84325EMT [IDT]

Clock Generator, 250MHz, PDSO24, 7.50 X 15.33 MM, 2.30 MM HEIGHT, MS-013, MO-119, SOIC-24;
84325EMT
型号: 84325EMT
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Clock Generator, 250MHz, PDSO24, 7.50 X 15.33 MM, 2.30 MM HEIGHT, MS-013, MO-119, SOIC-24

时钟 光电二极管 外围集成电路 晶体
文件: 总16页 (文件大小:240K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS84325  
CRYSTAL-TO-3.3V LVPECL  
FREQUENCY SYNTHESIZER WITH FANOUT BUFFER  
GENERAL DESCRIPTION  
FEATURES  
The ICS84325 is a Crystal-to-3.3 VLVPECL Frequency  
Synthesizer with Fanout Buffer. The output frequency can be  
programmed using frequency select pins. The low phase  
noise characteristics of the ICS84325 make it an ideal  
clocksource for Fibre Channel 1, Fibre Channel 2, Infiniband  
and Gigabit Ethernet applications.  
6 differential 3.3V LVPECL outputs  
Crystal oscillator interface  
Output frequency range: 106.25MHz to 250MHz  
Crystal input frequency: 25MHz and 25.5MHz  
Output skew: 60ps (maximum)  
RMS phase jitter at 212.5MHz, using a 25.5MHz crystal  
(637KHz to 10MHz): 2.76ps  
Phase noise: Typical at 212.5MHz  
Offset  
Noise Power  
100Hz ................. -92 dBc/Hz  
1KHz ................. -112 dBc/Hz  
10KHz ................. -120 dBc/Hz  
100KHz ................. -122 dBc/Hz  
3.3V supply voltage  
0°C to 70°C ambient operating temperature  
Lead-Free package available.  
FUNCTION TABLE  
Industrial temperature information available upon request  
Inputs  
XTAL  
Output Frequency  
F_OUT  
MR F_SEL1 F_SEL0  
1
0
0
0
0
X
0
0
1
1
X
0
1
0
1
LOW  
25.5MHz  
25.5MHz  
25MHz  
106.25MHz  
212.5MHz  
125MHz  
25MHz  
250MHz  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
1
2
3
4
5
6
7
8
24  
23  
22  
Q0  
nQ0  
Q1  
nQ1  
Q2  
nQ2  
Q3  
nQ3  
Q4  
VCCO  
F_SEL0  
F_SEL1  
XTAL1  
6
21 MR  
20  
19 XTAL2  
VEE  
18  
17 VCCA  
16 VCC  
Q0:Q5  
0
OSC  
/
Output  
Divider  
XTAL1  
XTAL2  
6
/
nQ0:nQ5  
1
PLL  
9
nQ4  
Q5  
nQ5  
PLL_SEL  
VEE  
VCCO  
10  
11  
12  
15  
14  
13  
Feedback  
Divider  
ICS84325  
24-Lead, 300-MIL SOIC  
7.5mm x 15.33mm x 2.3mm body package  
M Package  
TopView  
F_SEL1  
MR  
PLL_SEL  
F_SEL0  
84325EM  
www.idt.com  
REV. C JULY 21, 2010  
1
ICS84325  
CRYSTAL-TO-3.3V LVPECL  
FREQUENCY SYNTHESIZER WITH FANOUT BUFFER  
TABLE 1. PIN DESCRIPTIONS  
Number  
1, 2  
Name  
Q0, nQ0  
Q1, nQ1  
Q2, nQ2  
Q3, nQ3  
Q4, nQ4  
Q5, nQ5  
VCCO  
Type  
Description  
Output  
Output  
Output  
Output  
Output  
Output  
Power  
Power  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Output supply pins.  
3, 4  
5, 6  
7, 8  
9, 10  
11, 12  
13, 24  
16  
VCC  
Core supply pin.  
14, 18  
VEE  
PLL_SEL  
VCCA  
Negative supply pins.  
Selects between the PLL and crystal inputs as the input to the dividers.  
When HIGH, selects PLL. When LOW, selects XTAL1, XTAL2.  
LVCMOS / LVTTL interface levels.  
15  
Input  
Pullup  
17  
Power  
Analog supply pin.  
19, 20  
XTAL2, XTAL1 Input  
Crystal oscillator interface. XTAL1 is the input. XTAL2 is the output.  
Active High Master Reset. When logic HIGH, the internal dividers are  
reset causing the true outputs Qx to go low and the inverted outputs  
nQx to go high. When logic LOW, the internal dividers and the outputs  
are enabled. LVCMOS / LVTTL interface levels.  
21  
MR  
Input Pulldown  
22  
23  
F_SEL1  
F_SEL0  
Input Pulldown Feedback frequency select pin. LVCMOS / LVTTL interface levels.  
Input Pullup Output select pin. LVCMOS / LVTTL interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Input Capacitance  
Input Pullup Resistor  
4
pF  
KΩ  
KΩ  
RPULLUP  
51  
51  
RPULLDOWN Input Pulldown Resistor  
84325EM  
www.idt.com  
REV. C JULY 21, 2010  
2
ICS84325  
CRYSTAL-TO-3.3V LVPECL  
FREQUENCY SYNTHESIZER WITH FANOUT BUFFER  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
CC  
Inputs, V  
-0.5V to VCC + 0.5V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
PackageThermal Impedance, θ  
50°C/W (0 lfpm)  
-65°C to 150°C  
JA  
StorageTemperature, T  
STG  
TABLE 3A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum Units  
VCC  
VCCA  
IEE  
Core Supply Voltage  
3.465  
3.465  
210  
V
Analog Supply Voltage  
Power Supply Current  
Analog Supply Current  
3.135  
3.3  
V
mA  
mA  
ICCA  
27  
TABLE 3B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
PLL_SEL, MR,  
F_SEL0, F_SEL1  
PLL_SEL, MR,  
F_SEL0, F_SEL1  
VIH  
VIL  
Input High Voltage  
2
VCC + 0.3  
0.8  
V
V
Input Low Voltage  
Input High Current  
-0.3  
MR, F_SEL1  
V
CC = VIN = 3.465V  
VCC = VIN = 3.465V  
CC = 3.465V, VIN = 0V  
150  
5
µA  
µA  
µA  
µA  
IIH  
PLL_SEL, F_SEL0  
MR, F_SEL1  
V
-5  
IIL  
Input Low Current  
PLL_SEL, F_SEL0  
VCC = 3.465V, VIN = 0V  
-150  
TABLE 3C. LVPECL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCCO - 1.4  
VCCO - 2.0  
0.6  
VCCO - 0.8  
VCCO - 1.7  
1.2  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50Ω to VCCO - 2V.  
84325EM  
www.idt.com  
REV. C JULY 21, 2010  
3
ICS84325  
CRYSTAL-TO-3.3V LVPECL  
FREQUENCY SYNTHESIZER WITH FANOUT BUFFER  
TABLE 4. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum Typical Maximum  
Units  
Mode of Oscillation  
Frequency  
Fundamental  
25  
25.5  
50  
7
MHz  
Ω
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
pF  
TABLE 5. AC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
FOUT  
Output Frequency  
106.25  
250  
60  
800  
52  
54  
57  
60  
1
MHz  
ps  
ps  
tsk(o)  
tR / tF  
Output Skew; NOTE 1, 2  
Output Rise/Fall Time  
20ꢀ to 80ꢀ  
fOUT = 106.25MHz  
fOUT = 125MHz  
fOUT = 212.5MHz  
fOUT = 250MHz  
300  
48  
46  
43  
odc  
Output Duty Cycle  
40  
tLOCK  
PLL Lock Time  
ms  
See Parameter Measurement Information section.  
NOTE 1: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at VCCO/2.  
NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.  
84325EM  
www.idt.com  
REV. C JULY 21, 2010  
4
ICS84325  
CRYSTAL-TO-3.3V LVPECL  
FREQUENCY SYNTHESIZER WITH FANOUT BUFFER  
TYPICAL PHASE NOISE  
0
Fibre Channel 1  
Bandpass Filter  
-10  
-20  
-30  
-40  
-50  
-60  
Jitter BW Jitter Filter  
Diff. Jitter  
Source  
Mode  
Process Result  
Noise only  
70  
-
Freq. carrier  
106.250M Hz  
-80  
Start Freq.  
10.000  
Stop Freq.  
Jitter  
-90  
-100  
-110  
-120  
-130  
40.000M Hz  
2.62 ps  
Raw phase noise data  
-140  
-150  
-160  
-170  
-180  
-190  
Phase noise result by adding  
Bandpass Filter to raw data  
100  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FREQUENCY (HZ)  
0
-10  
Fibre Channel 2  
Bandpass Filter  
-20  
-30  
-40  
-50  
Jitter BW  
Jitter Filter  
Diff. Jitter  
Source  
Mode  
-60  
-70  
Process Result  
Noise only  
Freq. carrier  
212.500M Hz  
-80  
Start Freq.  
10.000  
Stop Freq.  
Jitter  
2.76  
-90  
40.000M Hz  
ps  
-100  
Raw phase noise data  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
Phase noise result by adding  
Bandpass Filter to raw data  
100  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FREQUENCY (HZ)  
84325EM  
www.idt.com  
REV. C JULY 21, 2010  
5
ICS84325  
CRYSTAL-TO-3.3V LVPECL  
FREQUENCY SYNTHESIZER WITH FANOUT BUFFER  
PARAMETER MEASUREMENT INFORMATION  
2V  
SCOPE  
VCC,  
VCCA  
Qx  
nQx  
Qx  
LVPECL  
VEE  
nQy  
Qy  
nQx  
tsk(o)  
-1.3V 0.165V  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
OUTPUT SKEW  
nQ0:nQ5  
80ꢀ  
tF  
80ꢀ  
Q0:Q5  
Pulse Width  
20ꢀ  
20ꢀ  
tPERIOD  
Clock  
Outputs  
tR  
tPW  
odc =  
tPERIOD  
OUTPUT RISE/FALL TIME  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
84325EM  
www.idt.com  
REV. C JULY 21, 2010  
6
ICS84325  
CRYSTAL-TO-3.3V LVPECL  
FREQUENCY SYNTHESIZER WITH FANOUT BUFFER  
APPLICATION INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise.The ICS84325 provides sepa-  
3.3V  
VCC  
rate power supplies to isolate any high switching  
and  
.01μF  
.01μF  
24Ω  
noise from the outputs to the internal PLL. VCC, VCCA  
VCCO  
should be individually connected to the power supply  
plane through vias, and bypass capacitors should be  
used for each pin. To achieve optimum jitter performance,  
power supply isolation is required. Figure 2 illustrates how  
a 24Ω resistor along with a 10μF and a .01μF bypass  
capacitor should be connected to each VCCA pin.  
VCCA  
10 μF  
FIGURE 2. POWER SUPPLY FILTERING  
TERMINATION FOR LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina- drive 50Ω transmission lines. Matched impedance techniques  
tion for LVPECL outputs.The two different layouts mentioned should be used to maximize operating frequency and minimize  
are recommended only as guidelines.  
signal distortion. Figures 3A and 3B show two different layouts  
which are recommended only as guidelines. Other suitable clock  
layouts may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs.Therefore, terminat-  
ing resistors (DC current path to ground) or current sources  
must be used for functionality. These outputs are designed to  
3.3V  
Z
o = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
Z
o = 50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 3A. LVPECL OUTPUT TERMINATION  
FIGURE 3B. LVPECL OUTPUT TERMINATION  
84325EM  
www.idt.com  
REV. C JULY 21, 2010  
7
ICS84325  
CRYSTAL-TO-3.3V LVPECL  
FREQUENCY SYNTHESIZER WITH FANOUT BUFFER  
CRYSTAL INPUT INTERFACE  
The ICS84325 has been characterized with 18pF parallel resonant were chosen to minimize the ppm error. The optimum C1 and C2  
crystals.The capacitor values, C1 and C2, shown in Figure 3 below values can be slightly adjusted for different board layouts.  
were determined using a 25MHz, 18pF parallel resonant crystal and  
XTAL2  
C1  
22p  
X1  
18pF Parallel Cry stal  
XTAL1  
C2  
22p  
Figure 4. CRYSTAL INPUt INTERFACE  
SCHEMATIC EXAMPLE  
Figure 5A shows a schematic example of using an ICS84325. In  
therefore the output frequency is 250MHz. It is recommended to  
this example, the input is a 25MHz parallel resonant crystal with have one decouple capacitor per power pin. Each decoupling  
load capacitor CL=18pF. The frequency fine tuning capacitors capacitor should be located as close as possible to the power  
C1 and C2 are 22pF respectively.This example also shows logic  
pin.The low pass filter R7, C11 and C16 for clean analog supply  
control input handling.The configuration is set at F_SEL[1:0]=11 should also be located as close to the VCCA pin as possible.  
VCC  
U7  
VCC  
R4  
1K  
VCC  
Zo = 50  
Zo = 50  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
12  
11  
10  
9
8
7
6
5
4
3
VCC  
VEE  
PLL_SEL  
VCC  
VCCA  
VEE  
XTAL2  
XTAL1  
MR  
F_SEL1  
F_SEL0  
VCC  
nQ5  
Q5  
nQ4  
Q4  
nQ3  
Q3  
nQ2  
Q2  
nQ1  
Q1  
nQ0  
Q0  
-
R7  
24  
VCCA  
22p  
+
C11  
0.1u  
C16  
10u  
C1  
R2  
50  
R1  
50  
F_SEL1  
F_SEL0  
X1  
25MHz,18pF  
R5  
1K  
2
1
C2  
R3  
50  
VCC  
22p  
ICS84325  
RU2  
1K  
RU3  
1K  
VCC=3.3V  
F_SEL1  
F_SEL0  
VCC  
(U1,13)  
(U1,16)  
(U1,24)  
C6  
0.1u  
C5  
0.1u  
C3  
0.1u  
e.g. F_SEL[1:0]=11  
RD2  
SP  
RD3  
SP  
SP = Spare, Not Installed  
FIGURE 5A. ICS84325 SCHEMATIC EXAMPLE  
84325EM  
www.idt.com  
REV. C JULY 21, 2010  
8
ICS84325  
CRYSTAL-TO-3.3V LVPECL  
FREQUENCY SYNTHESIZER WITH FANOUT BUFFER  
• The differential 100Ω output traces should have the  
same length.  
The following component footprints are used in this layout  
example:  
• Avoid sharp angles on the clock trace.Sharp angle  
turns cause the characteristic impedance to change on  
the transmission lines.  
All the resistors and capacitors are size 0603.  
POWER AND GROUNDING  
Place the decoupling capacitors C3, C5 and C6, as close as  
possible to the power pins. If space allows, placement of the  
decoupling capacitor on the component side is preferred. This  
can reduce unwanted inductance between the decoupling ca-  
pacitor and the power pin caused by the via.  
• Keep the clock traces on the same layer.Whenever pos-  
sible, avoid placing vias on the clock traces. Placement  
of vias on the traces can affect the trace characteristic  
impedance and hence degrade signal integrity.  
To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow a separation of at least three trace  
widths between the differential clock trace and the other  
signal trace.  
Maximize the power and ground pad sizes and number of vias  
capacitors.This can reduce the inductance between the power  
and ground planes and the component power and ground pins.  
The RC filter consisting of R7, C11, and C16 should be placed  
as close to the VDDA pin as possible.  
• Make sure no other signal traces are routed between the  
clock trace pair.  
CLOCK TRACES AND TERMINATION  
• The matching termination resistors should be located as  
close to the receiver input pins as possible.  
Poor signal integrity can degrade the system performance or  
cause system failure. In synchronous high-speed digital systems,  
the clock signal is less tolerant to poor signal integrity than other  
signals. Any ringing on the rising or falling edge or excessive ring  
back can cause system failure. The shape of the trace and the  
trace delay might be restricted by the available space on the board  
and the component location.While routing the traces, the clock  
signal traces should be routed first and should be locked prior to  
routing other signal traces.  
CRYSTAL  
The crystal X1 should be located as close as possible to the pins  
20 (XTAL1) and 19 (XTAL2). The trace length between the X1  
and U1 should be kept to a minimum to avoid unwanted parasitic  
inductance and capacitance. Other signal traces should not be  
routed near the crystal traces.  
C6  
GND  
VCC  
C1  
C5  
Signals  
VIA  
R7  
VCCA  
C16  
C11  
X1  
C3  
C2  
50 Ohm Traces  
Pin1  
U1 ICS84325  
FIGURE 5B. PCB BOARD LAYOUT FOR ICS84325  
84325EM  
www.idt.com  
REV. C JULY 21, 2010  
9
ICS84325  
CRYSTAL-TO-3.3V LVPECL  
FREQUENCY SYNTHESIZER WITH FANOUT BUFFER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS84325.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS84325 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 210mA = 727.7mW  
Power (outputs)MAX = 30.2mW/Loaded Output pair  
If all outputs are loaded, the total power is 6 * 30.2mW = 181mW  
Total Power_MAX (3.465V, with all outputs switching) = 727.7mW + 181mW = 908.7mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device. The maximum recommended junction temperature for the devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 43°C/W perTable 6 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.909W * 43°C/W = 113.9°C. This is well below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 6. THERMAL RESISTANCE θJA FOR 24-PIN SOIC, FORCED CONVECTION  
θJA byVelocity (Linear Feet per Minute)  
0
200  
43°C/W  
500  
38°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
50°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
84325EM  
www.idt.com  
REV. C JULY 21, 2010  
10  
ICS84325  
CRYSTAL-TO-3.3V LVPECL  
FREQUENCY SYNTHESIZER WITH FANOUT BUFFER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 6.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
FIGURE 6. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage ofV - 2V.  
CCO  
For logic high, VOUT = V  
= V  
– 1.0V  
OH_MAX  
CCO_MAX  
)
= 1.0V  
OH_MAX  
(V  
- V  
CCO_MAX  
For logic low, VOUT = V  
= V  
– 1.7V  
OL_MAX  
CCO_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CCO_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
L
L
[(2V - 1V)/50Ω) * 1V = 20.0mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
L
[(2V - 1.7V)/50Ω) * 1.7V = 10.2mW L  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW  
84325EM  
www.idt.com  
REV. C JULY 21, 2010  
11  
ICS84325  
CRYSTAL-TO-3.3V LVPECL  
FREQUENCY SYNTHESIZER WITH FANOUT BUFFER  
RELIABILITY INFORMATION  
TABLE 7. θJAVS. AIR FLOW TABLE FOR 24 LEAD SOIC  
θJA byVelocity (Linear Feet per Minute)  
0
200  
43°C/W  
500  
38°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
50°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS84325 is: 3500  
84325EM  
www.idt.com  
REV. C JULY 21, 2010  
12  
ICS84325  
CRYSTAL-TO-3.3V LVPECL  
FREQUENCY SYNTHESIZER WITH FANOUT BUFFER  
PACKAGE OUTLINE - M SUFFIX FOR 24 LEAD SOIC  
TABLE 8. PACKAGE DIMENSIONS  
Millimeters  
Minimum Maximum  
SYMBOL  
N
A
24  
--  
2.65  
--  
A1  
A2  
B
0.10  
2.05  
0.33  
0.18  
15.20  
7.40  
2.55  
0.51  
0.32  
15.85  
7.60  
C
D
E
e
1.27 BASIC  
H
h
10.00  
0.25  
0.40  
0°  
10.65  
0.75  
1.27  
8°  
L
α
Reference Document: JEDEC Publication 95, MS-013, MO-119  
84325EM  
www.idt.com  
REV. C JULY 21, 2010  
13  
ICS84325  
CRYSTAL-TO-3.3V LVPECL  
FREQUENCY SYNTHESIZER WITH FANOUT BUFFER  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
84325EM  
Marking  
ICS84325EM  
ICS84325EM  
ICS84325EMLN  
ICS84325EMLN  
Package  
24 Lead SOIC  
24 Lead SOIC  
Shipping Packaging  
Tube  
1000 Tape & Reel  
Tube  
Temperature  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
84325EMT  
84325EMLN  
84325EMLNT  
24 Lead "Lead-Free" SOIC  
24 Lead "Lead-Free" SOIC  
1000 Tape & Reel  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Inc.(IDT) assumes no responsibility for either its use or for infringement of  
any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial  
applications.Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves  
the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
84325EM  
www.idt.com  
REV. C JULY 21, 2010  
14  
ICS84325  
CRYSTAL-TO-3.3V LVPECL  
FREQUENCY SYNTHESIZER WITH FANOUT BUFFER  
REVISION HISTORY SHEET  
Description of Change  
LVPECL DC Characteristics Table  
Rev  
Table  
T3  
Page  
3
Date  
Changed VOH max. from VCCO - 1.0V to VCCO - 0.8V.  
Changed VSWING max. from 1.0V to 1.2V. Corrected Units.  
B
10/1/03  
10/11/04  
7/21/10  
T9  
T9  
14  
Ordering Information Table - added Lead-Free part number.  
Updated datasheet's header/footer with IDT from ICS.  
Removed ICS prefix from Part/Order Number column.  
Added Contact Page.  
C
14  
16  
84325EM  
www.idt.com  
REV. C JULY 21, 2010  
15  
ICS84325  
CRYSTAL-TO-3.3V LVPECL  
FREQUENCY SYNTHESIZER WITH FANOUT BUFFER  
We’ve Got Your Timing Solution.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Sales  
Tech Support  
netcom@idt.com  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
Fax: 408-284-2775  
© 2010 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks of Integrated Device Technology, Inc.  
Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of  
their respective owners.  
Printed in USA  
84325EM  
www.idt.com  
REV. C JULY 21, 2010  
16  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY