (LOS=1)  
A LOS is detected when the incoming signal has “no transitions”, i.e.,  
when the signal level is less than Q dB below nominal for N consecutive  
pulse intervals. Here N is defined by LAC bit (MAINT0, 0CH...). LOS will be  
declaredbypullingLOSnpintohigh(LOS=1)andLOSinterruptwillbegen-  
erated if it is not masked.  
When the chip is configured by hardware, the Adaptive Equalizer can  
not be enabled and Programmable LOS levels are not available (pin 58 &  
pin 60 have to be set to ‘0’).  
LOS clear (LOS=0)  
Criteria for declare and clear of a LOS detect  
The LOS is cleared when the incoming signal has “transitions”, i.e.,  
when the signal level is greater than P dB below nominal and has an aver-  
age pulse density of at least 12.5% forM consecutive pulse intervals, start-  
ing with the receipt of a pulse. Here M is defined by LAC bit (MAINT0,  
0CH...). LOS status is cleared by pulling LOSn pin to low.  
The detection supports G.775 and ETSI 300233/I.431. The criteria can  
be selected by LAC bit (MAINT0, 0CH...).  
Table-7 and Table-8 summarize LOS declare and clear criteria for both  
with and without the Adaptive Equalizer enabled.  
All Ones output during LOS  
On the system side, the RDPn/RDNn will reflect the input pulse “transi-  
tionattheRTIPn/RRINGnside andoutputrecoveredclock(butthequality  
of theoutput clock can not be guaranteed when theinputlevel islowerthan  
the maximum receive sensitivity) when AISE bit (MAINT0, 0CH...) is 0; or  
output All Ones as AIS when AISE bit (MAINT0, 0CH...) is 1. In this case  
RCLKn output is replaced by MCLK.  
LOS=1  
signal level>P  
density=OK  
signal level<Q  
On the line side, the TTIPn/TRINGn will output All Ones as AIS when  
ATAO bit (MAINT0, 0CH...) is 1. The All Ones pattern uses MCLK as the  
reference clock.  
(observing windows= M)  
(observing windows= N)  
LOS indicator is always active for all kinds of loopback modes.  
LOS=0  
Figure-11 LOS Declare and Clear  
Table-7 LOS Declare and Clear Criteria, Adaptive Equalizer Disabled  
Control bit (LAC)  
0 = G.775  
1 = I.431/ETSI  
LOS declare threshold  
Level < 800 mVpp; N=32 bits  
Level < 800 mVpp; N=2048 bits  
LOS clear threshold  
Level > 1 Vpp; M=32 bits; 12.5% mark density; <16 consecutive zeroes  
Level > 1 Vpp; M=32 bits; 12.5% mark density; <16 consecutive zeroes  
FUNCTIONAL DESCRIPTION  
25  
December 12, 2005  
 
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
Table-8 LOS Declare and Clear Criteria, Adaptive Equalizer Enabled  
Control bit  
LOS declare threshold  
LOS clear threshold  
Note  
LAC  
LOS[4:0]  
Q (dB)  
00000  
00010  
-4  
-8  
-
Level > Q+ 4dB  
Level < Q  
N=32 bits  
M=32 bits  
12.5% mark density  
<16 consecutive zeroes  
0
1
G.775 Level detect range is -9 to -35 dB.  
00011  
01010  
01011 - 11111  
-10  
-24  
G.775  
-
Reserved  
00000  
-4  
Level > Q+ 4dB  
M=32 bits  
12.5% mark density  
<16 consecutive zeroes  
00001  
01010  
01011 - 11111  
-6  
Level < Q  
N=2048 bits  
I.431 Level detect range is -6 to -20 dB.  
I.431/ETSI  
-24  
Reserved  
3.5.2 AIS DETECTION  
AIS detection comply with the ITU G.775 or the ETSI 300233, as selected  
by the LAC bit (MAINT0, 0CH...). Table-9 summarizes different criteria for  
AIS detection Declaring/Clearing.  
TheAlarmIndicationSignalcanbedetectedbytheIDT82V2052Ewhen  
the Clock & Data Recovery unit is enabled. The status of AIS detection is  
reflectedintheAIS_Sbit(STAT0,16H...).Thecriteriafordeclaring/clearing  
Table-9 AIS Condition  
ITU G.775 (LAC bit is set to ‘0’ by default)  
ETSI 300233 (LAC bit is set to ‘1’)  
Less than 3 zeros contained in each of two consecutive 512-bit streams are received Less than 3 zeros contained in a 512-bit stream are received  
3 or more zeros contained in each of two consecutive 512-bit streams are received 3 or more zeros contained in a 512-bit stream are received  
AIS Detected  
AIS Cleared  
FUNCTIONAL DESCRIPTION  
26  
December 12, 2005  
 
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
PRBSdatacanbeinvertedthroughsettingthePRBS_INVbit(MAINT0,  
0CH...).  
3.6 TRANSMIT AND DETECT INTERNAL PATTERNS  
Theinternalpatterns(AllOnes,AllZerosandPRBSpattern)willbegen-  
erated and detected by IDT82V2052E. TCLKn is used as the reference  
clock by default. MCLK can also be used as the reference clock by setting  
the PATT_CLK bit (MAINT0, 0CH...) to ‘1’.  
Any change of PRBS_S bit will be captured by PRBS_IS bit (INTS0,  
18H...). The PRBS_IES bit (INTES, 15H...) can be used to determine  
whetherthe0to1changeofPRBS_SbitwillbecapturedbythePRBS_IS  
bitoranychangesofPRBS_SbitwillbecapturedbythePRBS_ISbit.When  
the PRBS_IS bit is ‘1’, an interrupt will be generated if the PRBS_IM bit  
(INTM0, 13H...) is set to ‘1’.  
IfthePATT_CLKbit(MAINT0,0CH...)issetto0andthePATT[1:0]bits  
(MAINT0, 0CH...) are set to ‘00’, the transmit path will operate in normal  
mode.  
ThereceivedPRBS logic errorscan becounted in a16-bitcounterifthe  
ERR_SEL [1:0] bits (MAINT6, 12H...) are set to ‘00’. Refer to 3.8 ERROR  
DETECTION/COUNTING AND INSERTION for the operation of the error  
counter.  
When the chip is configured by hardware, the transmit path will operate  
in normal mode by setting PATTn[1:0] pins to ‘00’ on a per channel basis.  
Refer to 5 HARDWARE CONTROL PIN SUMMARY for details.  
3.6.1 TRANSMIT ALL ONES  
3.7 LOOPBACK  
In transmit direction, the All Ones data can be inserted into the data  
streamwhenthePATT[1:0]bits(MAINT0,0CH...)aresetto01’.Thetrans-  
mit data stream is output from TTIPn/TRINGn. In this case, either TCLKn  
or MCLK can be used as the transmit clock, as selected by the PATT_CLK  
bit (MAINT0, 0CH...).  
Tofacilitatetestinganddiagnosis,theIDT82V2052Eprovidesthreedif-  
ferent loopback configurations: Analog Loopback, Digital Loopback and  
Remote Loopback.  
3.7.1 ANALOG LOOPBACK  
Inhardwarecontrolmode,theAllOnesdatacanbeinsertedintothedata  
streamintransmitdirectionbysettingPATTn[1:0]pinsto01onaperchan-  
nel basis. Refer to 5 HARDWARE CONTROL PIN SUMMARY for details.  
WhentheALPbit(MAINT1,0DH...)issetto1’,thecorrespondingchan-  
nel is configured in Analog Loopback mode. In this mode, the transmit sig-  
nals are looped back to the Receiver Internal Termination in the receive  
paththenoutputfromRCLKn,RDn,RDPn/RDNn. Theall-onespatterncan  
be generated during analog loopback. At the same time, the transmit sig-  
nalsarestilloutputtoTTIPn/TRINGnintransmitdirection.Figure-12shows  
the process.  
3.6.2 TRANSMIT ALL ZEROS  
If the PATT_CLK bit (MAINT0, 0CH...) is set to ‘1’, the All Zeros will be  
inserted into the transmit data stream when the PATT[1:0] bits (MAINT0,  
0CH...) are set to ‘00’.  
In hardware control mode, Analog Loopback can be selected by setting  
LPn[1:0] pins to ‘01’ on a per channel basis.  
3.6.3 PRBS GENERATION AND DETECTION  
A PRBS will be generated in the transmit direction and detected in the  
3.7.2 DIGITAL LOOPBACK  
15  
receivedirectionbyIDT82V2052E.ThePRBSis2 -1,withmaximumzero  
WhentheDLPbit(MAINT1,0DH...)issetto1’,thecorrespondingchan-  
nel is configured in Digital Loopback mode. In this mode, the transmit sig-  
nals are looped back to the jitter attenuator (if enabled) and decoder in  
receive path, then output from RCLKn, RDn, RDPn/RDNn. At the same  
time,thetransmitsignalsarestilloutputtoTTIPn/TRINGnintransmitdirec-  
tion. Figure-13 shows the process.  
restrictions according to ITU-T O.151.  
WhenthePATT[1:0]bits(MAINT0,0CH...)aresetto10’,thePRBSpat-  
tern will be inserted into the transmit data stream with the MSB first. The  
PRBS pattern will be transmitted directly or invertedly.  
Inhardwarecontrolmode,thePRBSdatawillbegeneratedinthetrans-  
mit direction and inserted into the transmit data stream by setting  
PATTn[1:0]pinsto10onaperchannelbasis. Referto5HARDWARECON-  
TROL PIN SUMMARY for details.  
Both Analog Loopback mode and Digital Loopback mode allow the  
sending of the internal patterns (All Ones, All Zeros, PRBS, etc.) which will  
overwrite the transmit signals. In this case, either TCLKn or MCLK can be  
used as the reference clock for internal patterns transmission.  
The PRBS in the received data stream will be monitored. If the PRBS  
has reached synchronization status, the PRBS_S bit (STAT0, 16H...) will  
be set to ‘1’, even in the presence of a logic error rate less than or equal to  
In hardware control mode, Digital Loopback can be selected by setting  
LPn[1:0] pins to ‘10’ on a per channel basis.  
-1  
10 .Thecriteriaforsetting/clearingthePRBS_SbitareshowninTable-10.  
3.7.3 REMOTE LOOPBACK  
WhentheRLPbit(MAINT1,0DH...)issetto1’,thecorrespondingchan-  
nel is configured in Remote Loopback mode. In this mode, the recovered  
clock and data output from Clock and Data Recovery on the receive path  
is looped back to the jitter attenuator (if enabled) and Waveform Shaper in  
transmit path. Figure-14 shows the process.  
Table-10 Criteria for Setting/Clearing the PRBS_S Bit  
6 or less than 6 bit errors detected in a 64 bits hopping win-  
dow.  
PRBS Detection  
More than 6 bit errors detected in a 64 bits hopping window.  
PRBS Missing  
Inhardwarecontrolmode,RemoteLoopbackcanbeselectedbysetting  
LPn[1:0] pins to ‘11’ on a per channel basis.  
FUNCTIONAL DESCRIPTION  
27  
December 12, 2005  
 
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
One of the Two Identical Channels  
LOS/AIS  
Detection  
LOSn  
Receiver  
RTIPn  
Clock and  
Data  
Recovery  
RCLKn  
RDn/RDPn  
CVn/RDNn  
HDB3/AMI  
Decoder  
Jitter  
Attenuator  
Data  
Slicer  
Adaptive  
Equalizer  
Internal  
RRINGn  
Termination  
Analog  
Loopback  
Transmitter  
Internal  
Termination  
TTIPn  
TCLKn  
TDn/TDPn  
TDNn  
Line  
Driver  
HDB3/AMI  
Encoder  
Jitter  
Attenuator  
Waveform  
Shaper  
TRINGn  
Figure-12 Analog Loopback  
One of the Two Identical Channels  
LOS/AIS  
Detection  
LOSn  
Receiver  
Clock and  
Data  
RCLKn  
RDn/RDPn  
CVn/RDNn  
RTIPn  
HDB3/AMI  
Decoder  
Jitter  
Attenuator  
Adaptive  
Internal  
Data  
Slicer  
Equalizer  
Termination  
RRINGn  
Recovery  
Digital  
Loopback  
TCLKn  
TDn/TDPn  
TDNn  
Transmitter  
Internal  
Termination  
TTIPn  
HDB3/AMI  
Encoder  
Jitter  
Attenuator  
Waveform  
Shaper  
Line  
Driver  
TRINGn  
Figure-13 Digital Loopback  
FUNCTIONAL DESCRIPTION  
28  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
One of the Two Identical Channels  
LOS/AIS  
Detection  
LOSn  
Receiver  
RTIPn  
Clock and  
Data  
Recovery  
RCLKn  
RDn/RDPn  
CVn/RDNn  
HDB3/AMI  
Decoder  
Jitter  
Attenuator  
Data  
Slicer  
Adaptive  
Equalizer  
Internal  
Termination  
RRINGn  
Remote  
Loopback  
TTIPn  
Transmitter  
Internal  
Termination  
TCLKn  
TDn/TDPn  
TDNn  
Waveform  
Shaper  
HDB3/AMI  
Encoder  
Jitter  
Attenuator  
Line  
Driver  
TRINGn  
Figure-14 Remote Loopback  
FUNCTIONAL DESCRIPTION  
29  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
pulses that have the same polarity as the previous pulse are not the  
HDB3 zero substitution pulses.  
3.8 ERROR DETECTION/COUNTING AND INSERTION  
3.8.1 DEFINITION OF LINE CODING ERROR  
Excess Zero (EXZ) Error: There are two standards defining the  
EXZ errors: ANSI and FCC. The EXZ_DEF bit (MAINT6, 12H...)  
chooses which standard will be adopted by the corresponding  
channel to judge the EXZ error. Table-11 shows definition of EXZ.  
In hardware control mode, only ANSI standard is adopted.  
The following line encoding errors can be detected and counted by the  
IDT82V2052E:  
Received Bipolar Violation (BPV) Error: In AMI coding, when two  
consecutive pulses of the same polarity are received, a BPV error  
is declared.  
HDB3 Code Violation (CV) Error: In HDB3 coding, a CV error is  
declared when two consecutive BPV errors are detected, and the  
Table-11 EXZ Definition  
EXZ Definition  
ANSI  
FCC  
AMI  
More than 15 consecutive zeros are detected  
More than 3 consecutive zeros are detected  
More than 80 consecutive zeros are detected  
More than 3 consecutive zeros are detected  
HDB3  
3.8.2 ERROR DETECTION AND COUNTING  
Auto Report Mode  
(CNT_MD=1)  
Which type of the receiving errors (Received CV/BPV errors, excess  
zero errors and PRBS logic errors) will be counted is determined by  
ERR_SEL[1:0] bits (MAINT6, 12H...). Only one type of receiving error can  
becountedatatimeexceptthatwhentheERR_SEL[1:0]bitsaresetto11’,  
both CV/BPV and EXZ errors will be detected and counted.  
counting  
next second  
repeats the  
same process  
N
Theselectedtypeofreceivingerrorsiscountedinaninternal16-bitError  
Counter. Once an error is detected, an error interrupt which is indicated by  
corresponding bit in (INTS1, 19H...) will be generated if it is not masked.  
This Error Counter can be operated in two modes: Auto Report Mode and  
Manual Report Mode, as selected by the CNT_MD bit (MAINT6, 12H...).  
In Single Rail mode, once BPV or CV errors are detected, the CVn pin will  
be driven to high for one RCLK period.  
One-Second Timer expired?  
Y
CNT0, CNT1  
counter  
data in counter  
0
Bit TMOV_IS is set to '1'  
• Auto Report Mode  
In Auto Report Mode, the internal counter starts to count the received  
errors when the CNT_MD bit (MAINT6, 12H...) is set to ‘1’. A one-second  
timer is used to set the counting period. The received errors are counted  
within onesecond. If the one-secondtimer expires, the valueinthe internal  
counter will be transferred to (CNT0, 1AH...) and (CNT1, 1BH...), then the  
internal counter will be reset and start to count received errors for the next  
second. The errors occurred during the transfer will be accumulated to the  
next round. The expiration of the one-second timer will set TMOV_IS bit  
(INTS1, 19H...) to ‘1’, and will generate an interrupt if the TIMER_IM bit  
(INTM1,14H...)issetto0’.TheTMOV_ISbit(INTS1,19H...)willbecleared  
after the interrupt register is read. The content in the (CNT0, 1AH...) and  
(CNT1, 1BH...) should be read within the next second. If the counter over-  
flows, a counter overflow interrupt which is indicated by CNT_OV_IS bit  
(INTS1, 19H...) will be generated if it is not masked by CNT_IM bit (INTM1,  
14H...).  
read the data in CNT0, CNT1 within  
the next second  
Bit TMOV_IS is cleared after  
the interrupt register is read  
Figure-15 Auto Report Mode  
• Manual Report Mode  
In Manual Report Mode, the internal Error Counter starts to count the  
received errors when the CNT_MD bit (MAINT6, 12H...) is set to ‘0’. When  
there is a0’ to1’ transition onthe CNT_TRF bit (MAINT6, 12H...), thedata  
inthecounterwillbetransferredto(CNT0,1AH...)and(CNT1,1BH...),then  
the counter will be reset. The errors occurred during the transfer will be  
accumulated to thenextround. If the counter overflows, acounter overflow  
interrupt indicated by CNT_OV_IS bit (INTS1, 19H...) will be generated if  
it is not masked by CNT_IM bit (INTM1, 14H...).  
FUNCTIONAL DESCRIPTION  
30  
December 12, 2005  
 
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
3.8.3 BIPOLAR VIOLATION AND PRBS ERROR INSERTION  
Manual Report mode  
(CNT_MD=0)  
Only when three consecutive ‘1’s are detected in the transmit data  
stream, will a ‘0’ to ‘1’ transition on the BPV_INS bit (MAINT6, 12H...) gen-  
erateabipolarviolationpulse, andthepolarityofthesecond1intheseries  
will be inverted.  
counting  
A ‘0’ to ‘1’ transition on the EER_INS bit (MAINT6, 12H...) will generate  
a logic error during the PRBS transmission.  
N
A '0' to '1' transition  
on CNT_TRF?  
3.9 LINE DRIVER FAILURE MONITORING  
next round  
repeat the  
same process  
Y
Thetransmitdriverfailuremonitorcanbeenabledordisabledbysetting  
DFM_OFF bit (TCF1, 05H...). If the transmit driver failure monitor is  
enabled, the transmit driver failure will be captured by DF_S bit (STAT0,  
16H...). The transition of the DF_S bit is reflected by DF_IS bit (INTS0,  
18H...), and, ifenabledbyDF_IMbit(INTM0, 13H...), willgenerateaninter-  
rupt.WhenthereisashortcircuitontheTTIPn/TRINGnport,theoutputcur-  
rent will be limited to 100 mA (typical), and an interrupt will be generated.  
CNT0, CNT1  
counter  
data in  
counter  
0
Read the data in CNT0,  
CNT1 within next round1  
Reset CNT_TRF for the  
next '0' to '1' transition  
In hardware control mode, the transmit driver failure monitor is always  
enabled.  
Figure-16 Manual Report Mode  
Note: It is recommended that users shoulddo thefollowings within next roundof errorcount-  
ing: Read the data in CNT0 and CNT1; Reset CNT_TRF bit for the next ‘0’ to ‘1’ tran-  
sition on this bit.  
FUNCTIONAL DESCRIPTION  
31  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
3.10.2 TRANSMIT CLOCK (TCLK)  
3.10 MCLK AND TCLK  
TCLKn is used to sample the transmit data on TDn/TDPn, TDNn. The  
activeedgeofTCLKncanbeselectedbytheTCLK_SELbit(TCF0,04H...).  
During Transmit All Ones or PRBS pattern, either TCLKn or MCLK can be  
used as the reference clock. This is selected by the PATT_CLK bit  
(MAINT0, 0CH...).  
3.10.1 MASTER CLOCK (MCLK)  
MCLK is an independent, free-running reference clock. MCLK is 2.048  
MHz. This reference clock is used to generate several internal reference  
signals:  
Timing reference for the integrated clock recovery unit.  
Timing reference for the integrated digital jitter attenuator.  
Timing reference for microcontroller interface.  
Generation of RCLK signal during a loss of signal condition if AIS is  
enabled.  
But for Automatic Transmit All Ones and AIS, only MCLK is used as the  
reference clock and the PATT_CLK bit is ignored. In Automatic Transmit  
All Ones condition, the ATAO bit (MAINT0, 0CH) is set to ‘1’. In AIS condi-  
tion, the AISE bit (MAINT0, 0CH) is set to ‘1’.  
Reference clock during Transmit All Ones (TAOS), all zeros and  
PRBS if it is selected as the reference clock. For ATAO and AIS,  
MCLK is always used as the reference clock.  
Reference clock during Transmit All Ones (TAO) condition or send-  
ing PRBS in hardware control mode.  
If TCLKn has been missing for more than 70 MCLK cycles, TCLK_LOS  
bit (STAT0, 16H...) will be set, and the corresponding TTIPn/TRINGn will  
become high impedance if this channel is not used for remote loopback or  
is not using MCLK to transmit internal patterns (TAOS, All Zeros and  
PRBS). When TCLK is detected again, TCLK_LOS bit (STAT0, 16H...) will  
be cleared. The reference frequency to detect a TCLK loss is derived from  
MCLK.  
Figure-17 shows the chip operation status in different conditions of  
MCLK and TCLKn. The missing of MCLK will set all the TTIPn/TRINGn to  
high impedance state.  
Clocked  
MCLK=H/L?  
yes  
clocked  
L/H  
TCLKn status?  
generate transmit clock loss  
interrupt if not masked in  
software control mode;  
both the transmitters high  
impedance  
normal operation  
transmitter n high impedance  
Figure-17 TCLK Operation Flowchart  
FUNCTIONAL DESCRIPTION  
32  
December 12, 2005  
 
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
isselected.WhenMODE[1:0]pinsaresetto11’,Parallel-non-Multiplexed-  
Intel Interface is selected. Refer to 8 MICROCONTROLLER INTERFACE  
TIMING CHARACTERISTICS for details.  
3.11 MICROCONTROLLER INTERFACES  
Themicrocontrollerinterfaceprovidesaccesstoreadandwritethereg-  
isters in the device. The chip supports serial microcontroller interface and  
two kinds of parallel microcontroller interface: Motorola non-Multiplexed  
mode and Intel non-Multiplexed mode. Different microcontroller interfaces  
can be selected by setting MODE[1:0] pins to different values. Refer to  
MODE1 and MODE0 in pin description and 8 MICROCONTROLLER  
INTERFACE TIMING CHARACTERISTICS for details  
3.11.2 SERIAL MICROCONTROLLER INTERFACE  
When MODE[1:0] pins are set to01’, Serial Interface is selected. In this  
mode, the registers are programmed through a 16-bit word which contains  
an 8-bit address/command byte (6 address bits A0~A5 and bit R/W) and  
an 8-bit data byte (D0~D7). When bit R/W is ‘1’, data is read out from pin  
SDO. When bit R/W is ‘0’, data is written into SDI pin. Refer to Figure-18.  
3.11.1 PARALLEL MICROCONTROLLER INTERFACE  
TheinterfaceiscompatiblewithMotorolaorIntelmicrocontroller. When  
MODE[1:0]pinsaresetto10’,Parallel-non-Multiplexed-Motorolainterface  
CS  
SCLK  
SDI  
-
A0 A1 A2 A3 A4 A5  
R/W  
D7  
D7  
D0  
D0  
D2 D3  
D6  
D1  
D4 D5  
address/command byte  
input data byte (R/W=0)  
SDO  
D2  
D3  
D5 D6  
D1  
D4  
remains high impedance  
output data byte (R/W=1)  
Figure-18 Serial Microcontroller Interface Function Timing  
FUNCTIONAL DESCRIPTION  
33  
December 12, 2005  
 
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
interrupt is acknowledged through reading the Interrupt Status Registers  
of all the channels (INTS0, 18H...) or (INTS1, 19H...) will all the bits in the  
INTCH register (21H) be reset and the INT pin become inactive.  
3.12 INTERRUPT HANDLING  
All kinds of interrupt of the IDT82V2052E are indicated by the INT pin.  
When the INT_PIN[0] bit (GCF, 20H) is ‘0’, the INT pin is open drain active  
low, with a 10 Kexternal pull-up resistor. When the INT_PIN[1:0] bits  
(GCF, 20H) are ‘01’, the INT pin is push-pull active low; when the  
INT_PIN[1:0] bits are ‘10’, the INT pin is push-pull active high.  
Therearetotallytwelvekindsofeventsthatcouldbetheinterruptsource  
for one channel:  
(1).LOS Detected  
(2).AIS Detected  
(3).Driver Failure Detected  
(4).TCLK Loss  
(5).Synchronization Status of PRBS  
(6).PRBS Error Detected  
AlltheinterruptcanbedisabledbytheINTM_GLBbit(GCF,20H).When  
the INTM_GLB bit (GCF, 20H) is set to ‘0’, an active level on the INT pin  
representsaninterruptoftheIDT82V2052E. TheINT_CH[1:0](GCF, 20H)  
should be read to identify which channel(s) generate the interrupt.  
The interrupt event is captured by the corresponding bit in the Interrupt  
Status Register (INTS0, 18H...) or (INTS1, 19H...). Every kind of interrupt  
canbeenabled/disabledindividuallybythecorrespondingbitintheregister  
(INTM0, 13H...) or (INTM1, 14H...). Some event is reflected by the corre-  
spondingbitintheStatusRegister(STAT0,16H...)or(STAT1,17H...),and  
theInterruptTriggerEdgeSelectionRegistercanbeusedtodeterminehow  
the Status Register sets the Interrupt Status Register.  
(7).Code Violation Received  
(8).Excessive Zeros Received  
(9).JA FIFO Overflow/Underflow  
(10).One-Second Timer Expired  
(11). Error Counter Overflow  
(12).Arbitrary Waveform Generator Overflow  
Table-12isasummaryofallkindsofinterruptandtheassociatedStatus  
bit, Interrupt Status bit, Interrupt Trigger Edge Selection bit and Interrupt  
Mask bit.  
After the Interrupt Status Register (INTS0, 18H...) or (INTS1, 19H...) is  
read, the corresponding bit indicating which channel generates the inter-  
rupt in the INTCH register (21H) will be reset. Only when all the pending  
Table-12 Interrupt Event  
Interrupt Event  
Status bit  
(STAT0, STAT1)  
Interrupt Status bit  
(INTS0, INTS1)  
Interrupt Edge Selection  
Interrupt Mask bit  
(INTM0, INTM1)  
bit  
(INTES)  
LOS Detected  
AIS Detected  
LOS_S  
AIS_S  
LOS_IS  
AIS_IS  
LOS_IES  
AIS_IES  
LOS_IM  
AIS_IM  
Driver Failure Detected  
TCLK Loss  
DF_S  
DF_IS  
DF_IES  
DF_IM  
TCLK_LOS  
PRBS_S  
TCLK_LOS_IS  
PRBS_IS  
ERR_IS  
TCLK_IES  
PRBS_IES  
TCLK_IM  
PRBS_IM  
ERR_IM  
CV_IM  
Synchronization Status of PRBS  
PRBS Error  
Code Violation Received  
Excessive Zeros Received  
JA FIFO Overflow  
CV_IS  
EXZ_IS  
EXZ_IM  
JAOV_IS  
JAUD_IS  
TMOV_IS  
CNT_OV_IS  
DAC_OV_IS  
JAOV_IM  
JAUD_IM  
TIMER_IM  
CNT_IM  
DAC_OV_IM  
JA FIFO Underflow  
One-Second Timer Expired  
Error Counter Overflow  
Arbitrary Waveform Generator Overflow  
FUNCTIONAL DESCRIPTION  
34  
December 12, 2005  
 
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
Hardware Reset: Asserting the RST pin low for a minimum of 100 ns  
3.13 5V TOLERANT I/O PINS  
will reset the chip.  
All digital input pins willtolerate5.0 ± 10% voltsand are compatible with  
TTL logic.  
Afterreset, alldriversoutputareinhighimpedancestate, alltheinternal  
flip-flops are reset, and all the registers are initialized to default values.  
3.14 RESET OPERATION  
3.15 POWER SUPPLY  
The chip can be reset in two ways:  
This chip uses a single 3.3 V power supply.  
Software Reset: Writing to the RST register (01H) will reset the chip  
in 1 µs.  
FUNCTIONAL DESCRIPTION  
35  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
4
PROGRAMMING INFORMATION  
4.1 REGISTER LIST AND MAP  
The IDT82V2052E registers can be divided into Global Registers and  
Local Registers. The operation on the Global Registers affects both of the  
two channels while the operation on Local Registers only affects the spe-  
cific channel. For different channel, the address of Local Register is differ-  
ent. Table-13 is the map of Global Registers and Table-14 is the map of  
LocalRegisters.Iftheconfigurationofbothofthetwochannelsisthesame,  
the COPY bit (GCF, 20H) can be set to ‘1’ to establish the Broadcasting  
mode. In the Broadcasting mode, the Writing operation on any of the two  
channelsregisterswillbecopiedtothecorrespondingregistersoftheother  
channel.  
4.2 Reserved Registers  
When writing to registers with reserved bit locations, the default state  
must be written to the reserved bits to ensure proper device operation.  
Table-13 Global Register List and Map  
Address (hex) Register  
R/W  
MAP  
CH1  
00  
CH2  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
ID  
R
W
ID7  
ID6  
ID5  
ID4  
ID3  
ID2  
ID1  
ID0  
01  
RST  
20  
GCF  
INTCH  
R/W  
R
MONT1  
-
MONT0  
-
-
-
-
-
COPY  
-
INTM_GLB  
-
INT_PIN1  
INT_CH2  
INT_PIN0  
INT_CH1  
21  
PROGRAMMING INFORMATION  
36  
December 12, 2005  
 
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
Table-14 Per Channel Register List and Map  
Address (hex) Register  
CH1 CH2  
Transmit and receive termination register  
R/W  
MAP  
b7  
-
b6  
-
b5  
b4  
b3  
b2  
b1  
b0  
02  
Jitter attenuation control register  
03 23 JACF  
Transmit path control registers  
22  
TERM  
R/W  
T_TERM2  
JA_LIMIT  
T_TERM1  
JACF1  
T_TERM0  
JACF0  
R_TERM2  
JADP1  
R_TERM1  
JADP0  
R_TERM0  
JABW  
R/W  
-
-
04  
05  
06  
07  
08  
24  
25  
26  
27  
28  
TCF0  
TCF1  
TCF2  
TCF3  
TCF4  
R/W  
R/W  
R/W  
R/W  
R/W  
-
-
-
T_OFF  
THZ  
TD_INV  
PULS3  
SCAL3  
SAMP3  
WDAT3  
TCLK_SEL  
PULS2  
T_MD1  
PULS1  
SCAL1  
SAMP1  
WDAT1  
T_MD0  
PULS0  
SCAL0  
SAMP0  
WDAT0  
-
-
-
DFM_OFF  
SCAL5  
UI1  
-
DONE  
-
SCAL4  
UI0  
SCAL2  
RW  
SAMP2  
WDAT2  
WDAT6  
WDAT5  
WDAT4  
Receive path control registers  
09  
0A  
0B  
29  
2A  
2B  
RCF0  
RCF1  
RCF2  
R/W  
R/W  
R/W  
-
-
-
-
-
R_OFF  
LOS4  
RD_INV  
LOS3  
-
RCLK_SEL  
R_MD1  
LOS1  
MG1  
R_MD0  
LOS0  
MG0  
EQ_ON  
-
-
LOS2  
-
SLICE1  
SLICE0  
Network Diagnostics control registers  
0C  
0D  
2C  
2D  
MAINT0  
MAINT1  
R/W  
-
-
PATT1  
PATT0  
PATT_CLK  
PRBS_INV  
LAC  
RLP  
-
AISE  
ALP  
-
ATAO  
DLP  
-
-
-
-
-
-
-
-
-
0E-11 2E-31 MAINT2-  
MAINT5  
R/W  
R/W  
-
12  
32  
MAINT6  
-
-
BPV_INS  
-
ERR_INS  
EXZ_DEF  
ERR_SEL1  
ERR_SEL0  
CNT_MD  
CNT_TRF  
Interrupt control registers  
13  
14  
15  
33  
34  
35  
INTM0  
INTM1  
INTES  
R/W  
R/W  
R/W  
-
PRBS_IM  
ERR_IM  
TCLK_IM  
EXZ_IM  
DF_IM  
CV_IM  
DF_IES  
AIS_IM  
TIMER_IM  
AIS_IES  
LOS_IM  
CNT_IM  
LOS_IES  
DAC_OV_IM JAOV_IM  
JAUD_IM  
-
-
-
PRBS_IES  
TCLK_IES  
Line status registers  
16  
17  
36  
37  
STAT0  
STAT1  
R
R
-
-
-
-
-
PRBS_S  
-
TCLK_LOS  
-
DF_S  
-
AIS_S  
-
LOS_S  
-
RLP_S  
Interrupt status registers  
18  
19  
38  
39  
INTS0  
INTS1  
R
R
-
-
-
PRBS_IS TCLK_LOS_IS  
DF_IS  
CV_IS  
AIS_IS  
LOS_IS  
DAC_OV_IS JAOV_IS  
JAUD_IS  
ERR_IS  
EXZ_IS  
TMOV_IS CNT_OV_IS  
Counter registers  
1A  
1B  
3A  
3B  
CNT0  
CNT1  
R
R
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit9  
Bit0  
Bit8  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
PROGRAMMING INFORMATION  
37  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
4.3 REGISTER DESCRIPTION  
4.3.1 GLOBAL REGISTERS  
Table-15 ID: Device Revision Register  
(R, Address = 00H)  
Symbol  
Bit  
Default  
Description  
Description  
ID[7:0]  
7-0  
00H  
Current Silicon Chip ID.  
Table-16 RST: Reset Register  
(W, Address = 01H)  
Symbol  
Bit  
Default  
RST[7:0]  
7-0  
00H  
Software reset. A write operation on this register will reset all internal registers to their default values, and the status  
of all ports are set to the default status. The content in this register can not be changed. After reset, all drivers output  
are in high impedance state.  
Table-17 GCF: Global Configuration Register  
(R/W, Address = 20H)  
Symbol  
Bit  
Default  
Description  
MONT[1:0]  
7-6  
00  
G.772 monitor  
= 00/10: Normal  
= 01: Receiver 1 monitors the receive path of channel 2  
= 11: Receiver 1 monitors the transmit path of channel 2  
-
5-4  
3
00  
0
Reserved.  
COPY  
Enable broadcasting mode.  
= 0: Broadcasting mode disabled  
= 1: Broadcasting mode enabled. Writing operation on one channel's register will be copied exactly to the corre-  
sponding registers in other channel.  
INTM_GLB  
2
1
Global interrupt enable  
= 0: Interrupt is globally enabled. But for each individual interrupt, it still can be disabled by its corresponding Inter-  
rupt mask Bit.  
= 1: All the interrupts are disabled for both channels.  
INT_PIN[1:0]  
1-0  
00  
Interrupt pin control  
= x0: Open drain, active low (with an external pull-up resistor)  
= 01: Push-pull, active low  
= 11: Push-pull, active high  
Table-18 INTCH: Interrupt Channel Indication Register  
(R, Address =21H)  
Symbol  
-
Bit  
7-2  
1-0  
Default  
000000  
00  
Description  
Reserved.  
INT_CH[1:0]  
INT_CH[n]=0 indicates that an interrupt was generated by channel [n+1].  
PROGRAMMING INFORMATION  
38  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
4.3.2 TRANSMIT AND RECEIVE TERMINATION REGISTER  
Table-19 TERM: Transmit and Receive Termination Configuration Register  
(R/W, Address = 02H, 22H)  
Symbol  
Bit  
7-6  
5-3  
Default  
00  
Description  
-
Reserved.  
T_TERM[2:0]  
000  
These bits select the internal termination for transmit line impedance matching.  
= 000: Internal 75 impedance matching  
= 001: Internal 120 impedance matching  
= 010 / 011: Reserved  
= 1xx: Selects external impedance matching resistors (see Table-4).  
R_TERM[2:0]  
2-0  
000  
These bits select the internal termination for receive line impedance matching.  
= 000: Internal 75 impedance matching  
= 001: Internal 120 impedance matching  
= 010 / 011: Reserved  
= 1xx: Selects external impedance matching resistors (see Table-5).  
4.3.3 JITTER ATTENUATION CONTROL REGISTER  
Table-20 JACF: Jitter Attenuation Configuration Register  
(R/W, Address = 03H, 23H)  
Symbol  
-
Bit  
7-6  
5
Default  
Description  
00  
1
Reserved.  
JA_LIMIT  
= 0: Normal mode  
= 1: JA limit mode  
JACF[1:0]  
JADP[1:0]  
JABW  
4-3  
2-1  
0
00  
00  
0
Jitter Attenuation configuration  
= 00/10: JA not used  
= 01: JA in transmit path  
= 11: JA in receive path  
Jitter Attenuation depth select  
= 00: 128 bits  
= 01: 64 bits  
= 1x: 32 bits  
Jitter transfer function bandwidth select  
= 0: 6.8 Hz  
= 1: 0.9 Hz  
PROGRAMMING INFORMATION  
39  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
4.3.4 TRANSMIT PATH CONTROL REGISTERS  
Table-21 TCF0: Transmitter Configuration Register 0  
(R/W, Address = 04H, 24H)  
Symbol  
-
Bit  
7-5  
4
Default  
000  
Description  
Reserved  
T_OFF  
0
Transmitter power down enable  
= 0: Transmitter power up  
= 1: Transmitter power down (line driver high impedance)  
TD_INV  
TCLK_SEL  
T_MD[1:0]  
3
2
0
0
Transmit data invert  
= 0: Data on TDn or TDPn/TDNn is active high  
= 1: Data on TDn or TDPn/TDNn is active low  
Transmit clock edge select  
= 0: Data on TDPn/TDNn is sampled on the falling edge of TCLKn  
= 1: Data on TDPn/TDNn is sampled on the rising edge of TCLKn  
0-1  
00  
Transmitter operation mode control  
T_MD[1:0] select different stages of the transmit data path  
= 00: Enable HDB3 encoder and waveform shaper blocks. Input on pin TDn is single rail NRZ data  
= 01: Enable AMI encoder and waveform shaper blocks. Input on pin TDn is single rail NRZ data  
= 1x: Encoder is bypassed, dual rail NRZ transmit data input on pin TDPn/TDNn  
Table-22 TCF1: Transmitter Configuration Register 1  
(R/W, Address = 05H, 25H)  
Symbol  
-
Bit  
7-6  
5
Default  
Description  
00  
0
Reserved. This bit should be ‘0’ for normal operation.  
DFM_OFF  
Transmit driver failure monitor disable  
= 0: DFM is enabled  
= 1: DFM is disabled  
THZ  
4
1
Transmit line driver high impedance enable  
= 0: Normal state  
= 1: Transmit line driver high impedance enable (other transmit path still work normally).  
PULS[3:0]  
3-0  
0000 These bits select the transmit template:  
TCLK  
Cable impedance  
Allowable Cable loss  
0-24 dB  
00001  
0001  
2.048 MHz  
75 Ω  
2.048 MHz  
120 Ω  
0-24 dB  
0010 - 1011  
11xx  
Reserved  
User programmable waveform setting  
1. In internal impedance matching mode, for E1/75 cable impedance, the PULS[3:0] bits (TCF1, 05H...) should be set to ‘0000’. In external impedance matching  
mode, for E1/75 cable impedance, the PULS[3:0] bits should be set to ‘0001’.  
PROGRAMMING INFORMATION  
40  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
Table-23 TCF2: Transmitter Configuration Register 2  
(R/W, Address = 06H, 26H)  
Symbol  
-
Bit  
7-6  
5-0  
Default  
00  
Description  
Reserved.  
SCAL[5:0]  
100001  
SCAL specifies a scaling factor to be applied to the amplitude of the user-programmable arbitrary pulses which is  
to be transmitted if needed. The default value of SCAL[5:0] is ‘100001’. Refer to 3.2.3.2 User-Programmable Arbi-  
trary Waveform.  
= 100001: Default value for 75 and 120 . One step change of this value results in 3% scaling up/down against  
the pulse amplitude.  
Table-24 TCF3: Transmitter Configuration Register 3  
(R/W, Address = 07H, 27H)  
Symbol  
DONE  
RW  
Bit  
7
Default  
Description  
0
0
After ‘1’ is written to this bit, a read or write operation is implemented.  
6
This bit selects read or write operation  
= 0: Write to RAM  
= 1: Read from RAM  
UI[1:0]  
5-4  
3-0  
00  
These bits specify the unit interval address. There are totally 4 unit intervals.  
= 00: UI address is 0 (The most left UI)  
= 01: UI address is 1  
= 10: UI address is 2  
= 11: UI address is 3  
SAMP[3:0]  
0000  
These bits specify the sample address. Each UI has totally 16 samples.  
= 0000: Sample address is 0 (The most left sample)  
= 0001: Sample address is 1  
= 0010: Sample address is 2  
……  
= 1110: Sample address is 14  
= 1111: Sample address is 15  
Table-25 TCF4: Transmitter Configuration Register 4  
(R/W, Address = 08H, 28H)  
Symbol  
-
Bit  
7
Default  
Description  
0
Reserved  
WDAT[6:0]  
6-0  
0000000 In Indirect Write operation, the WDAT[6:0] will be loaded to the pulse template RAM, specifying the amplitude of  
the Sample.  
After an Indirect Read operation, the amplitude data of the Sample in the pulse template RAM will be output to the  
WDAT[6:0].  
PROGRAMMING INFORMATION  
41  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
4.3.5 RECEIVE PATH CONTROL REGISTERS  
Table-26 RCF0: Receiver Configuration Register 0  
(R/W, Address = 09H, 29H)  
Symbol  
-
Bit  
7-5  
4
Default  
000  
Description  
Reserved  
R_OFF  
0
Receiver power down enable  
= 0: Receiver power up  
= 1: Receiver power down  
RD_INV  
RCLK_SEL  
R_MD[1:0]  
3
2
0
0
Receive data invert  
= 0: Data on RDn or RDPn/RDNn is active high  
= 1: Data on RDn or RDPn/RDNn is active low  
Receive clock edge select (this bit is ignored in slicer mode)  
= 0: Data on RDn or RDPn/RDNn is updated on the rising edge of RCLKn  
= 1: Data on RDn or RDPn/RDNn is updated on the falling edge of RCLKn  
1-0  
00  
Receive path decoding selection  
= 00: Receive data is HDB3 decoded and output on RDn pin with single rail NRZ format  
= 01: Receive data is AMI decoded and output on RDn pin with single rail NRZ format  
= 10: Decoder is bypassed, re-timed dual rail data with NRZ format output on RDPn/RDNn (dual rail mode with clock  
recovery)  
= 11: CDR and decoder are bypassed, slicer data with RZ format output on RDPn/RDNn (slicer mode)  
Table-27 RCF1: Receiver Configuration Register 1  
(R/W, Address= 0AH, 2AH)  
Symbol  
-
Bit  
7
Default  
Description  
0
0
Reserved  
EQ_ON  
6
= 0: Receive equalizer off  
= 1: Receive equalizer on (LOS programming enabled)  
-
5
0
Reserved.  
LOS[4:0]  
4:0  
10101  
LOS Clear Level (dB)  
LOS Declare Level (dB)  
00000  
00001  
0
<-4  
>-2  
<-6  
00010  
>-4  
<-8  
00011  
>-6  
<-10  
<-12  
<-14  
<-16  
<-18  
<-20  
<-22  
<-24  
00100  
>-8  
00101  
>-10  
>-12  
>-14  
>-16  
>-18  
>-20  
Reserved  
00110  
00111  
01000  
01001  
01010  
01011 - 11111  
PROGRAMMING INFORMATION  
42  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
Table-28 RCF2: Receiver Configuration Register 2  
(R/W, Address = 0BH, 2BH)  
Symbol  
-
Bit  
7-6  
5-4  
Default  
00  
Description  
Reserved.  
SLICE[1:0]  
01  
Receive slicer threshold  
= 00: The receive slicer generates a mark if the voltage on RTIPn/RRINGn exceeds 40% of the peak amplitude.  
= 01: The receive slicer generates a mark if the voltage on RTIPn/RRINGn exceeds 50% of the peak amplitude.  
= 10: The receive slicer generates a mark if the voltage on RTIPn/RRINGn exceeds 60% of the peak amplitude.  
= 11: The receive slicer generates a mark if the voltage on RTIPn/RRINGn exceeds 70% of the peak amplitude.  
-
3-2  
1-0  
10  
00  
Reserved  
MG[1:0]  
Monitor gain setting: these bits select the internal linear gain boost  
= 00: 0 dB  
= 01: 22 dB  
= 10: 26 dB  
= 11: 32 dB  
4.3.6 NETWORK DIAGNOSTICS CONTROL REGISTERS  
Table-29 MAINT0: Maintenance Function Control Register 0  
(R/W, Address = 0CH, 2CH)  
Symbol  
-
Bit  
7
Default  
Description  
0
Reserved.  
PATT[1:0]  
6-5  
00  
These bits select the internal pattern and insert it into transmit data stream.  
= 00: Normal operation (PATT_CLK = 0) / insert all zeros (PATT_CLK = 1)  
= 01: Insert All Ones  
= 10: Insert PRBS (E1: 215-1)  
= 11: Reserved  
PATT_CLK  
PRBS_INV  
LAC  
4
3
2
1
0
0
0
0
0
0
Selects reference clock for transmitting internal pattern  
= 0: Uses TCLKn as the reference clock  
= 1: Uses MCLK as the reference clock  
Inverts PRBS  
= 0: The PRBS data is not inverted  
= 1: The PRBS data is inverted before transmission and detection  
LOS/AIS criterion is selected as below:  
= 0: G.775  
= 1: ETSI 300233& I.431  
AISE  
AIS enable during LOS  
= 0: AIS insertion on RDPn/RDNn/RCLKn is disabled during LOS  
= 1: AIS insertion on RDPn/RDNn/RCLKn is enabled during LOS  
ATAO  
Automatically Transmit All Ones (enabled only when PATT[1:0] = 00)  
= 0: Disabled  
= 1: Automatically Transmit All Ones pattern at TTIPn/TRINGn during LOS  
PROGRAMMING INFORMATION  
43  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
Table-30 MAINT1: Maintenance Function Control Register 1  
(R/W, Address= 0DH, 2DH)  
Symbol  
Bit  
7-3  
2
Default  
00000  
0
Description  
-
Reserved  
RLP  
Remote loopback enable  
= 0: Disables remote loopback (normal transmit and receive operation)  
= 1: Enables remote loopback  
ALP  
DLP  
1
0
0
0
Analog loopback enable  
= 0: Disables analog loopback (normal transmit and receive operation)  
= 1: Enables analog loopback  
Digital loopback enable  
= 0: Disables digital loopback (normal transmit and receive operation)  
= 1: Enables digital loopback  
Table-31 MAINT6: Maintenance Function Control Register 6  
(R/W, Address = 12H, 32H)  
Symbol  
-
Bit  
7
Default  
Description  
0
0
Reserved.  
BPV_INS  
6
BPV error insertion  
A ‘0’ to ‘1’ transition on this bit will cause a single bipolar violation error to be inserted into the transmit data stream.  
This bit must be cleared and set again for a subsequent error to be inserted.  
ERR_INS  
EXZ_DEF  
ERR_SEL  
5
4
0
0
PRBS logic error insertion  
A ‘0’ to ‘1’ transition on this bit will cause a single PRBS logic error to be inserted into the transmit PRBS data stream.  
This bit must be cleared and set again for a subsequent error to be inserted.  
EXZ definition select  
= 0: ANSI  
= 1: FCC  
3-2  
00  
These bits choose which type of error will be counted  
= 00: The PRBS logic error is counted by a 16-bit error counter  
= 01: The EXZ error is counted by a 16-bit error counter  
= 10: The Received CV (BPV) error is counted by a 16-bit error counter  
= 11: Both CV (BPV) and EXZ errors are counted by a 16-bit error counter.  
CNT_MD  
CNT_TRF  
1
0
0
0
Counter operation mode select  
= 0: Manual Report mode  
= 1: Auto Report mode  
= 0: Clear this bit for the next ‘0’ to ‘1’ transition on this bit.  
= 1: Error counting result is transferred to CNT0 and CNT1 and the error counter is reset.  
PROGRAMMING INFORMATION  
44  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
4.3.7 INTERRUPT CONTROL REGISTERS  
Table-32 INTM0: Interrupt Mask Register 0  
(R/W, Address = 13H, 33H)  
Symbol  
-
Bit  
7-5  
4
Default  
111  
Description  
Reserved  
PRBS_IM  
1
PRBS synchronic signal detect interrupt mask  
= 0: PRBS synchronic signal detect interrupt enabled  
= 1: PRBS synchronic signal detect interrupt masked  
TCLK_IM  
DF_IM  
3
2
1
0
1
1
1
1
TCLK loss detect interrupt mask  
= 0: TCLK loss detect interrupt enabled  
= 1: TCLK loss detect interrupt masked  
Driver Failure interrupt mask  
= 0: Driver Failure interrupt enabled  
= 1: Driver Failure interrupt masked  
AIS_IM  
LOS_IM  
Alarm Indication Signal interrupt mask  
= 0: Alarm Indication Signal interrupt enabled  
= 1: Alarm Indication Signal interrupt masked  
Loss Of Signal interrupt mask  
= 0: Loss Of Signal interrupt enabled  
= 1: Loss Of Signal interrupt masked  
Table-33 INTM1: Interrupt Masked Register 1  
(R/W, Address = 14H, 34H)  
Symbol  
Bit  
Default  
Description  
DAC_OV_IM  
7
1
DAC arithmetic overflow interrupt mask  
= 0: DAC arithmetic overflow interrupt enabled  
= 1: DAC arithmetic overflow interrupt masked  
JAOV_IM  
JAUD_IM  
ERR_IM  
EXZ_IM  
CV_IM  
6
5
4
3
2
1
0
1
1
1
1
1
1
1
JA overflow interrupt mask  
= 0: JA overflow interrupt enabled  
= 1: JA overflow interrupt masked  
JA underflow interrupt mask  
= 0: JA underflow interrupt enabled  
= 1: JA underflow interrupt masked  
PRBS logic error detect interrupt mask  
= 0: PRBS logic error detect interrupt enabled  
= 1: PRBS logic error detect interrupt masked  
Receive excess zeros interrupt mask  
= 0: Receive excess zeros interrupt enabled  
= 1: Receive excess zeros interrupt masked  
Receive error interrupt mask  
= 0: Receive error interrupt enabled  
= 1: Receive error interrupt masked  
TIMER_IM  
CNT_IM  
One-Second Timer expiration interrupt mask  
= 0: One-Second Timer expiration interrupt enabled  
= 1: One-Second Timer expiration interrupt masked  
Counter overflow interrupt mask  
= 0: Counter overflow interrupt enabled  
= 1: Counter overflow interrupt masked  
PROGRAMMING INFORMATION  
45  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
Table-34 INTES: Interrupt Trigger Edge Select Register  
(R/W, Address = 15H, 35H)  
Symbol  
-
Bit  
7-5  
4
Default  
000  
Description  
Reserved  
PRBS_IES  
0
This bit determines the PRBS synchronization status interrupt event.  
= 0: Interrupt event is generated as a ‘0’ to ‘1’ transition of the PRBS_S bit in STAT0 status register  
= 1: Interrupt event is generated as either a ‘0’ to ‘1’ transition or a ‘1’ to ‘0’ transition of the PRBS_S bit in STAT0  
status register  
TCLK_IES  
DF_IES  
3
2
1
0
0
0
0
0
This bit determines the TCLK Loss interrupt event.  
= 0: Interrupt event is generated as a ‘0’ to ‘1’ transition of the TCLK_LOS bit in STAT0 status register  
= 1: Interrupt event is generated as either a ‘0’ to ‘1’ transition or a ‘1’ to ‘0’ transition of the TCLK_LOS bit in STAT0  
status register  
This bit determines the Driver Failure interrupt event.  
= 0: Interrupt event is generated as a ‘0’ to ‘1’ transition of the DF_S bit in STAT0 status register  
= 1: Interrupt event is generated as either a ‘0’ to ‘1’ transition or a ‘1’ to ‘0’ transition of the DF_S bit in STAT0 status  
register  
AIS_IES  
LOS_IES  
This bit determines the AIS interrupt event.  
= 0: Interrupt event is generated as a ‘0’ to ‘1’ transition of the AIS_S bit in STAT0 status register  
= 1: Interrupt event is generated as either a ‘0’ to ‘1’ transition or a ‘1’ to ‘0’ transition of the AIS_S bit in STAT0 status  
register  
This bit determines the LOS interrupt event.  
= 0: Interrupt is generated as a ‘0’ to ‘1’ transition of the LOS_S bit in STAT0 status register  
= 1: Interrupt is generated as either a ‘0’ to ‘1’ transition or a ‘1’ to ‘0’ transition of the LOS_S bit in STAT0 status  
register  
PROGRAMMING INFORMATION  
46  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
4.3.8 LINE STATUS REGISTERS  
Table-35 STAT0: Line Status Register 0 (real time status monitor)  
(R, Address = 16H, 36H)  
Symbol  
-
Bit  
7-5  
4
Default  
000  
Description  
Reserved  
PRBS_S  
0
Synchronous status indication of PRBS (real time)  
= 0: 215-1 PRBS not detected  
= 1: 215-1 PRBS detected  
Note:  
If PRBS_IM=0:  
A ‘0’ to ‘1’ transition on this bit causes a synchronous status detected interrupt if PRBS _IES bit is ‘0’.  
Any changes of this bit causes an interrupt if PRBS_IES bit is set to ‘1’.  
TCLK_LOS  
3
2
1
0
0
0
0
0
TCLKn loss indication  
= 0: Normal  
= 1: TCLK pin has not toggled for more than 70 MCLK cycles  
Note:  
If TCLK_IM=0:  
A ‘0’ to ‘1’ transition on this bit causes an interrupt if TCLK _IES bit is ‘0’.  
Any changes of this bit causes an interrupt if TCLK_IES bit is set to ‘1’.  
DF_S  
Line driver status indication  
= 0: Normal operation  
= 1: Line driver short circuit is detected.  
Note:  
If DF_IM=0  
A ‘0’ to ‘1’ transition on this bit causes an interrupt if DF _IES bit is ‘0’.  
Any changes of this bit causes an interrupt if DF_IES bit is set to ‘1’.  
AIS_S  
Alarm Indication Signal status detection  
= 0: No AIS signal is detected in the receive path  
= 1: AIS signal is detected in the receive path  
Note:  
If AIS_IM=0  
A ‘0’ to ‘1’ transition on this bit causes an interrupt if AIS _IES bit is ‘0’.  
Any changes of this bit causes an interrupt if AIS_IES bit is set to ‘1’.  
LOS_S  
Loss Of Signal status detection  
= 0: Loss of signal on RTIPn/RRINGn is not detected  
= 1: Loss of signal on RTIPn/RRINGn is detected.  
Note:  
If LOS_IM=0  
A ‘0’ to ‘1’ transition on this bit causes an interrupt if LOS _IES bit is ‘0’.  
Any changes of this bit causes an interrupt if LOS_IES bit is set to ‘1’.  
PROGRAMMING INFORMATION  
47  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
Table-36 STAT1: Line Status Register 1 (real time status monitor)  
(R, Address = 17H, 37H)  
Symbol  
-
Bit  
7-6  
5
Default  
Description  
00  
0
Reserved.  
RLP_S  
Indicating the status of Remote Loopback  
= 0: The remote loopback is inactive.  
= 1: The remote loopback is active (closed).  
-
4-0  
00000  
Reserved  
4.3.9 INTERRUPT STATUS REGISTERS  
Table-37 INTS0: Interrupt Status Register 0  
(R, Address = 18H, 38H) (this register is reset and relevant interrupt request is cleared after a read)  
Symbol  
-
Bit  
7-5  
4
Default  
000  
Description  
Reserved  
PRBS_IS  
0
This bit indicates the occurrence of the interrupt event generated by the PRBS synchronization status.  
= 0: No PRBS synchronization status interrupt event occurred  
= 1: PRBS synchronization status interrupt event occurred  
TCLK_LOS_IS  
DF_IS  
3
2
1
0
0
0
0
0
This bit indicates the occurrence of the interrupt event generated by the TCLK loss detection.  
= 0: No TCLK loss interrupt event.  
= 1:TCLK loss interrupt event occurred.  
This bit indicates the occurrence of the interrupt event generated by the Driver Failure.  
= 0: No Driver Failure interrupt event occurred  
= 1: Driver Failure interrupt event occurred  
AIS_IS  
This bit indicates the occurrence of the AIS (Alarm Indication Signal) interrupt event.  
= 0: No AIS interrupt event occurred  
= 1: AIS interrupt event occurred  
LOS_IS  
This bit indicates the occurrence of the LOS (Loss of signal) interrupt event.  
= 0: No LOS interrupt event occurred  
= 1: LOS interrupt event occurred  
PROGRAMMING INFORMATION  
48  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
Table-38 INTS1: Interrupt Status Register 1  
(R, Address = 19H, 39H) (this register is reset and the relevant interrupt request is cleared after a read)  
Symbol  
Bit  
Default  
Description  
DAC_OV_IS  
7
0
This bit indicates the occurrence of the pulse amplitude overflow of Arbitrary Waveform Generator interrupt event.  
= 0: No pulse amplitude overflow of Arbitrary Waveform Generator interrupt event occurred  
= 1: The pulse amplitude overflow of Arbitrary Waveform Generator interrupt event occurred  
JAOV_IS  
JAUD_IS  
ERR_IS  
6
5
4
3
2
1
0
0
0
0
0
0
0
0
This bit indicates the occurrence of the Jitter Attenuator Overflow interrupt event.  
= 0: No JA Overflow interrupt event occurred  
= 1: JA Overflow interrupt event occurred  
This bit indicates the occurrence of the Jitter Attenuator Underflow interrupt event.  
= 0: No JA Underflow interrupt event occurred  
= 1: JA Underflow interrupt event occurred  
This bit indicates the occurrence of the interrupt event generated by the detected PRBS logic error.  
= 0: No PRBS logic error interrupt event occurred  
= 1: PRBS logic error interrupt event occurred  
EXZ_IS  
This bit indicates the occurrence of the Excessive Zeros interrupt event.  
= 0: No Excessive Zeros interrupt event occurred  
= 1: EXZ interrupt event occurred  
CV_IS  
This bit indicates the occurrence of the Code Violation interrupt event.  
= 0: No Code Violation interrupt event occurred  
= 1: Code Violation interrupt event occurred  
TMOV_IS  
CNT_OV_IS  
This bit indicates the occurrence of the One-Second Timer Expiration interrupt event.  
= 0: No One-Second Timer Expiration interrupt event occurred  
= 1: One-Second Timer Expiration interrupt event occurred  
This bit indicates the occurrence of the Counter Overflow interrupt event.  
= 0: No Counter Overflow interrupt event occurred  
= 1: Counter Overflow interrupt event occurred  
4.3.10 COUNTER REGISTERS  
Table-39 CNT0: Error Counter L-byte Register 0  
(R, Address = 1AH, 3AH)  
Symbol  
Bit  
Default  
Description  
CNT_L[7:0]  
7-0  
00H  
This register contains the lower eight bits of the 16-bit error counter. CNT_L[0] is the LSB.  
Table-40 CNT1: Error Counter H-byte Register 1  
(R, Address = 1BH, 3BH)  
Symbol  
Bit  
Default  
Description  
CNT_H[7:0]  
7-0  
00H  
This register contains the upper eight bits of the 16-bit error counter. CNT_H[7] is the MSB.  
PROGRAMMING INFORMATION  
49  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
5
HARDWARE CONTROL PIN SUMMARY  
Table-41 Hardware Control Pin Summary  
Pin No.  
TQFP  
Symbol  
Description  
9
10  
MODE1  
MODE0  
MODE[1:0]: Operation mode of Control interface select (global control)  
00= Hardware interface  
01= Serial interface  
10= Parallel - non-Multiplexed - Motorola Interface  
11= Parallel - non-Multiplexed - Intel Interface  
13  
12  
TERM1  
TERM2  
TERMn: Termination interface select (per channel control)  
These pins select internal or external impedance matching for channel n (n=1 or 2)  
0 = ternary interface with internal impedance matching network.  
1 = ternary interface with external impedance matching network  
14  
15  
RXTXM1  
RXTXM0  
RXTXM[1:0]: Receive and transmit path operation mode select (global control)  
00= single rail with HDB3 coding  
01= single rail with AMI coding  
10= dual rail interface with CDR enable  
11= slicer mode  
51  
47  
PULS1  
PULS2  
PULSn: These pins are used to select the following functions (per channel control):  
Transmit pulse template  
Internal termination impedance (75 / 120 )  
PULSn  
TCLK  
Cable impedance (internal  
matching impedance)  
Cable loss  
0
1
2.048 MHz  
2.048 MHz  
75Ω  
0-24 dB  
0-24 dB  
120Ω  
57  
59  
RPD1  
RPD2  
RPDn: Receiver power down control (per channel control)  
0= Normal operation  
1= receiver power down  
46  
45  
PATT11  
PATT10  
PATTn[1:0]: Transmit test pattern select (per channel control)  
In hardware control mode, these pins select the transmit pattern for channel n (n=1 or 2)  
00 = normal  
56  
55  
PATT21  
PATT20  
01= All Ones  
10= PRBS  
11= transmitter power down  
16  
17  
JA1  
JA0  
JA[1:0]: Jitter attenuation position, bandwidth and the depth of FIFO select (global control)  
00= JA is disabled  
01= JA in receiver, broad bandwidth, FIFO=64 bits  
10= JA in receiver, narrow bandwidth, FIFO=128 bits  
11= JA in transmitter, narrow bandwidth, FIFO=128 bits  
19  
18  
MONT1  
MONT2  
MONTn: Receive Monitor n gain select (per channel control)  
In hardware control mode with ternary interface, this pin selects the receive monitor gain for receiver n (n=1 or 2)  
0= 0 dB  
1= 26 dB  
42  
41  
LP11  
LP10  
LPn[1:0]: Loopback mode select (per channel control)  
When the chip is configured by hardware, these pins are used to select loopback operation modes for channel n.  
00= no loopback  
44  
43  
LP21  
LP20  
01= analog loopback  
10= digital loopback  
11= remote loopback  
20  
THZ  
THZ: Transmitter Driver High Impedance Enable (global control)  
This signal enables or disables both of the transmitter drivers. A low level on this pin enables both of the two drivers while a high  
level on this pin places both of the two drivers in high impedance state.  
HARDWARE CONTROL PIN SUMMARY  
50  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
Table-41 Hardware Control Pin Summary (Continued)  
Pin No.  
TQFP  
Symbol  
Description  
11  
RCLKE  
RCLKE: the active edge of RCLKn select when hardware control mode is used (global control)  
0= select the rising edge as active edge of RCLKn  
1= select the falling edge as active edge of RCLKn  
48  
49  
50  
52  
53  
54  
58  
60  
-
In Hardware mode, these pins have to be tied to GND.  
HARDWARE CONTROL PIN SUMMARY  
51  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
6
IEEE STD 1149.1 JTAG TEST ACCESS PORT  
TheIDT82V2052EsupportsthedigitalBoundaryScanSpecificationas  
described in the IEEE 1149.1 standards.  
(TDI) pin, and shifted out of the registers via the Test Data Output (TDO)  
pin. Both TDI and TDO are clocked at a rate determined by TCK.  
The boundary scan architecture consists of data and instruction regis-  
ters plus a Test Access Port (TAP) controller. Control of the TAP is per-  
formed through signals applied to the Test Mode Select (TMS) and Test  
Clock (TCK) pins. Data is shifted into the registers via the Test Data Input  
The JTAG boundary scan registers include BSR (Boundary Scan Reg-  
ister), IDR (Device Identification Register), BR (Bypass Register) and IR  
(InstructionRegister).Thesewillbedescribedinthefollowingpages.Refer  
to Figure-19 for architecture.  
Digital output pins  
Digital input pins  
parallel latched output  
BSR (Boundary Scan Register)  
MUX  
IDR (Device Identification Register)  
BR (Bypass Register)  
TDI  
TDO  
IR (Instruction Register)  
Control<6:0>  
TMS  
TAP  
Select  
TRST  
(Test Access Port)  
Controller  
high impedance enable  
TCK  
Figure-19 JTAG Architecture  
IEEE STD 1149.1 JTAG TEST ACCESS PORT  
52  
December 12, 2005  
 
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
6.1 JTAG INSTRUCTIONS AND INSTRUCTION REG-  
ISTER  
The IR (Instruction Register) with instruction decode block is used to  
select the test to be executed or the data register to be accessed or both.  
The instructions are shifted in LSB first to this 3-bit register. See Table-  
42 for details of the codes and the instructions related.  
Table-42 Instruction Register Description  
IR CODE  
INSTRUCTION  
COMMENTS  
000  
Extest  
The external test instruction allows testing of the interconnection to other devices. When the current instruction is the EXTEST  
instruction, the boundary scan register is placed between TDI and TDO. The signal on the input pins can be sampled by load-  
ing the boundary scan register using the Capture-DR state. The sampled values can then be viewed by shifting the boundary  
scan register using the Shift-DR state. The signal on the output pins can be controlled by loading patterns shifted in through  
input TDI into the boundary scan register using the Update-DR state.  
100  
Sample / Preload The sample instruction samples all the device inputs and outputs. For this instruction, the boundary scan register is placed  
between TDI and TDO. The normal path between IDT82V2052E logic and the I/O pins is maintained. Primary device inputs  
and outputs can be sampled by loading the boundary scan register using the Capture-DR state. The sampled values can then  
be viewed by shifting the boundary scan register using the Shift-DR state.  
110  
111  
Idcode  
The identification instruction is used to connect the identification register between TDI and TDO. The device's identification  
code can then be shifted out using the Shift-DR state.  
Bypass  
The bypass instruction shifts data from input TDI to output TDO with one TCK clock period delay. The instruction is used to  
bypass the device.  
6.2.2 BYPASS REGISTER (BR)  
6.2 JTAG DATA REGISTER  
The BR consists of a single bit. It can provide a serial path between the  
TDI input andTDOoutput, bypassing theBSR to reduce test access times.  
6.2.1 DEVICE IDENTIFICATION REGISTER (IDR)  
TheIDR canbe set todefine theproducer number, partnumber andthe  
device revision, which can be used to verify the proper version or revision  
numberthathasbeenusedinthesystemundertest. TheIDRis32bitslong  
and is partitioned as in Table-43. Data from the IDR is shifted out to TDO  
LSB first.  
6.2.3 BOUNDARY SCAN REGISTER (BSR)  
The BSR can apply and read test patterns in parallel to or from all the  
digital I/O pins. The BSR is a 98 bits long shift register and is initialized and  
read using the instruction EXTEST or SAMPLE/PRELOAD. Each pin is  
related to one or more bits in the BSR. For details, please refer to the BSDL  
file.  
Table-43 Device Identification Register Description  
Bit No.  
0
Comments  
Set to ‘1’  
6.2.4 TEST ACCESS PORT CONTROLLER  
The TAP controller is a 16-state synchronous state machine. Figure-20  
shows its state diagram following the description of each state. Note that  
the figure contains two main branches to access either the data or instruc-  
tion registers. The value shown next to each state transition in this figure  
states the value present at TMS at each rising edge of TCK. Please refer  
to Table-44 for details of the state description.  
1-11  
Producer Number  
Part Number  
12-27  
28-31  
Device Revision  
IEEE STD 1149.1 JTAG TEST ACCESS PORT  
53  
December 12, 2005  
 
 
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
Table-44 TAP Controller State Description  
STATE  
DESCRIPTION  
Test Logic Reset  
In this state, the test logic is disabled. The device is set to normal operation. During initialization, the device initializes the instruction register  
with the IDCODE instruction. Regardless of the original state of the controller, the controller enters the Test-Logic-Reset state when the TMS  
input is held high for at least 5 rising edges of TCK. The controller remains in this state while TMS is high. The device processor automatically  
enters this state at power-up.  
Run-Test/Idle  
This is a controller state between scan operations. Once in this state, the controller remains in the state as long as TMS is held low. The  
instruction register and all test data registers retain their previous state. When TMS is high and a rising edge is applied to TCK, the controller  
moves to the Select-DR state.  
Select-DR-Scan  
This is a temporary controller state and the instruction does not change in this state. The test data register selected by the current instruction  
retains its previous state. If TMS is held low and a rising edge is applied to TCK when in this state, the controller moves into the Capture-DR  
state and a scan sequence for the selected test data register is initiated. If TMS is held high and a rising edge applied to TCK, the controller  
moves to the Select-IR-Scan state.  
Capture-DR  
Shift-DR  
In this state, the Boundary Scan Register captures input pin data if the current instruction is EXTEST or SAMPLE/PRELOAD. The instruction  
does not change in this state. The other test data registers, which do not have parallel input, are not changed. When the TAP controller is in  
this state and a rising edge is applied to TCK, the controller enters the Exit1-DR state if TMS is high or the Shift-DR state if TMS is low.  
In this controller state, the test data register connected between TDI and TDO as a result of the current instruction shifts data on stage toward  
its serial output on each rising edge of TCK. The instruction does not change in this state. When the TAP controller is in this state and a rising  
edge is applied to TCK, the controller enters the Exit1-DR state if TMS is high or remains in the Shift-DR state if TMS is low.  
Exit1-DR  
This is a temporary state. While in this state, if TMS is held high, a rising edge applied to TCK causes the controller to enter the Update-DR  
state, which terminates the scanning process. If TMS is held low and a rising edge is applied to TCK, the controller enters the Pause-DR state.  
The test data register selected by the current instruction retains its previous value and the instruction does not change during this state.  
Pause-DR  
The pause state allows the test controller to temporarily halt the shifting of data through the test data register in the serial path between TDI  
and TDO. For example, this state could be used to allow the tester to reload its pin memory from disk during application of a long test  
sequence. The test data register selected by the current instruction retains its previous value and the instruction does not change during this  
state. The controller remains in this state as long as TMS is low. When TMS goes high and a rising edge is applied to TCK, the controller moves  
to the Exit2-DR state.  
Exit2-DR  
This is a temporary state. While in this state, if TMS is held high, a rising edge applied to TCK causes the controller to enter the Update-DR  
state, which terminates the scanning process. If TMS is held low and a rising edge is applied to TCK, the controller enters the Shift-DR state.  
The test data register selected by the current instruction retains its previous value and the instruction does not change during this state.  
Update-DR  
The Boundary Scan Register is provided with a latched parallel output to prevent changes while data is shifted in response to the EXTEST  
and SAMPLE/PRELOAD instructions. When the TAP controller is in this state and the Boundary Scan Register is selected, data is latched  
into the parallel output of this register from the shift-register path on the falling edge of TCK. The data held at the latched parallel output  
changes only in this state. All shift-register stages in the test data register selected by the current instruction retain their previous value and  
the instruction does not change during this state.  
Select-IR-Scan  
Capture-IR  
Shift-IR  
This is a temporary controller state. The test data register selected by the current instruction retains its previous state. If TMS is held low and  
a rising edge is applied to TCK when in this state, the controller moves into the Capture-IR state, and a scan sequence for the instruction reg-  
ister is initiated. If TMS is held high and a rising edge is applied to TCK, the controller moves to the Test-Logic-Reset state. The instruction  
does not change during this state.  
In this controller state, the shift register contained in the instruction register loads a fixed value of '100' on the rising edge of TCK. This supports  
fault-isolation of the board-level serial test data path. Data registers selected by the current instruction retain their value and the instruction  
does not change during this state. When the controller is in this state and a rising edge is applied to TCK, the controller enters the Exit1-IR  
state if TMS is held high, or the Shift-IR state if TMS is held low.  
In this state, the shift register contained in the instruction register is connected between TDI and TDO and shifts data one stage towards its  
serial output on each rising edge of TCK. The test data register selected by the current instruction retains its previous value and the instruction  
does not change during this state. When the controller is in this state and a rising edge is applied to TCK, the controller enters the Exit1-IR  
state if TMS is held high, or remains in the Shift-IR state if TMS is held low.  
Exit1-IR  
This is a temporary state. While in this state, if TMS is held high, a rising edge applied to TCK causes the controller to enter the Update-IR  
state, which terminates the scanning process. If TMS is held low and a rising edge is applied to TCK, the controller enters the Pause-IR state.  
The test data register selected by the current instruction retains its previous value and the instruction does not change during this state.  
Pause-IR  
The pause state allows the test controller to temporarily halt the shifting of data through the instruction register. The test data register selected  
by the current instruction retains its previous value and the instruction does not change during this state. The controller remains in this state  
as long as TMS is low. When TMS goes high and a rising edge is applied to TCK, the controller moves to the Exit2-IR state.  
IEEE STD 1149.1 JTAG TEST ACCESS PORT  
54  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
Table-44 TAP Controller State Description (Continued)  
STATE  
DESCRIPTION  
Exit2-IR  
This is a temporary state. While in this state, if TMS is held high, a rising edge applied to TCK causes the controller to enter the Update-IR  
state, which terminates the scanning process. If TMS is held low and a rising edge is applied to TCK, the controller enters the Shift-IR state.  
The test data register selected by the current instruction retains its previous value and the instruction does not change during this state.  
Update-IR  
The instruction shifted into the instruction register is latched into the parallel output from the shift-register path on the falling edge of TCK.  
When the new instruction has been latched, it becomes the current instruction. The test data registers selected by the current instruction retain  
their previous value.  
1
Test-logic Reset  
0
0
1
1
1
Run Test/Idle  
Select-DR  
0
Select-IR  
0
1
1
Capture-DR  
0
Capture-IR  
0
0
0
Shift-DR  
1
Shift-IR  
1
1
1
0
Exit1-DR  
0
Exit1-IR  
0
0
Pause-DR  
1
Pause-IR  
1
0
0
Exit2-DR  
1
Exit2-IR  
1
Update-DR  
Update-IR  
0
0
1
1
Figure-20 JTAG State Diagram  
IEEE STD 1149.1 JTAG TEST ACCESS PORT  
55  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
7
TEST SPECIFICATIONS  
Table-45 Absolute Maximum Rating  
Symbol  
Parameter  
Min  
-0.5  
Max  
4.6  
Unit  
V
VDDA, VDDD  
VDDIO  
Core Power Supply  
I/O Power Supply  
-0.5  
4.6  
V
VDDT1-2  
VDDR1-2  
Transmit Power Supply  
Receive Power Supply  
-0.5  
4.6  
V
-0.5  
4.6  
V
Input Voltage, Any Digital Pin  
GND-0.5  
GND-0.5  
5.5  
V
Input Voltage, Any RTIPn and RRINGn pin1  
ESD Voltage, any pin  
VDDR+0.5  
V
Vin  
Iin  
2000 2  
500 3  
V
V
Transient latch-up current, any pin  
Input current, any digital pin 4  
100  
10  
mA  
mA  
-10  
DC Input current, any analog pin 4  
Maximum power dissipation in package  
Case Temperature  
±100  
mA  
Pd  
1.23  
120  
W
°C  
°C  
Tc  
Ts  
Storage Temperature  
-65  
+150  
CAUTION:  
Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied. Exposure to absolute maximum rating conditions  
for extended periods may affect device reliability.  
1.Reference to ground  
2.Human body model  
3.Charge device model  
4.Constant input current  
Table-46 Recommended Operation Conditions  
Symbol  
Parameter  
Min  
3.13  
3.13  
3.13  
3.13  
-40  
Typ  
3.3  
3.3  
3.3  
3.3  
25  
Max  
3.47  
3.47  
3.47  
3.47  
85  
Unit  
V
VDDA,VDDD  
VDDIO  
VDDT  
Core Power Supply  
I/O Power Supply  
V
Transmitter Power Supply  
Receive Power Supply  
Ambient operating temperature  
75 load  
V
VDDR  
V
TA  
°C  
50% ones density data  
100% ones density data  
-
-
100  
130  
110  
140  
mA  
mA  
Total current dissipation1,2,3  
120 Load  
50% ones density data  
100% ones density data  
-
-
110  
130  
120  
140  
1.Power consumption includes power consumption on device and load. Digital levels are 10% of the supply rails and digital outputs driving a 50 pF capacitive load.  
2.Maximum power consumption over the full operating temperature and power supply voltage range.  
3.In short haul mode, if internal impedance matching is chosen, 75power dissipation values are measured with template PULS[3:0] = 0000; 120power dissipation values are measured  
with template PULS[3:0] = 0001.  
TEST SPECIFICATIONS  
56  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
Table-47 Power Consumption  
Symbol  
Max1,2  
Parameter  
Min  
Typ  
Unit  
3.3 V, 75 Load  
50% ones density data:  
100% ones density data:  
-
-
330  
430  
-
mW  
490  
3.3 V, 120 Load  
50% ones density data:  
100% ones density data:  
-
-
370  
430  
-
mW  
490  
1.Maximum power and current consumption over the full operating temperature and power supply voltage range. Includes all channels.  
2.Power consumption includes power absorbed by line load and external transmitter components.  
Table-48 DC Characteristics  
Symbol  
Parameter  
Input Low Level Voltage  
Min  
Typ  
Max  
Unit  
VIL  
VIH  
-
-
0.8  
V
V
V
V
V
Input High Voltage  
2.0  
-
-
-
-
VOL  
VOH  
VMA  
Output Low level Voltage (Iout=1.6mA)  
Output High level Voltage (Iout=400µA)  
0.4  
2.4  
-
VDDIO  
Analog Input Quiescent Voltage (RTIPn, RRINGn  
pin while floating)  
1.5  
II  
Input Leakage Current  
TMS, TDI, TRST  
All other digital input pins  
50  
10  
µA  
µA  
-10  
-10  
IZL  
High Impedance Leakage Current  
10  
µA  
Ci  
Input capacitance  
15  
50  
pF  
pF  
pF  
Co  
Co  
Output load capacitance  
Output load capacitance (bus pins)  
100  
TEST SPECIFICATIONS  
57  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
Table-49 Receiver Electrical Characteristics  
Symbol  
Parameter  
Receiver sensitivity  
Min  
Typ  
Max  
Unit  
Test conditions  
Adaptive Equalizer disabled:  
Adaptive Equalizer enabled:  
-10  
-20  
dB  
Analog LOS level  
A LOS level is programmable with Adaptive  
Adaptive Equalizer disabled:  
Adaptive Equalizer enabled:  
800  
mVp-p Equalizer enabled. Not available in Hardware  
dB mode.  
-4  
-24  
0.05  
±1%  
Allowable consecutive zeros before LOS  
G.775:  
32  
2048  
I.431/ETSI300233:  
LOS reset  
12.5  
% ones G.775, ETSI 300 233  
Receive Intrinsic Jitter  
20Hz - 100kHz  
JA enabled  
U.I.  
Input Jitter Tolerance  
1 Hz – 20 Hz  
37  
5
2
U.I.  
U.I.  
U.I.  
G.823, with 6 dB cable attenuation  
20 Hz – 2.4 KHz  
18 KHz – 100 KHz  
ZDM  
Receiver Differential Input Impedance  
Input termination resistor tolerance  
20  
KΩ  
Internal mode  
Receive Return Loss  
51 KHz – 102 KHz  
RRX  
RPD  
20  
20  
20  
dB  
dB  
dB  
G.703 Internal termination  
102 KHz - 2.048 MHz  
2.048 MHz – 3.072 MHz  
Receive path delay  
Single rail  
Dual rail  
7
2
U.I.  
U.I.  
JA disabled  
TEST SPECIFICATIONS  
58  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
Table-50 Transmitter Electrical Characteristics  
Symbol  
Vo-p  
Parameter  
Min  
Typ  
Max  
Unit  
Output pulse amplitudes  
75load  
2.14  
2.7  
2.37  
3.0  
2.60  
3.3  
V
V
120load  
Vo-s  
Zero (space) level  
75load  
-0.237  
-0.3  
0.237  
0.3  
V
V
120load  
Transmit amplitude variation with supply  
-1  
+1  
%
mV  
ns  
Difference between pulse sequences for 17 consecutive pulses (T1.102)  
Output Pulse Width at 50% of nominal amplitude  
200  
256  
1.05  
Tpw  
RTX  
232  
244  
Ratio of the amplitudes of Positive and Negative Pulses at the center of the pulse interval  
(G.703)  
0.95  
Ratio of the width of Positive and Negative Pulses at the center of the pulse interval (G.703)  
Transmit Return Loss (G.703)  
0.95  
1.05  
51 KHz – 102 KHz  
102 KHz - 2.048 MHz  
2.048 MHz – 3.072 MHz  
20  
15  
12  
dB  
dB  
dB  
JTXp-p  
Td  
Intrinsic Transmit Jitter (TCLK is jitter free)  
20 Hz – 100 KHz  
0.050  
U.I.  
Transmit path delay (JA is disabled)  
Single rail  
Dual rail  
8.5  
4.5  
U.I.  
U.I.  
Isc  
Line short circuit current; tested on the TTIP/TRING pins  
100  
mAp  
TEST SPECIFICATIONS  
59  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
Table-51 Transmitter and Receiver Timing Characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
MHz  
ppm  
%
MCLK frequency  
MCLK tolerance  
MCLK duty cycle  
2.048  
-100  
30  
100  
70  
Transmit path  
TCLK frequency  
TCLK tolerance  
TCLK Duty Cycle  
2.048  
MHz  
ppm  
%
-50  
10  
40  
40  
+50  
90  
t1  
t2  
Transmit Data Setup Time  
ns  
Transmit Data Hold Time  
ns  
Delay time of THZ low to driver high impedance  
Delay time of TCLK low to driver high impedance  
10  
us  
75  
U.I.  
Receive path  
Clock recovery capture range 1  
RCLK duty cycle 2  
± 80  
50  
ppm  
%
40  
60  
RCLK pulse width 2  
t4  
457  
488  
519  
ns  
t5  
t6  
RCLK pulse width low time  
RCLK pulse width high time  
203  
203  
244  
244  
285  
285  
20  
ns  
ns  
ns  
Rise/fall time 3  
t7  
t8  
Receive Data Setup Time  
Receive Data Hold Time  
200  
200  
244  
244  
ns  
ns  
1.Relative to nominal frequency, MCLK= ± 100 ppm  
2.RCLK duty cycle widths will vary depending on extent of received pulse jitter displacement. Maximum and minimum RCLK duty cycles are for worst case jitter conditions (0.2UI displacement  
for E1 per ITU G.823).  
3.For all digital outputs. C load = 15pF  
TCLKn  
t1  
t2  
TDn/TDPn  
TDNn  
Figure-21 Transmit System Interface Timing  
TEST SPECIFICATIONS  
60  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
t4  
RCLKn  
t6  
t7  
t5  
t8  
RDPn/RDn  
(RCLK_SEL = 0 software mode)  
(RCLKE = 0 hardware mode)  
RDNn/CVn  
t7  
t8  
RDPn/RDn  
(RCLK_SEL = 1 software mode)  
(RCLKE = 1 hardware mode)  
RDNn/CVn  
Figure-22 Receive System Interface Timing  
Table-52 Jitter Tolerance  
Jitter Tolerance  
Min  
Typ  
Max  
Unit  
Standard  
1 Hz  
20 Hz – 2.4 KHz  
18 KHz – 100 KHz  
37  
1.5  
0.2  
U.I.  
U.I.  
U.I.  
G.823  
Cable attenuation is 6dB  
TEST SPECIFICATIONS  
61  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
Figure-23 E1 Jitter Tolerance Performance  
Table-53 Jitter Attenuator Characteristics  
Parameter  
Min  
Typ  
Max  
Unit  
Jitter Transfer Function Corner (-3dB) Frequency  
32/64/128 bits FIFO  
JABW = 0:  
6.8  
0.9  
Hz  
Hz  
JABW = 1:  
Jitter Attenuator  
(G.736)  
@ 3 Hz  
-0.5  
-0.5  
+19.5  
+19.5  
@ 40 Hz  
@ 400 Hz  
@ 100 kHz  
dB  
Jitter Attenuator Latency Delay  
32 bits FIFO:  
64 bits FIFO:  
128 bits FIFO:  
16  
32  
64  
U.I.  
U.I.  
U.I.  
Input jitter tolerance before FIFO overflow or underflow  
32 bits FIFO:  
64 bits FIFO:  
128 bits FIFO:  
28  
58  
120  
U.I.  
U.I.  
U.I.  
TEST SPECIFICATIONS  
62  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
Figure-24 E1 Jitter Transfer Performance  
Table-54 JTAG Timing Characteristics  
Symbol  
Parameter  
Min  
100  
25  
Typ  
Max  
Unit  
ns  
t1  
t2  
TCK Period  
TMS to TCK setup Time  
TDI to TCK Setup Time  
ns  
t3  
t4  
TCK to TMS Hold Time  
TCK to TDI Hold Time  
25  
ns  
ns  
TCK to TDO Delay Time  
50  
TEST SPECIFICATIONS  
63  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
t1  
TCK  
t2  
t3  
TMS  
TDI  
t4  
TDO  
Figure-25 JTAG Interface Timing  
TEST SPECIFICATIONS  
64  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
8
MICROCONTROLLER INTERFACE TIMING CHARACTERISTICS  
8.1 SERIAL INTERFACE TIMING  
Table-55 Serial Interface Timing Characteristics  
Symbol  
t1  
Parameter  
Min  
100  
100  
5
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Comments  
SCLK High Time  
t2  
SCLK Low Time  
t3  
Active CS to SCLK Setup Time  
t4  
Last SCLK Hold Time to Inactive CS Time  
CS Idle Time  
41  
41  
0
t5  
t6  
SDI to SCLK Setup Time  
t7  
SCLK to SDI Hold Time  
82  
t10  
t11  
SCLK to SDO Valid Delay Time  
Inactive CS to SDO High Impedance Hold Time  
95  
90  
CS  
t4  
t5  
t3  
t6  
t1  
t2  
SCLK  
SDI  
t7  
t7  
LSB  
LSB  
Figure-26 Serial Interface Write Timing  
MSB  
13  
1
2
3
4
5
6
7
8
9
10  
11  
12  
3
14  
15  
16  
SCLK  
CS  
t4  
t10  
t11  
SDO  
0
1
2
4
5
6
7
Figure-27 Serial Interface Read Timing with SCLKE=1  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
SCLK  
CS  
t4  
t10  
t11  
7
SDO  
0
1
2
3
4
5
6
Figure-28 Serial Interface Read Timing with SCLKE=0  
MICROCONTROLLER INTERFACE TIMING CHARACTERISTICS65  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
8.2 PARALLEL INTERFACE TIMING  
Table-56 Non-Multiplexed Motorola Read Timing Characteristics  
Symbol  
tRC  
Parameter  
Min  
190  
180  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Read Cycle Time  
tDW  
Valid DS Width  
tRWV  
tRWH  
tAV  
Delay from DS to Valid Read Signal  
15  
15  
65  
65  
R/W to DS Hold Time  
Delay from DS to Valid Address  
Address to DS Hold Time  
tADH  
tPRD  
DS to Valid Read Data Propagation Delay  
Delay from DS inactive to data bus High Impedance  
Recovery Time from Read Cycle  
175  
20  
tDAZ  
5
5
tRecovery  
tRC  
tRecovery  
tDW  
DS+CS  
R/W  
tRWH  
tRWV  
tAV  
tADH  
A[x:0]  
Valid Address  
tDAZ  
tPRD  
READ D[7:0]  
Valid Data  
Figure-29 Non-Multiplexed Motorola Read Timing  
MICROCONTROLLER INTERFACE TIMING CHARACTERISTICS66  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
Table-57 Non-Multiplexed Motorola Write Timing Characteristics  
Symbol  
tWC  
Parameter  
Min  
120  
100  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Write Cycle Time  
tDW  
Valid DS Width  
tRWV  
tRWH  
tAV  
Delay from DS to Valid Write Signal  
15  
15  
15  
65  
65  
R/W to DS Hold Time  
Delay from DS to Valid Address  
Address to DS Hold Time  
Delay from DS to Valid Write Data  
Write Data to DS Hold Time  
Recovery Time from Write Cycle  
tAH  
tDV  
tDHW  
tRecovery  
65  
5
tWC  
tRecovery  
tDW  
DS+CS  
R/W  
tRWH  
tRWV  
tAH  
tAV  
A[x:0]  
Valid Address  
tDHW  
tDV  
Valid Data  
Write D[7:0]  
Figure-30 Non-Multiplexed Motorola Write Timing  
MICROCONTROLLER INTERFACE TIMING CHARACTERISTICS67  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
Table-58 Non-Multiplexed Intel Read Timing Characteristics  
Symbol  
tRC  
Parameter  
Min  
190  
180  
Max  
Unit  
ns  
Read Cycle Time  
tRDW  
tAV  
Valid RD Width  
ns  
Delay from RD to Valid Address  
15  
ns  
tAH  
Address to RD Hold Time  
65  
ns  
tPRD  
RD to Valid Read Data Propagation Delay  
Delay from RD inactive to data bus High Impedance  
Recovery Time from Read Cycle  
175  
20  
ns  
tDAZ  
5
5
ns  
tRecovery  
ns  
tRC  
tRecovery  
tRDW  
CS+RD  
tAH  
tAV  
A[x:0]  
Valid Address  
tDAZ  
tPRD  
Valid Data  
READ D[7:0]  
Note: WR should be tied to high  
Figure-31 Non-Multiplexed Intel Read Timing  
MICROCONTROLLER INTERFACE TIMING CHARACTERISTICS68  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
Table-59 Non-Multiplexed Intel Write Timing Characteristics  
Symbol  
tWC  
Parameter  
Min  
120  
100  
Max  
Unit  
ns  
Write Cycle Time  
tWRW  
tAV  
Valid WR Width  
ns  
Delay from WR to Valid Address  
Address to WR Hold Time  
15  
15  
ns  
tAH  
65  
ns  
tDV  
Delay from WR to Valid Write Data  
Write Data to WR Hold Time  
Recovery Time from Write Cycle  
ns  
tDHW  
tRecovery  
65  
5
ns  
ns  
tRecovery  
tWC  
tWRW  
WR+ CS  
tAH  
tAV  
A[x:0]  
Valid Address  
tDHW  
tDV  
Write D[7:0]  
Valid Data  
Note: RD should be tied to high  
Figure-32 Non-Multiplexed Intel Write Timing  
MICROCONTROLLER INTERFACE TIMING CHARACTERISTICS69  
December 12, 2005  
IDT82V2052E  
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT  
ORDERING INFORMATION  
XXXXXXX  
Device Type  
XX  
X
IDT  
Process/  
Temperature  
Range  
Blank  
Industrial (-40 °C to +85 °C)  
Thin Quad Flatpack  
(TQFP, PN80)  
PF  
Green Thin Quad Flatpack  
(TQFP, PNG80)  
PFG  
82V2052E Short Haul LIU  
DATASHEET DOCUMENT HISTORY  
12/12/2005 pgs. 1, 15, 21, 27, 35, 36, 43, 59, 70  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
1-800-345-7015 or 408-284-8200  
fax: 408-284-2775  
for Tech Support:  
408-360-1552  
email:TELECOMhelp@idt.com  
www.idt.com  
70
December 12, 2005  

相关型号:

82V2052EPFG8

PCM Transceiver, 1-Func, PQFP80, GREEN, TQFP-80
IDT

82V2054BB

Digital Transmission Interface, CMOS, PBGA160
IDT

82V2054BBG

Digital Transmission Interface, CMOS, PBGA160
IDT

82V2054DA

Digital Transmission Interface, CMOS, PQFP144
IDT

82V2054DAG

Digital Transmission Interface, CMOS, PQFP144
IDT

82V2058BB

PCM Transceiver, 1-Func, PBGA160, PLASTIC, BGA-160
IDT

82V2058DA

PCM Transceiver, 1-Func, PQFP144, TQFP-144
IDT

82V2081PPG8

PCM Transceiver, 1-Func, PQFP44, TQFP-44
IDT

82V2082PF

PCM Transceiver, 1-Func, PQFP80, TQFP-80
IDT

82V2082PFG8

PCM Transceiver, 1-Func, PQFP80, TQFP-80
IDT

82V2084PF

PCM Transceiver, 1-Func, PQFP128, TQFP-128
IDT

82V2084PF8

PCM Transceiver, 1-Func, PQFP128, TQFP-128
IDT