843034AYLF [IDT]

Clock Generator, 750MHz, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026BBC, LQFP-48;
843034AYLF
型号: 843034AYLF
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Clock Generator, 750MHz, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026BBC, LQFP-48

时钟 外围集成电路 晶体
文件: 总24页 (文件大小:726K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
FEMTOCLOCKS™ MULTI-RATE 3.3V, 2.5V  
LFPECL FREQUENCY SYNTHESIZER  
ICS843034  
GENERAL DESCRIPTION  
FEATURES  
The ICS843034 is a general purpose, low phase  
Dual differential 3.3V LVPECL outputs which can be set  
ICS  
noise LVPECL synthesizer which can generate  
frequencies for a wide variety of applications. The  
ICS843034 has a 4:1 input Multiplexer from which  
the following inputs can be selected: 1 differential  
input, 1 single-ended input, or two crystal  
independently for either 3.3V or 2.5V  
HiPerClockS™  
4:1 Input Mux:  
One differential input  
One single-ended input  
Two crystal oscillator interfaces  
oscillators, thus making the device ideal for frequency  
translation or frequency generation. Each differential LVPECL  
output pair has an output divider which can be independently  
set so that two different frequencies can be generated.  
Additionally, each LVPECL output pair has a dedicated power  
supply pin so the outputs can run at 3.3V or 2.5V. The  
ICS843034-02 also supplies a buffered copy of the reference  
clock or crystal frequency on the single-ended REF_CLK pin  
which can be enabled or disabled (disabled by default). The  
output frequency can be programmed using either a serial or  
parallel programming interface.  
CLK, nCLK pair can accept the following differential  
input levels: LVPECL, LVDS, LVHSTL, HCSL, SSTL  
TEST_CLK accepts LVCMOS or LVTTL input levels  
Output frequency range: 35MHz to 750MHz  
Crystal input frequency range: 12MHz to 40MHz  
VCO range: 560MHz to 750MHz  
Parallel or serial interface for programming feedback divider  
and output dividers  
The phase jitter of the ICS843034 is less than 1ps rms, making  
it suitable for use in Fibre Channel, SONET, and Ethernet  
applications.  
RMS phase jitter at 333.33MHz, using a 22.222MHz crystal  
(12kHz to 20MHz): 0.80ps (typical)  
Supply voltage modes:  
Example applications include systems which must support both  
FEC and non FEC rates. In 10Gb Fibre Channel, for example,  
you can use a 25.5MHz crystal to generate a 159.375MHz  
reference clock, and then switch to a 20.544MHz crystal to  
generate 164.355MHz for 66/64 FEC. Other applications could  
include supporting both Ethernet frequencies and SONET  
frequencies in an application. When Ethernet frequencies are  
needed, a 25MHz crystal can be used and when SONET  
frequencies are needed, the input MUX can be switched to  
select a 38.88MHz crystal.  
LVPECL outputs (core/outputs):  
3.3V/3.3V  
3.3V/2.5V  
REF_CLK output (core/outputs):  
3.3V/3.3V  
0°C to 70°C ambient operating temperature  
Industrial temperature available upon request  
Available in both standard and lead-free RoHS-compliant  
packages  
PIN ASSIGNMENT  
48 47 46 45 44 43 42 41 40 39 38 37  
XTAL_OUT1  
M8  
NB0  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
XTAL_IN1  
XTAL_OUT0  
XTAL_IN0  
TEST_CLK  
SEL1  
2
NB1  
3
NB2  
4
ICS843034  
OE_REF  
OE_A  
OE_B  
VCC  
5
48-Pin LQFP  
7mm x 7mm x 1.4mm  
package body  
6
7
SEL0  
VCCA  
8
Y Package  
S_LOAD  
S_DATA  
S_CLOCK  
MR  
NA0  
9
Top View  
NA1  
10  
11  
12  
NA2  
VEE  
13 14 15 16 17 18 19 20 21 22 23 24  
The Preliminary Information presented herein represents a product in prototyping or pre-production.The noted characteristics are based on initial  
product characterization.Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice.  
IDT/ ICS3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
1
ICS843034AY REV B JULY 18, 2006  
ICS843034  
FEMTOCOCKS™ MULTI-RATE 3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
BLOCK DIAGRAM  
OE_A  
000
÷
1  
001
÷
2  
010
÷
3  
011
÷
4  
÷
5  
VCO_SEL  
XTAL_IN0  
FOUTA0  
nFOUTA0  
OSC  
OSC  
XTAL_OUT0  
XTAL_IN1  
101
÷
6  
÷
8  
VCCO_A  
0
1
111
÷
16  
XTAL_OUT1  
P
HASE  
VCO  
D
ETECTO  
R
CLK  
VCCO_B  
001  
nCLK  
FOUTB0  
nFOUTB0  
011  
TEST_CLK  
÷
M  
101  
SEL1  
SEL0  
111
÷
16  
OE_B  
MR  
VCCO_REF  
REF_CLK  
TEST  
OE_REF  
S_LOAD  
S_DATA  
S_CLOCK  
nP_LOAD  
M8:M0  
C
I
L
NA2:NA0  
NB2:NB0  
IDT/ ICS3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
2
ICS843034AY REV B JULY 18, 2006  
ICS843034  
FEMTOCOCKS™ MULTI-RATE 3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
FUNCTIONAL DESCRIPTION  
NOTE: The functional description that follows describes opera-  
tion using a 25MHz crystal. Valid PLL loop divider values for  
different crystal or input frequencies are defined in the Input  
Frequency Characteristics, Table 5, NOTE 1.  
specific default state that will automatically occur during power-  
up. The TEST output is LOW when operating in the parallel input  
mode. The relationship between the VCO frequency, the crystal  
fVCO = fxtal x M  
frequency and the M divider is defined as follows:  
The ICS843034 features a fully integrated PLL and therefore  
requires no external components for setting the loop bandwidth.  
A fundamental crystal is used as the input to the on-chip oscil-  
lator. The output of the oscillator is fed into the phase detector.  
A 25MHz crystal provides a 25MHz phase detector reference  
frequency.The VCO of the PLL operates over a range of 560MHz  
to 750MHz. The output of the M divider is also applied to the  
phase detector.  
The M value and the required values of M0 through M8 are  
shown in Table 3B to program the VCO Frequency Function  
Table. Valid M values for which the PLL will achieve lock for a  
25MHz reference are defined as 23 M 30. The frequency  
out is defined as follows:  
FOUT = fVCO = fxtal x M  
N
Serial operation occurs when nP_LOAD is HIGH and S_LOAD  
is LOW. The shift register is loaded by sampling the S_DATA  
bits with the rising edge of S_CLOCK. The contents of the shift  
register are loaded into the M divider and Nx output divider  
when S_LOAD transitions from LOW-to-HIGH. The M divide  
and Nx output divide values are latched on the HIGH-to-LOW  
transition of S_LOAD. If S_LOAD is held HIGH, data at the  
S_DATA input is passed directly to the M divider and Nx output  
divider on each rising edge of S_CLOCK. The serial mode can  
be used to program the M and Nx bits and test bits T1 and T0.  
The internal registers T0 and T1 determine the state of the  
TEST output as follows:  
The phase detector and the M divider force the VCO output  
frequency to be M times the reference frequency by adjusting  
the VCO control voltage. Note that for some values of M (either  
too high or too low), the PLL will not achieve lock. The output of  
the VCO is scaled by a divider prior to being sent to each of the  
LVPECL output buffers. The divider provides a 50% output duty  
cycle.  
The ICS843034 supports either serial or parallel programming  
modes to program the M feedback divider and N output divider.  
Figure 1 shows the timing diagram for each mode. In parallel  
mode, the nP_LOAD input is initially LOW. The data on the M,  
NA, and NB inputs are passed directly to the M divider and  
both N output dividers. On the LOW-to-HIGH transition of the  
nP_LOAD input, the data is latched and the M and N dividers  
remain loaded until the next LOW transition on nP_LOAD or  
until a serial event occurs. As a result, the M and Nx bits can  
be hardwired to set the M divider and Nx output divider to a  
T1 T0  
TEST Output  
LOW  
0
0
1
1
0
1
0
1
S_Data, Shift Register Output  
Output of M divider  
FOUTA0 same frequency  
SERIAL LOADING  
S_CLOCK  
S_DATA  
T1  
T0  
NB2 NB1 NB0 NA2 NA1 NA0  
M8  
M7  
M6  
M5  
M4  
M3  
M2  
M1  
M0  
tS tH  
S_LOAD  
nP_LOAD  
tS  
P
ARALLEL LOADING  
M0:M8, NA0:NA2, NB0:NB2  
nP_LOAD  
M, N  
t
t
H
S
S_LOAD  
Time  
FIGURE 1. PARALLEL & SERIAL LOAD OPERATIONS  
IDT/ ICS3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
3
ICS843034AY REV B JULY 18, 2006  
ICS843034  
FEMTOCOCKS™ MULTI-RATE 3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
TABLE 1. PIN DESCRIPTIONS  
Number  
1, 41, 42,  
43, 44,  
Name  
M8, M0, M1,  
M2, M3,  
Type  
Pulldown  
Description  
M divider input. Data latched on LOW-to-HIGH transition of  
nP_LOAD input. LVCMOS/LVTTL interface levels.  
Input  
45, 47, 48  
M4, M6, M7  
2, 3  
4
NB0, NB1  
NB2  
Input  
Input  
Pullup  
Determines output divider value as defined in Table 3C,  
Function Table. LVCMOS/LVTTL interface levels.  
Pulldown  
Output enable. Controls enabling and disabling of REF_CLK output.  
LVCMOS/LVTTL interface levels.  
Output enable. Controls enabling and disabling of FOUTA0,  
nFOUTA0 outputs. LVCMOS/LVTTL interface levels.  
Output enable. Controls enabling and disabling of FOUTB0,  
nFOUTB0 outputs. LVCMOS/LVTTL interface levels.  
5
6
7
OE_REF  
OE_A  
Input  
Input  
Input  
Pulldown  
Pullup  
OE_B  
Pullup  
8, 14  
9, 10  
11  
VCC  
NA0, NA1  
NA2  
Power  
Input  
Core supply pins.  
Pullup  
Determines output divider value as defined in Table 3C,  
Function Table. LVCMOS/LVTTL interface levels.  
Input  
Pulldown  
12, 24  
VEE  
Power  
Negative supply pins.  
Test output which is ACTIVE in the serial mode of operation.  
Output driven LOW in parallel mode.  
13  
TEST  
Output  
LVCMOS/LVTTL interface levels.  
FOUTA0,  
nFOUTA0  
15, 16  
17  
Output  
Power  
Output  
Differential output for the synthesizer. LVPECL interface levels.  
Output supply pin for FOUTA0, nFOUTA0.  
VCCO_A  
FOUTB0,  
nFOUTB0  
18, 19  
Differential output for the synthesizer. LVPECL interface levels.  
20  
21  
22  
23  
VCCO_B  
REF_CLK  
VCCO_REF  
nc  
Power  
Output  
Power  
Output supply pin for FOUTB0, nFOUTB0.  
Reference clock output. LVCMOS/LVTTL interface levels.  
Output supply pin for REF_CLK.  
Unused  
No connect.  
Active High Master Reset. When logic HIGH, forces the internal  
dividers are reset causing the true outputs FOUTx to go low and the  
25  
MR  
Input  
Pulldown inverted outputs nFOUTx to go high. When logic LOW, the internal  
dividers and the outputs are enabled. Assertion of MR does not  
affect loaded M, N, and T values. LVCMOS/LVTTL interface levels.  
Clocks in serial data present at S_DATA input into the shift register  
on the rising edge of S_CLOCK. LVCMOS/LVTTL interface levels.  
Shift register serial input. Data sampled on the rising edge  
of S_CLOCK. LVCMOS/LVTTL interface levels.  
Controls transition of data from shift register into the dividers.  
LVCMOS/LVTTL interface levels.  
26  
27  
28  
S_CLOCK  
S_DATA  
Input  
Input  
Input  
Pulldown  
Pulldown  
S_LOAD  
Pulldown  
29  
30, 31  
32  
VCCA  
Power  
Input  
Input  
Analog supply pin.  
SEL0, SEL1  
TEST_CLK  
Pulldown Clock select inputs. LVCMOS/LVTTL interface levels.  
Pulldown Test clock input. LVCMOS/LVTTL interface levels.  
XTAL_IN0,  
XTAL_OUT0  
XTAL_IN1,  
Crystal oscillator interface. XTAL_IN0 is the input,  
XTAL_OUT0 is the output.  
Crystal oscillator interface. XTAL_IN1 is the input,  
XTAL_OUT1 is the output.  
33, 34  
35, 36  
Input  
Input  
XTAL_OUT1  
Continued on next page...  
IDT/ ICS3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
4
ICS843034AY REV B JULY 18, 2006  
ICS843034  
FEMTOCOCKS™ MULTI-RATE 3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
TABLE 1. PIN DESCRIPTIONS, CONTINUED  
Number  
Name  
Type  
Description  
37  
CLK  
Input Pulldown Non-inverting differential clock input.  
Pullup/  
38  
39  
nCLK  
Input  
Inverting differential clock input.VCC/2 default when left floating.  
Pulldown  
Parallel load input. Determines when data present at M8:M0 is  
loaded into M divider, and when data present at NA2:NA0 and  
NB2:NB0 is loaded into the N output dividers.  
LVCMOS/LVTTL interface levels.  
nP_LOAD  
Input Pulldown  
Determines whether synthesizer is in PLL or bypass mode.  
LVCMOS/LVTTL interface levels.  
M divider inputs. Data latched on LOW-to-HIGH transition  
of nP_LOAD input. LVCMOS/LVTTL interface levels.  
40  
46  
VCO_SEL  
M5  
Input  
Input  
Pullup  
Pullup  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
CIN  
Input Capacitance  
4
pF  
Power Dissipation  
Capacitance  
CPD  
REF_CLK  
VCC, VCCA, VCCO_REF = 3.465V  
TBD  
pF  
RPULLUP  
Input Pullup Resistor  
51  
51  
7
kΩ  
kΩ  
RPULLDOWN Input Pulldown Resistor  
ROUT Output Impedance REF_CLK  
5
12  
IDT/ ICS3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
5
ICS843034AY REV B JULY 18, 2006  
ICS843034  
FEMTOCOCKS™ MULTI-RATE 3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
TABLE 3A. PARALLEL AND SERIAL MODE FUNCTION TABLE  
Inputs  
Conditions  
MR nP_LOAD  
M
N
S_LOAD S_CLOCK S_DATA  
H
X
X
X
X
X
X
Reset. Forces outputs LOW.  
Data on M and N inputs passed directly to the M  
divider and N output divider. TEST output forced LOW.  
L
L
Data Data  
Data Data  
X
X
X
Data is latched into input registers and remains loaded  
until next LOW transition or until a serial event occurs.  
Serial input mode. Shift register is loaded with data on  
S_DATA on each rising edge of S_CLOCK.  
Contents of the shift register are passed to the  
M divider and N output divider.  
L
L
L
H
H
L
L
X
L
X
X
X
X
X
Data  
Data  
L
L
L
H
H
H
X
X
X
X
X
X
L
L
X
Data  
X
M divider and N output divider values are latched.  
Parallel or serial input do not affect shift registers.  
S_DATA passed directly to M divider as it is clocked.  
H
Data  
NOTE: L = LOW  
H = HIGH  
X = Don't care  
= Rising edge transition  
= Falling edge transition  
TABLE 3B. PROGRAMMABLE VCO FREQUENCY FUNCTION TABLE  
256  
M8  
0
128  
M7  
0
64  
M6  
0
32  
M5  
0
16  
M4  
1
8
M3  
0
4
M2  
1
2
M1  
1
1
M0  
1
VCO Frequency  
(MHz)  
M Divide  
575  
23  
700  
28  
0
0
0
0
1
1
1
0
0
750  
30  
0
0
0
0
1
1
1
1
0
NOTE 1: These M divide values and the resulting frequencies correspond to crystal or TEST_CLK input frequency of  
25MHz.  
TABLE 3C. PROGRAMMABLE OUTPUT DIVIDER FUNCTION TABLE  
Inputs  
Output Frequency (MHz)  
N Divider Value  
*NX2  
*NX1  
*NX0  
Minimum  
560  
Maximum  
750  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
280  
375  
3
186.66  
140  
250  
4
187.5  
150  
5
112  
6
93.33  
70  
125  
8
93.75  
46.875  
16  
35  
*NOTE: X denotes Bank A or Bank B  
IDT/ ICS3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
6
ICS843034AY REV B JULY 18, 2006  
ICS843034  
FEMTOCOCKS™ MULTI-RATE 3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
ABSOLUTE MAXIMUM RATINGS  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only. Functional op-  
eration of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not  
implied. Exposure to absolute maximum rating conditions for ex-  
tended periods may affect product reliability.  
Supply Voltage, VCC  
4.6V  
Inputs, V  
-0.5V to VCC + 0.5V  
I
Outputs, VO (LVCMOS)  
-0.5V to VCCO + 0.5V  
Outputs, IO (LVPECL)  
Continuous Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, θ  
47.9°C/W (0 lfpm)  
-65°C to 150°C  
JA  
Storage Temperature, T  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = 3.3V 5%, VCCO_A = VCCO_B = 3.3V 5% OR 2.5V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum Units  
VCC  
Core Supply Voltage  
3.465  
VCC  
V
V
VCCA  
Analog Supply Voltage  
3.135  
3.3  
3.135  
3.3  
3.465  
2.625  
3.465  
V
VCCO_A,  
VCCO_B  
Output Supply Voltage  
2.375  
2.5  
V
VCCO_REF Output Supply  
REF_CLK  
3.135  
3.3  
V
IEE  
Power Supply Current  
Analog Supply Current  
185  
20  
mA  
mA  
ICCA  
IDT/ ICS3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
7
ICS843034AY REV B JULY 18, 2006  
ICS843034  
FEMTOCOCKS™ MULTI-RATE 3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
TABLE 4B. LVCMOS/LVTTL DC CHARACTERISTICS, VCC = VCCA = 3.3V 5%, VCCO_A = VCCO_B = VCCO_REF = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
VCC + 0.3  
VCC/2 + 0.2V  
0.8  
Units  
VIH  
VIM  
VIL  
Input High Voltage  
2
V
V
V
Input Mid Voltage  
Input Low Voltage  
VCC/2 - 0.2V  
-0.3  
TEST_CLK, MR,  
SEL[1:0], OE_REF,  
S_CLOCK, S_DATA,  
S_LOAD, nP_LOAD,  
Nx2, M1:M4, M6:M8  
VCC = VIN = 3.465V  
150  
5
µA  
µA  
µA  
Input  
High Current  
IIH  
Nx0, Nx1, M5, OE_A,  
OE_B, VCO_SEL  
V
CC = VIN = 3.465V  
TEST_CLK, MR,  
SEL[1:0], OE_REF,  
S_CLOCK, S_DATA,  
S_LOAD, nP_LOAD,  
Nx2, M1:M4, M6:M8  
VCC = 3.465V,  
VIN = 0V  
-5  
Input  
Low Current  
IIL  
V
CC = 3.465V,  
VIN = 0V  
Nx0, Nx1, M5, OE_A,  
OE_B, VCO_SEL  
-150  
µA  
TEST; NOTE 1  
REF_CLK  
2.6  
V
V
Output  
High Voltage  
VOH  
VOL  
V
CCO_REF = 3.3V 5%  
VCCO_REF - 0.3V  
0.4  
0.5  
Output  
Low Voltage  
TEST; NOTE 1  
VCCO_REF = 3.3V 5%  
V
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VCC = VCCA = 3.3V 5%, VCCO_A = VCCO_B = 3.3V 5% OR 2.5V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
VIN = VCC = 3.465V  
VIN = VCC = 3.465V  
IN = 0V, VCC = 3.465V  
Minimum Typical Maximum Units  
nCLK  
CLK  
150  
150  
µA  
µA  
µA  
µA  
V
nCLK  
CLK  
V
-150  
-5  
IIL  
Input Low Current  
VIN = 0V, VCC = 3.465V  
VPP  
Peak-to-Peak Input Voltage  
0.15  
1.3  
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
VEE + 0.5  
VCC - 0.85  
V
NOTE 1: For single ended applications, the maximum input voltage for CLK, nCLK is VCC + 0.3V.  
NOTE 2: Common mode voltage is defined as VIH.  
TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = VCCA = 3.3V 5%, VCCO_A = VCCO_B = 3.3V 5% OR 2.5V 5%, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCCO - 1.4  
VCCO - 2.0  
0.6  
VCCO - 0.9  
VCCO - 1.7  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50to VCCO_A, VCCO_B - 2V.  
IDT/ ICS3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
8
ICS843034AY REV B JULY 18, 2006  
ICS843034  
FEMTOCOCKS™ MULTI-RATE 3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
TABLE 5. INPUT FREQUENCY CHARACTERISTICS, VCC = VCCA = 3.3V 5%, VCCO_A = VCCO_B = 3.3V 5% OR 2.5V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
XTAL_IN0/XTAL_OUT0,  
XTAL_IN1/XTAL_OUT1  
12  
12  
40  
MHz  
fIN  
Input Frequency  
CLK/nCLK, TEST_CLK  
S_CLOCK  
TBD  
50  
MHz  
MHz  
ns  
TEST_CLK  
TBD  
TBD  
Input Rise/Fall  
Time  
tR/tF  
S_LOAD, S_DATA,  
S_CLOCK  
ns  
NOTE: For the input crystal, CLK/nCLK and TEST_CLK frequency range, the M value must be set for the VCO to operate  
within the 560MHz to 750MHz range. Using the minimum input frequency of 12MHz, valid values of M are 47 M 62.  
Using the maximum frequency of 40MHz, valid values of M are 14 M 18.  
TABLE 6. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum Typical Maximum  
Units  
Mode of Oscillation  
Frequency  
Fundamental  
12  
40  
50  
7
MHz  
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
Drive Level  
pF  
1
mW  
TABLE 7A. AC CHARACTERISTICS, VCC = VCCA = VCCO_A = VCCO_B = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
FOUT  
Output Frequency  
35  
750  
MHz  
333.33MHz,  
Integration Range:  
12kHz - 20MHz  
Phase Jitter, RMS (Random);  
NOTE 1, 2  
tjit(Ø)  
0.80  
ps  
tjit(cc)  
tsk(o)  
Cycle-to-Cycle Jitter; NOTE 3, 4  
Output Skew; NOTE 2, 4, 5  
51  
50  
ps  
ps  
Measured @ the same  
Output Frequency  
LVPECL Outputs  
Output  
Rise/Fall Time  
tR / tF  
20% to 80%  
200  
700  
ps  
REF_CLK  
M, N to nP_LOAD  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
M, N to nP_LOAD  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
5
5
5
5
5
5
ns  
ns  
ns  
ns  
ns  
ns  
%
tS  
Setup Time  
Hold Time  
tH  
odc  
Output Duty Cycle  
PLL Lock Time  
50  
tLOCK  
1
ms  
See Parameter Measurement Information section.  
NOTE 1: Please refer to the Phase Noise Plot.  
NOTE 2: Characterized with REF_CLK output disabled.  
NOTE 3: Jitter perforance using XTAL inputs.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 5: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
IDT/ ICS3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
9
ICS843034AY REV B JULY 18, 2006  
ICS843034  
FEMTOCOCKS™ MULTI-RATE 3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
TABLE 7B. AC CHARACTERISTICS, VCC = VCCA = 3.3V 5%, VCCO_A = VCCO_B = 2.5V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
FOUT  
Output Frequency  
35  
750  
MHz  
333.33MHz,  
Integration Range:  
12kHz - 20MHz  
Phase Jitter, RMS (Random);  
NOTE 1, 2  
tjit(Ø)  
TBD  
ps  
tjit(cc)  
tsk(o)  
Cycle-to-Cycle Jitter; NOTE 3, 4  
Output Skew; NOTE 2, 4, 5  
52  
50  
ps  
ps  
Measured @ the same  
Output Frequency  
LVPECL Outputs  
Output  
Rise/Fall Time  
tR / tF  
20% to 80%  
200  
700  
ps  
REF_CLK  
M, N to nP_LOAD  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
M, N to nP_LOAD  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
5
5
5
5
5
5
ns  
ns  
ns  
ns  
ns  
ns  
%
tS  
Setup Time  
Hold Time  
tH  
odc  
Output Duty Cycle  
PLL Lock Time  
50  
tLOCK  
1
ms  
For notes, see Table 7A above.  
IDT/ ICS3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
10  
ICS843034AY REV B JULY 18, 2006  
ICS843034  
FEMTOCOCKS™ MULTI-RATE 3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
TYPICAL PHASE NOISE AT 333.33MHZ  
0
-10  
-20  
Filter  
-30  
-40  
333.33MHz  
RMS Phase Jitter (Random)  
12kHz to 20MHz = 0.80ps (typical)  
-50  
-60  
-70  
-80  
Raw Phase Noise Data  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
Phase Noise Result by adding  
a Filter to raw data  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FREQUENCY (HZ)  
IDT/ ICS3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
11  
ICS843034AY REV B JULY 18, 2006  
ICS843034  
FEMTOCOCKS™ MULTI-RATE 3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
PARAMETER MEASUREMENT INFORMATION  
2V  
2.8V 0.04V  
2V  
SCOPE  
SCOPE  
Qx  
,
V
V
CC  
Qx  
,
V
V
V
CC  
CCA  
V
CCA, V  
CCO__B  
CCO_A,  
CCO_A,  
V
CCO__B  
LVPECL  
LVPECL  
VEE  
nQx  
nQx  
VEE  
-0.5V 0.125V  
-1.3V 0.165V  
3.3V CORE/2.5V OUTPUT LOAD AC TEST CIRCUIT  
FOUTA0/nFOUTA0, FOUTB0/nFOUTB0  
3.3V CORE/3.3V OUTPUT LOAD AC TEST CIRCUIT  
FOUTA0/nFOUTA0, FOUTB0/nFOUTB0  
1.65V 5%  
VOH  
VREF  
SCOPE  
,
V
V
CC  
VOL  
1σ contains 68.26% of all measurements  
2σ contains 95.4% of all measurements  
3σ contains 99.73% of all measurements  
4σ contains 99.99366% of all measurements  
6σ contains (100-1.973x10-7)% of all measurements  
,
V
CCO_REF  
CCA  
Qx  
LVCMOS  
VEE  
Histogram  
Reference Point  
(Trigger Edge)  
Mean Period  
(First edge after trigger)  
-1.65V 5%  
3.3VCORE/3.3V REF_CLK OUTPUT LOAD AC TEST CIRCUIT  
PERIOD JITTER  
nFOUTx  
FOUTx  
nFOUTA0  
FOUTA0  
tPW  
tPERIOD  
nFOUTy  
tPW  
FOUTy  
tsk(o)  
odc =  
x 100%  
tPERIOD  
OUTPUT SKEW  
OUTPUT DUTY CYCLE/OUTPUT PULSE WIDTH/PERIOD  
80%  
80%  
80%  
80%  
VSWING  
20%  
Clock  
Outputs  
20%  
20%  
20%  
Clock  
Outputs  
tR  
tF  
tF  
tR  
LVPECL OUTPUT RISE/FALL TIME  
LVCMOS OUTPUT RISE/FALL TIME  
IDT/ ICS3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
12  
ICS843034AY REV B JULY 18, 2006  
ICS843034  
FEMTOCOCKS™ MULTI-RATE 3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
APPLICATION INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise.The ICS843034 provides sepa-  
rate power supplies to isolate any high switching noise from  
the outputs to the internal PLL. VCC, VCCA, and VCCO_x should be  
individually connected to the power supply plane through vias,  
and bypass capacitors should be used for each pin. To achieve  
optimum jitter performance, power supply isolation is required.  
Figure 2 illustrates how a 10resistor along with a 10µF and a  
.01µF bypass capacitor should be connected to each VCCA pin.  
3.3V, 2.5V  
VCC  
.01µF  
.01µF  
10Ω  
VCCA  
10µF  
FIGURE 2. POWER SUPPLY FILTERING  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LVCMOS/LVTTL LEVELS  
Figure 3 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = V /2 is  
generated by the bias resistors R1, R2 and C1. This bias CcCircuit  
should be located as close as possible to the input pin. The ratio  
of R1 and R2 might need to be adjusted to position the V_REF in  
the center of the input voltage swing. For example, if the input  
clock swing is only 2.5V and V = 3.3V, V_REF should be 1.25V  
CC  
and R2/R1 = 0.609.  
VCC  
R1  
1K  
Single Ended Clock Input  
V_REF  
CLK  
nCLK  
C1  
0.1u  
R2  
1K  
FIGURE 3. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
IDT/ ICS3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
13  
ICS843034AY REV B JULY 18, 2006  
ICS843034  
FEMTOCOCKS™ MULTI-RATE 3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL  
and other differential signals. Both VSWING and VOH must meet the  
VPP and VCMR input requirements. Figures 4A to 4D show interface  
examples for the HiPerClockS CLK/nCLK input driven by the most  
common driver types. The input interfaces suggested here are  
examples only. Please consult with the vendor of the driver  
component to confirm the driver termination requirements. For  
example in Figure 4A, the input termination applies for IDT  
HiPerClockS LVHSTL drivers. If you are using an LVHSTL driver  
from another vendor, use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
LVPECL  
Input  
nCLK  
HiPerClockS  
LVHSTL  
Input  
R1  
50  
R2  
50  
ICS  
R1  
50  
R2  
50  
HiPerClockS  
LVHSTL Driver  
R3  
50  
FIGURE 4A. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
IDT HIPERCLOCKS LVHSTL DRIVER  
FIGURE 4B. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
125  
R4  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiv er  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 4C. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 4D. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
INPUTS:  
OUTPUTS:  
LVCMOS OUTPUT:  
CRYSTAL INPUT:  
For applications not requiring the use of the crystal oscillator input,  
both XTAL_IN and XTAL_OUT can be left floating. Though not  
required, but for additional protection, a 1kresistor can be tied  
from XTAL_IN to ground.  
All unused LVCMOS output can be left floating. We recommend  
that there is no trace attached.  
LVPECL OUTPUT  
All unused LVPECL outputs can be left floating. We recommend  
that there is no trace attached. Both sides of the differential output  
pair should either be left floating or terminated.  
TEST_CLK INPUT:  
For applications not requiring the use of the test clock, it can be  
left floating. Though not required, but for additional protection, a  
1kresistor can be tied from the TEST_CLK to ground.  
SELECT PINS:  
All select pins have internal pull-ups and pull-downs; additional  
resistance is not required but can be added for additional  
protection. A 1kresistor can be used.  
IDT/ ICS3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
14  
ICS843034AY REV B JULY 18, 2006  
ICS843034  
FEMTOCOCKS™ MULTI-RATE 3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
CRYSTAL INPUT INTERFACE  
The ICS843034 has been characterized with 18pF parallel  
resonant crystals. The capacitor values, C1 and C2, shown in  
Figure 5 below were determined using a 18pF parallel resonant  
crystal and were chosen to minimize the ppm error. The optimum  
C1 and C2 values can be slightly adjusted for different board  
layouts.  
XTAL_OUT  
C1  
18p  
X1  
18pF Parallel Crystal  
XTAL_IN  
843034  
C2  
22p  
Figure 5. CRYSTAL INPUt INTERFACE  
LVCMOS TO XTAL INTERFACE  
impedance of the driver (Ro) plus the series resistance (Rs) equals  
the transmission line impedance. In addition, matched termination  
at the crystal input will attenuate the signal in half. This can be  
done in one of two ways. First, R1 and R2 in parallel should equal  
the transmission line impedance. For most 50applications, R1  
and R2 can be 100.This can also be accomplished by removing  
R1 and making R2 50.  
The XTAL_IN input can accept a single-ended LVCMOS signal  
through an AC coupling capacitor. A general interface diagram is  
shown in Figure 6. The XTAL_OUT pin can be left floating. The  
input edge rate can be as slow as 10ns. For LVCMOS inputs, it is  
recommended that the amplitude be reduced from full swing to  
half swing in order to prevent signal interference with the power  
rail and to reduce noise.This configuration requires that the output  
VDD  
VDD  
R1  
.1uf  
Ro  
Rs  
Zo = 50  
XTAL_IN  
R2  
Zo = Ro + Rs  
XTAL_OU T  
FIGURE 6. GENERAL DIAGRAM FOR LVCMOS DRIVER TO XTAL INPUT INTERFACE  
IDT/ ICS3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
15  
ICS843034AY REV B JULY 18, 2006  
ICS843034  
FEMTOCOCKS™ MULTI-RATE 3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
TERMINATION FOR 3.3V LVPECL OUTPUT  
50transmission lines. Matched impedance techniques should  
be used to maximize operating frequency and minimize signal  
distortion. Figures 7A and 7B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board de-  
signers simulate to guarantee compatibility across all printed cir-  
cuit and clock component process variations.  
The clock layout topology shown below is a typical termination  
for LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
FOUTx and nFOUTx are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, terminat-  
ing resistors (DC current path to ground) or current sources must  
be used for functionality. These outputs are designed to drive  
3.3V  
Z
o = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
84Ω  
84Ω  
((VOH + VOL) / (VCC – 2)) – 2  
FIGURE 7A. LVPECL OUTPUT TERMINATION  
FIGURE 7B. LVPECL OUTPUT TERMINATION  
IDT/ ICS3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
16  
ICS843034AY REV B JULY 18, 2006  
ICS843034  
FEMTOCOCKS™ MULTI-RATE 3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
TERMINATION FOR 2.5V LVPECL OUTPUT  
Figure 8A and Figure 8B show examples of termination for 2.5V  
LVPECL driver. These terminations are equivalent to terminating  
50to V - 2V. For V = 2.5V, the V - 2V is very close to ground  
level. The R3 in Figure 8B can be eliminated and the termination  
is shown in Figure 8C.  
CC  
CC  
CC  
2.5V  
2.5V  
2.5V  
VCCO=2.5V  
VCCO=2.5V  
R1  
250  
R3  
250  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
+
+
-
Zo = 50 Ohm  
-
2,5V LVPECL  
Driver  
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 8A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
FIGURE 8B. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
2.5V  
VCCO=2.5V  
Zo = 50 Ohm  
+
Zo = 50 Ohm  
-
2,5V LVPECL  
Driver  
R1  
50  
R2  
50  
FIGURE 8C. 2.5V LVPECL TERMINATION EXAMPLE  
IDT/ ICS3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
17  
ICS843034AY REV B JULY 18, 2006  
ICS843034  
FEMTOCOCKS™ MULTI-RATE 3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
APPLICATION SCHEMATIC EXAMPLE  
Figure 9shows a schematic example of using an ICS843034. In  
this example, the CLK/nCLK input is driven by a 3.3V LVPECL  
driver. The data sheet also shows the CLK/nCLK input driven by  
various types of drivers. The crystal inputs are parallel resonant  
crystal with load capacitor CL=18pF. The frequency fine tuning  
capacitors C1 and C2 are 22pF. This schematic example shows  
hardwired logic control input handling. The logic inputs can also  
be driven by 3.3V LVCMOS drivers. It is recommended to have  
one decouple capacitor per power pin. In general, the decoupling  
capacitor values are ranged from 0.01uF to 0.1uF. Each  
decoupling capacitor should be located as close as possible to  
the power pin. The low pass filter R9, C11 and C16 for clean  
analog supply should also be located as close to the VCCA pin  
as possible. Only two examples of 3.3V LVPECL termination are  
shown in this schematic example.Additional LVPECL terminations  
can be found in the LVPECL Termination Application Note. The  
data sheet also shows 2.5V LVPECL terminations.The REF_CLK  
is LVCMOS driver with 7output impedance. Series termination  
for REF_CLK is shown in the example. Additional LVCMOS  
termination can be found in the LVCMOS Application Note. If the  
REF_CLK is not used, it is recommended to disable this output  
by setting REF_OE to logic low. To disable REF_CLK, REF_OE  
pin can be left floating (default logic low by internal 51K pull down)  
or pull down using an external 1kresistor.  
3.3V  
Zo = 50  
Zo = 50  
C1  
X1  
C2  
LVPECL  
R10  
50  
R11  
50  
22p  
CL=18pF 22p  
C3  
X1  
C4  
R12  
50  
1
2
3
4
5
6
7
8
9
10  
11  
12  
36  
22p  
CL=18pF 22p  
M8  
X_OUT1  
X_I N1  
X_OUT0  
X_I N0  
TEST_CLK  
SEL1  
SEL0  
VCCA  
S_LOAD  
S_DATA  
S_CLOCK  
MR  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
NB0  
NB1  
NB2  
OE_REF  
OE_A  
OE_B  
VCC  
NA0  
NA1  
NA2  
VEE  
VCC  
VCC  
C9  
0.1u  
R9  
10  
VCCA  
U1  
ICS843034  
C11  
0.01u  
C16  
10u  
VCC  
C5  
0.1u  
VCCO_REF  
VCCO  
C6  
0.1u  
Zo = 50 Ohm  
C7  
0.1u  
C8  
0.1u  
+
-
Zo = 50 Ohm  
VCC=3.3V  
R2  
50  
R1  
50  
VCCO=3.3V  
VCCO_REF=3.3V  
R8  
43 Zo = 50 Ohm  
R3  
50  
LVCMOS  
Logic Input Pin Examples  
VCCO  
Set Logic  
Input to  
'1'  
Set Logic  
Input to  
'0'  
VCC  
VCC  
R4  
133  
R6  
133  
Zo = 50 Ohm  
Zo = 50 Ohm  
RU1  
1K  
RU2  
SPARE  
+
-
To Logic  
Input  
To Logic  
Input  
pins  
pins  
RD1  
RD2  
1K  
R5  
82.5  
R7  
82.5  
SPARE  
Alternative  
Termination  
Exmaple  
FIGURE 9. ICS843034 APPLICATION SCHEMATIC EXAMPLE  
IDT/ ICS3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
18  
ICS843034AY REV B JULY 18, 2006  
ICS843034  
FEMTOCOCKS™ MULTI-RATE 3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS843034.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS843034 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for V = 3.3V + 5% = 3.465V, which gives worst case results.  
CC  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
·
·
Power (core) = V  
* I  
= 3.465V * 185mA = 641mW  
EE_MAX  
MAX  
CC_MAX  
Power (outputs) = 30mW/Loaded Output pair  
MAX  
If all outputs are loaded, the total power is 2 * 30mW = 60mW  
Total Power  
(3.465V, with all outputs switching) = 641mW + 60mW = 701mW  
_MAX  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
TM  
device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W per Table 8 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.701W * 42.1°C/W = 99.5°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 8. THERMAL RESISTANCE θ FOR 48-PIN LQFP, FORCED CONVECTION  
JA  
θ by Velocity (Linear Feet per Minute)  
JA  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
IDT/ ICS3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
19  
ICS843034AY REV B JULY 18, 2006  
ICS843034  
FEMTOCOCKS™ MULTI-RATE 3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 10.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
FIGURE 10. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a  
termination  
voltage of V - 2V.  
CCO  
For logic high, V = V  
= V  
– 0.9V  
OUT  
OH_MAX  
CCO_MAX  
)
= 0.9V  
OH_MAX  
(V  
- V  
CCO_MAX  
For logic low, V = V  
= V  
– 1.7V  
OUT  
OL_MAX  
CCO_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CCO_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
L
L
[(2V - 0.9V)/50] * 0.9V = 19.8mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
/R ] * (V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
IDT/ ICS3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
20  
ICS843034AY REV B JULY 18, 2006  
ICS843034  
FEMTOCOCKS™ MULTI-RATE 3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
RELIABILITY INFORMATION  
TABLE 9. θ VS. AIR FLOW TABLE FOR 48 LEAD LQFP  
JA  
θ by Velocity (Linear Feet per Minute)  
JA  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS843034 is: 11,748  
IDT/ ICS3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
21  
ICS843034AY REV B JULY 18, 2006  
ICS843034  
FEMTOCOCKS™ MULTI-RATE 3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
PACKAGE OUTLINE - Y SUFFIX FOR 48 LEAD LQFP  
TABLE 10. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBC  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
48  
--  
--  
--  
1.60  
0.15  
1.45  
0.27  
0.20  
A1  
A2  
b
0.05  
1.35  
0.17  
0.09  
1.40  
0.22  
c
--  
D
9.00 BASIC  
7.00 BASIC  
5.50 Ref.  
9.00 BASIC  
7.00 BASIC  
5.50 Ref.  
0.50 BASIC  
0.60  
D1  
D2  
E
E1  
E2  
e
L
0.45  
0.75  
θ
--  
0°  
7°  
ccc  
--  
--  
0.08  
Reference Document: JEDEC Publication 95, MS-026  
IDT/ ICS3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
22  
ICS843034AY REV B JULY 18, 2006  
ICS843034  
FEMTOCOCKS™ MULTI-RATE 3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
TABLE 11. ORDERING INFORMATION  
Part/Order Number  
ICS843034AY  
Marking  
Package  
Shipping Packaging  
tray  
Temperature  
ICS843034AY  
ICS843034AY  
ICS843034AYL  
ICS843034AYL  
48 Lead LQFP  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
ICS843034AYT  
ICS843034AYLF  
ICS843034AYLFT  
48 Lead LQFP  
1000 tape & reel  
tray  
48 Lead "Lead-Free" LQFP  
48 Lead "Lead-Free" LQFP  
1000 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial  
applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional  
processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical  
instruments.  
IDT/ ICS3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
23  
ICS843034AY REV B JULY 18, 2006  
ICS843034  
FEMTOCOCKS™ MULTI-RATE 3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
Innovate with IDT and accelerate your future networks. Contact:  
www.IDT.com  
For Sales  
800-345-7015  
408-284-8200  
Fax: 408-284-2775  
For Tech Support  
netcom@idt.com  
480-763-2056  
Corporate Headquarters  
Integrated Device Technology, Inc.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Asia Pacific and Japan  
Integrated Device Technology  
Singapore (1997) Pte. Ltd.  
Reg. No. 199707558G  
435 Orchard Road  
Europe  
IDT Europe, Limited  
321 Kingston Road  
Leatherhead, Surrey  
KT22 7TU  
United States  
800 345 7015  
#20-03 Wisma Atria  
England  
+408 284 8200 (outside U.S.)  
Singapore 238877  
+44 (0) 1372 363 339  
Fax: +44 (0) 1372 378851  
+65 6 887 5505  
© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo and HiPerClockS are trademarks of  
Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be  
trademarks or registered trademarks used to identify products or services of their respective owners.  
Printed in USA  

相关型号:

843034AYLFT

Clock Generator, 750MHz, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026BBC, LQFP-48
IDT

843034DY-06LF

Clock Generator, 375MHz, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026, LQFP-48
IDT

843034DY-06LFT

Clock Generator, 375MHz, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026, LQFP-48
IDT

843034EY-06LF

FemtoClock™ Multi-Rate 3.3V LVPECL Frequency Synthesizer
IDT

843034EY-06LFT

FemtoClock™ Multi-Rate 3.3V LVPECL Frequency Synthesizer
IDT

843034EYI-06LF

FemtoClock™ Multi-Rate 3.3V LVPECL Frequency Synthesizer
IDT

843034EYI-06LFT

Clock Generator, 375MHz, CMOS, PQFP48, 7 X 7 MM, 1 MM HEIGHT, ROHS COMPLIANT, MS-026ABC-HD, TQFP-48
IDT

843034I-06

FemtoClock™ Multi-Rate 3.3V LVPECL Frequency Synthesizer
IDT

843051AG

Clock Generator, 161.13MHz, PDSO8, 4.40 X 3 MM, 0.925 MM HEIGHT, MO-153, TSSOP-8
IDT

843051AG-57LF

Clock Generator, 160MHz, PDSO8, 4.40 X 3 MM, 0.925 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-8
IDT

843051AG-57LFT

Clock Generator, 160MHz, PDSO8, 4.40 X 3 MM, 0.925 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-8
IDT

843051AGT

Clock Generator, 161.13MHz, PDSO8, 4.40 X 3 MM, 0.925 MM HEIGHT, MO-153, TSSOP-8
IDT