84327AMLF [IDT]

Clock Generator, 625MHz, PDSO24, 7.50 X 15.33 MM, 2.30 MM HEIGHT, MS-013, MO-119, SOIC-24;
84327AMLF
型号: 84327AMLF
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Clock Generator, 625MHz, PDSO24, 7.50 X 15.33 MM, 2.30 MM HEIGHT, MS-013, MO-119, SOIC-24

时钟 光电二极管 外围集成电路 晶体
文件: 总15页 (文件大小:249K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
ICS84327  
Integrated  
Circuit  
Systems, Incꢀ  
C
RYSTAL  
-TO-3.3V LVPECL  
FREQUENCY  
SYNTHESIZER W/INTEGRATED  
FANOUT  
BUFFER  
GENERAL DESCRIPTION  
FEATURES  
The ICS84327 is a Crystal-to-3.3V LVPECL 6 LVPECLoutputs  
,&6  
Clock Synthesizer/Fanout Buffer designed for  
Crystal oscillator interface  
Output frequency range: 77.76MHz to 625MHz  
HiPerClockS™  
SONET, 10 Gigabit Fibre Channel and 10 Giga-  
bit Ethernet applications and is a member of the  
HiperClockS family of High Performance Clock  
Crystal input frequency: 19.44MHz, 25MHz or 25.5MHz  
Solutions from ICS. The output frequency can be set using  
the frequency select pins and a 19.44MHz crystal for SONET  
frequencies, or a 25MHz crystal for 10 Gigabit Ethernet fre-  
quencies, or a 25.5MHz crystal for a 10 Gigabit Fibre Chan-  
nel. The low phase noise characteristics of the ICS84327 make  
it an ideal clock for these demanding applications.  
RMS phase jitter at 155.52MHz, using a 19.44MHz crystal  
(12KHz to 20MHz): 3.4ps (typical)  
Phase noise:  
Offset  
Noise Power  
100Hz .................. -92 dBc/Hz  
1KHz ................ -105 dBc/Hz  
10KHz ................ -122 dBc/Hz  
100KHz ................ -123 dBc/Hz  
FUNCTION TABLE  
Output  
Frequency  
Inputs  
Full 3.3V or 3.3V core, 2.5V output supply mode  
0°C to 70°C ambient operating temperature  
F_XTAL  
X
MR SEL2  
SEL1 SEL0  
F_OUT  
LOW  
1
0
0
0
0
0
0
0
0
0
X
1
1
1
1
0
0
0
0
0
X
0
0
1
1
0
0
1
1
0
X
0
1
0
1
0
1
0
1
1
19.44MHz  
19.44MHz  
19.44MHz  
19.44MHz  
25MHz  
77.76MHz  
155.52MHz  
311.04MHz  
622.08MHz  
78.125MHz  
156.25MHz  
312.5 MHz  
625MHz  
Industrial temperature information available upon request  
25MHz  
25MHz  
25MHz  
25.5MHz  
159.375MHz  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
Q0  
nQ0  
Q1  
nQ1  
Q2  
nQ2  
Q3  
nQ3  
Q4  
1
2
3
4
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VCCO  
F_SEL0  
F_SEL1  
MR  
XTAL1  
XTAL2  
F_SEL2  
VCCA  
XTAL1  
OSC  
XTAL2  
6
Q0:Q5  
0
1
/
Output  
Divider  
5
6
7
6
/
nQ0:nQ5  
PLL  
8
9
10  
11  
12  
VCC  
nQ4  
Q5  
nQ5  
PLL_SEL  
VEE  
VCCO  
Feedback  
Divider  
ICS84327  
24-Lead, 300-MIL SOIC  
7.5mm x 15.33mm x 2.3mm body package  
M Package  
Top View  
F_SEL2 MR PLL_SEL  
F_SEL1  
F_SEL0  
The Preliminary Information presented herein represents a product in prototyping or pre-production. The noted characteristics are based on initial  
product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice.  
84327AM  
www.icst.com/products/hiperclocks.html  
REV. A SEPTEMBER 18, 2003  
1
PRELIMINARY  
ICS84327  
Integrated  
Circuit  
Systems, Incꢀ  
C
RYSTAL  
-TO-3.3V LVPECL  
FREQUENCY  
SYNTHESIZER W/INTEGRATED  
FANOUT  
BUFFER  
TABLE 1. PIN DESCRIPTIONS  
Number  
1, 2  
Name  
Q0, nQ0  
Q1, nQ1  
Q2, nQ2  
Q3, nQ3  
Q4, nQ4  
Q5, nQ5  
VCCO  
Type  
Description  
Output  
Output  
Output  
Output  
Output  
Output  
Power  
Power  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Output supply pins.  
3, 4  
5, 6  
7, 8  
9, 10  
11, 12  
13, 24  
16  
VCC  
Core supply pin.  
14  
VEE  
Negative supply pin.  
Selects between the PLL and crystal inputs as the input to the dividers.  
When HIGH, selects PLL. When LOW, selects XTAL1, XTAL2.  
LVCMOS / LVTTL interface levels.  
15  
PLL_SEL  
Input  
Pullup  
17  
18  
VCCA  
Power  
Input  
Analog supply pin.  
F_SEL2  
Pullup  
Feedback frequency select pin. LVCMOS/LVTTL interface levels.  
Crystal oscillator interface. XTAL1 is the input. XTAL2 is the output.  
19, 20  
XTAL2, XTAL1 Input  
Active High Master Reset. When logic HIGH, the internal dividers  
are reset causing the true outputs Qx to go low, and the inverted  
outputs nQx to go high. When logic LOW, the internal dividers and  
the outputs are enabled. LVCMOS / LVTTL interface levels.  
21  
MR  
Input Pulldown  
22  
23  
F_SEL1  
F_SEL0  
Input Pulldown Output frequency select pin. LVCMOS/LVTTL interface levels.  
Input Pullup Output frequency select pin. LVCMOS/LVTTL interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Input Capacitance  
Input Pullup Resistor  
4
pF  
K
RPULLUP  
51  
51  
RPULLDOWN Input Pulldown Resistor  
K
84327AM  
www.icst.com/products/hiperclocks.html  
REV. A SEPTEMBER 18, 2003  
2
PRELIMINARY  
ICS84327  
Integrated  
Circuit  
Systems, Incꢀ  
C
RYSTAL  
-TO-3.3V LVPECL  
FREQUENCY  
SYNTHESIZER W/INTEGRATED  
FANOUT  
BUFFER  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device. These ratings are stress specifications only. Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
CC  
Inputs, V  
-0.5V to VCC + 0.5V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, θJA 50°C/W (0 lfpm)  
Storage Temperature, T -65°C to 150°C  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V±5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum Units  
VCC  
VCCA  
VCCO  
IEE  
Core Supply Voltage  
3.465  
3.465  
3.465  
V
V
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
3.135  
3.3  
3.135  
3.3  
V
140  
20  
mA  
mA  
ICCA  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = VCCA = 3.3V±5%, VCCO = 3.3V±5% OR 2.5V±5%, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
PLL_SEL, MR,  
F_SEL0, F_SEL1  
PLL_SEL, MR,  
F_SEL0, F_SEL1  
VIH  
VIL  
Input High Voltage  
2
V
CC + 0.3  
0.8  
V
V
Input Low Voltage  
Input High Current  
-0.3  
MR, F_SEL1  
V
CC = VIN = 3.465V  
150  
5
µA  
µA  
µA  
µA  
IIH  
PLL_SEL, F_SEL0  
MR, F_SEL1  
VCC = VIN = 3.465V  
V
CC = 3.465V, VIN = 0V  
CC = 3.465V, VIN = 0V  
-5  
IIL  
Input Low Current  
PLL_SEL, F_SEL0  
V
-150  
TABLE 4C. LVPECL DC CHARACTERISTICS, VCC = VCCA = 3.3V±5%, VCCO = 3.3V±5% OR 2.5V±5%, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCCO - 1.4  
VCCO - 2.0  
0.6  
VCCO - 1.0  
VCCO - 1.7  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50 to VCCO - 2V.  
TABLE 4D. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = 3.3V±5%, VCCO = 2.5V±5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum Units  
VCC  
VCCA  
VCCO  
IEE  
Core Supply Voltage  
3.465  
3.465  
2.625  
V
V
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
3.135  
3.3  
2.375  
2.5  
V
140  
20  
mA  
mA  
ICCA  
84327AM  
www.icst.com/products/hiperclocks.html  
REV. A SEPTEMBER 18, 2003  
3
PRELIMINARY  
ICS84327  
Integrated  
Circuit  
Systems, Inc.  
C
RYSTAL  
-
TO-3.3V LVPECL  
FREQUENCY  
SYNTHESIZER W/INTEGRATED  
FANOUT  
BUFFER  
TABLE 5. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Mode of Oscillation  
Frequency  
Fundamental  
19.44  
2±.±  
±0  
7
MHz  
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
pF  
NOTE: Characterized using an 18pf parallel resonant crystal.  
TABLE 6A. AC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V±±5, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
FOUT  
tsk(o)  
tR / tF  
odc  
Output Frequency  
77.76  
62±  
700  
1
MHz  
ps  
Output Skew; NOTE 1, 2  
Output Rise/Fall Time  
Output Duty Cycle  
PLL Lock Time  
30  
±0  
205 to 805  
200  
ps  
5
tLOCK  
ms  
See Parameter Measurement Information section.  
NOTE 1: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential crossing points.  
NOTE 2: This parameter is defined in accordance with JEDEC Standard 6±.  
TABLE 6B. AC CHARACTERISTICS, VCC = VCCA = 3.3V±±5, VCCO = 2.±V±±5, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
FOUT  
tsk(o)  
tR / tF  
odc  
Output Frequency  
77.76  
62±  
700  
1
MHz  
ps  
Output Skew; NOTE 1, 2  
Output Rise/Fall Time  
Output Duty Cycle  
PLL Lock Time  
30  
±0  
205 to 805  
200  
ps  
5
tLOCK  
ms  
See Parameter Measurement Information section.  
NOTE 1: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential crossing points.  
NOTE 2: This parameter is defined in accordance with JEDEC Standard 6±.  
84327AM  
www.icst.com/products/hiperclocks.html  
REV. A SEPTEMBER 18, 2003  
4
PRELIMINARY  
ICS84327  
Integrated  
Circuit  
Systems, Inc.  
C
RYSTAL  
-
TO-3.3V LVPECL  
FREQUENCY  
SYNTHESIZER W/INTEGRATED  
FANOUT  
BUFFER  
TYPICAL PHASE NOISE  
0
-10  
19.44MHz Input  
RMS Phase Noise Jitter  
-20  
-30  
12K to 20MHz = 3.4ps (typical)  
-40  
622.08MHz  
311.04MHz  
155.52MHz  
77.76MHz  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
10  
100  
1k  
10k  
100k  
1M  
10M  
OFFSET FREQUENCY (HZ)  
0
25MHz Input  
RMS Phase Noise Jitter  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
12K to 20MHz = 3.2ps (typical)  
625MHz  
312.5MHz  
156.25MHz  
78.125MHz  
100  
-
-110  
-120  
-130  
-140  
-150  
10  
100  
1k  
10k  
100k  
1M  
10M  
OFFSET FREQUENCY (HZ)  
84327AM  
www.icst.com/products/hiperclocks.html  
REV. A SEPTEMBER 18, 2003  
5
PRELIMINARY  
ICS84327  
Integrated  
Circuit  
Systems, Incꢀ  
C
RYSTAL  
-TO-3.3V LVPECL  
FREQUENCY  
SYNTHESIZER W/INTEGRATED  
FANOUT  
BUFFER  
PARAMETER MEASUREMENT INFORMATION  
2V  
2V  
2.8V+0.04V  
SCOPE  
SCOPE  
Qx  
VCC  
VCCA, VCCO  
,
VCC  
VCCA  
,
Qx  
VCCO  
LVPECL  
LVPECL  
VEE  
nQx  
nQx  
VEE  
-1.3V ± 0.165V  
-0.5V ± 0.125V  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
3.3V/2.5V OUTPUT LOAD AC TEST CIRCUIT  
nQ0:nQ5  
nQx  
Qx  
Q0:Q5  
Pulse Width  
tPERIOD  
nQy  
tPW  
odc =  
Qy  
tsk(o)  
tPERIOD  
OUTPUT SKEW  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
80%  
80%  
VSWING  
20%  
Clock  
20%  
Outputs  
tF  
tR  
OUTPUT RISE/FALL TIME  
84327AM  
www.icst.com/products/hiperclocks.html  
REV. A SEPTEMBER 18, 2003  
6
PRELIMINARY  
ICS84327  
Integrated  
Circuit  
Systems, Incꢀ  
C
RYSTAL  
-TO-3.3V LVPECL  
FREQUENCY  
SYNTHESIZER W/INTEGRATED  
FANOUT  
BUFFER  
APPLICATION INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS84327 provides sepa-  
rate power supplies to isolate any high switching  
noise from the outputs to the internal PLL. VCC, VCCA and VCCO  
should be individually connected to the power supply plane  
through vias, and bypass capacitors should be used for each  
pin. To achieve optimum jitter performance, power supply iso-  
lation is required. Figure 1 illustrates how a 10resistor along  
with a 10µF and a .01µF bypass capacitor should be con-  
nected to each VCCA pin.  
3.3V  
VCC  
.01µF  
.01µF  
10Ω  
VCCA  
10 µF  
FIGURE 1. POWER SUPPLY FILTERING  
TERMINATION FOR 3.3V LVPECL OUTPUT  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs. The two different layouts mentioned  
are recommended only as guidelines.  
designed to drive 50transmission lines. Matched impedance  
techniques should be used to maximize operating  
frequency and minimize signal distortion. Figures 2A and 2B  
show two different layouts which are recommended only  
as guidelines. Other suitable clock layouts may exist and it  
would be recommended that the board designers simulate to  
guarantee compatibility across all printed circuit and clock  
component process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, termi-  
nating resistors (DC current path to ground) or current  
sources must be used for functionality. These outputs are  
3.3V  
Zo = 50  
125  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
(VOH + VOL / VCC 2) 2  
84Ω  
84Ω  
FIGURE 2A. LVPECL OUTPUT TERMINATION  
FIGURE 2B. LVPECL OUTPUT TERMINATION  
84327AM  
www.icst.com/products/hiperclocks.html  
REV. A SEPTEMBER 18, 2003  
7
PRELIMINARY  
ICS84327  
Integrated  
Circuit  
Systems, Incꢀ  
C
RYSTAL  
-TO-3.3V LVPECL  
FREQUENCY  
SYNTHESIZER W/INTEGRATED  
FANOUT  
BUFFER  
TERMINATION FOR 2.5V LVPECL OUTPUT  
Figure 3A and Figure 3B show examples of termination for 2.5V ground level. The R3 in Figure 3B can be eliminated and the  
LVPECL driver. These terminations are equivalent to terminat- termination is shown in Figure 3C.  
ing 50to VCC - 2V. For VCC = 2.5V, the VCC - 2V is very close to  
2.5V  
2.5V  
2.5V  
VCCO=2.5V  
VCCO=2.5V  
R1  
250  
R3  
250  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
+
-
2,5V LVPECL  
Driver  
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 3A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
F
IGURE 3B. 2.5V LVPECL DRIVER  
T
ERMINATION  
E
XAMPLE  
2.5V  
VCCO=2.5V  
Zo = 50 Ohm  
+
Zo = 50 Ohm  
-
2,5V LVPECL  
Driver  
R1  
50  
R2  
50  
FIGURE 3C. 2.5V LVPECL TERMINATION EXAMPLE  
84327AM  
www.icst.com/products/hiperclocks.html  
REV. A SEPTEMBER 18, 2003  
8
PRELIMINARY  
ICS84327  
Integrated  
Circuit  
Systems, Incꢀ  
C
RYSTAL  
-TO-3.3V LVPECL  
FREQUENCY  
SYNTHESIZER W/INTEGRATED  
FANOUT  
BUFFER  
CRYSTAL INPUT INTERFACE  
determined using a 25MHz 18pF parallel resonant crystal and  
were chosen to minimize the ppm error.  
The ICS84327 has been characterized with 18pF parallel reso-  
nant crystals. The capacitor values shown in Figure 4 below were  
19  
XTAL2  
C1  
18pF  
25MHz X1  
20  
XTAL1  
C2  
22pF  
ICS84327  
Figure 4. CRYSTAL INPUt INTERFACE  
SCHEMATIC EXAMPLE  
Figure 5A shows a schematic example of using an ICS84327. is 625MHz. It is recommended to have one decouple capaci-  
In this example, the input is a 25MHz parallel resonant crystal tor per power pin. Each decoupling capacitor should be lo-  
with load capacitor CL=18pF. The frequency fine tuning cated as close as possible to the power pin. The low pass  
capacitors C1 and C2 is 22pF and 18pF respectively. This filter R7, C11 and C16 for clean analog supply should also be  
example also shows logic control input handling. The configu- located as close to the VCCA pin as possible.  
ration is set at F_SEL[2:0]=011, therefore, the output frequency  
VCC  
U1  
VCC  
R4  
1K  
VCC  
Zo = 50  
Zo = 50  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
12  
11  
10  
9
8
7
6
5
4
3
VCCO  
VEE  
PLL_SEL  
VCC  
VCCA  
F_SEL2  
XTAL2  
XTAL1  
MR  
F_SEL1  
F_SEL0  
VCCO  
nQ5  
Q5  
nQ4  
Q4  
nQ3  
Q3  
nQ2  
Q2  
nQ1  
Q1  
nQ0  
Q0  
-
R7  
24  
VCCA  
22p  
+
F_SEL2  
C11  
0.1u  
C16  
10u  
C1  
R2  
50  
R1  
50  
F_SEL1  
F_SEL0  
X1  
25MHz,18pF  
R5  
1K  
2
1
C2  
R3  
50  
VCC  
18p  
ICS84327  
RU1  
SP  
RU2  
1K  
RU3  
1K  
VCC=3.3V  
F_SEL2  
F_SEL1  
F_SEL0  
VCC  
(U1,13)  
(U1,16)  
(U1,24)  
C6  
0.1u  
C5  
0.1u  
C3  
0.1u  
e.g. F_SEL[2:0]=011  
RD1  
1K  
RD2  
SP  
RD3  
SP  
SP = Spare, Not Installed  
FIGURE 5A. ICS84327 SCHEMATIC EXAMPLE  
84327AM  
www.icst.com/products/hiperclocks.html  
REV. A SEPTEMBER 18, 2003  
9
PRELIMINARY  
ICS84327  
Integrated  
Circuit  
Systems, Incꢀ  
C
RYSTAL  
-TO-3.3V LVPECL  
FREQUENCY  
SYNTHESIZER W/INTEGRATED  
FANOUT  
BUFFER  
The differential 50output traces should have the  
same length.  
The following component footprints are used in this layout  
example:  
Avoid sharp angles on the clock trace. Sharp angle  
turns cause the characteristic impedance to change on  
the transmission lines.  
All the resistors and capacitors are size 0603.  
POWER AND GROUNDING  
Place the decoupling capacitors C3, C5 and C6, as close as  
possible to the power pins. If space allows, placement of the  
decoupling capacitor on the component side is preferred. This  
can reduce unwanted inductance between the decoupling ca-  
pacitor and the power pin caused by the via.  
Keep the clock traces on the same layer. Whenever pos-  
sible, avoid placing vias on the clock traces. Placement  
of vias on the traces can affect the trace characteristic  
impedance and hence degrade signal integrity.  
To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow a separation of at least three trace  
widths between the differential clock trace and the other  
signal trace.  
Maximize the power and ground pad sizes and number of vias  
capacitors. This can reduce the inductance between the power  
and ground planes and the component power and ground pins.  
The RC filter consisting of R7, C11, and C16 should be placed  
as close to the VCCA pin as possible.  
Make sure no other signal traces are routed between the  
clock trace pair.  
CLOCK TRACES AND TERMINATION  
The matching termination resistors should be located as  
close to the receiver input pins as possible.  
Poor signal integrity can degrade the system performance or  
cause system failure. In synchronous high-speed digital systems,  
the clock signal is less tolerant to poor signal integrity than other  
signals. Any ringing on the rising or falling edge or excessive ring  
back can cause system failure. The shape of the trace and the  
trace delay might be restricted by the available space on the board  
and the component location. While routing the traces, the clock  
signal traces should be routed first and should be locked prior to  
routing other signal traces.  
CRYSTAL  
The crystal X1 should be located as close as possible to the pins  
20 (XTAL1) and 19 (XTAL2). The trace length between the X1  
and U1 should be kept to a minimum to avoid unwanted parasitic  
inductance and capacitance. Other signal traces should not be  
routed near the crystal traces.  
C6  
GND  
VCC  
C1  
C5  
Signals  
VIA  
R7  
VCCA  
C16  
C11  
X1  
C3  
C2  
50 Ohm Traces  
Pin1  
U1 ICS84327  
FIGURE 5B. PCB BOARD LAYOUT FOR ICS84327  
84327AM  
www.icst.com/products/hiperclocks.html  
REV. A SEPTEMBER 18, 2003  
10  
PRELIMINARY  
ICS84327  
Integrated  
Circuit  
Systems, Incꢀ  
C
RYSTAL  
-TO-3.3V LVPECL  
FREQUENCY  
SYNTHESIZER W/INTEGRATED  
FANOUT  
BUFFER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS84327.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS84327 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 140mA = 485mW  
Power (outputs)MAX = 30.2mW/Loaded Output pair  
If all outputs are loaded, the total power is 6 * 30.2mW = 181mW  
Total Power_MAX (3.465V, with all outputs switching) = 485mW + 181mW = 666mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device. The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA =Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 43°C/W per Table 7 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.666W * 43°C/W = 98.6°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 7. THERMAL RESISTANCE θJA FOR 24-PIN SOIC, FORCED CONVECTION  
θJA by Velocity (Linear Feet per Minute)  
0
200  
43°C/W  
500  
38°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
50°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
84327AM  
www.icst.com/products/hiperclocks.html  
REV. A SEPTEMBER 18, 2003  
11  
PRELIMINARY  
ICS84327  
Integrated  
Circuit  
Systems, Incꢀ  
C
RYSTAL  
-TO-3.3V LVPECL  
FREQUENCY  
SYNTHESIZER W/INTEGRATED  
FANOUT  
BUFFER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 6.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
FIGURE 6. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage of V - 2V.  
CCO  
For logic high, V = V  
= V  
– 1.0V  
OUT  
OH_MAX  
CCO_MAX  
)
= 1.0V  
OH_MAX  
(V  
- V  
CCO_MAX  
For logic low, V = V  
= V  
– 1.7V  
OUT  
OL_MAX  
CCO_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CCO_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
/R ] * (V  
Pd_H = [(V  
(V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
- V  
) =  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
L
L
[(2V - 1V)/50] * 1V = 20.0mW  
))  
/R ] * (V  
Pd_L = [(V  
(V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW  
84327AM  
www.icst.com/products/hiperclocks.html  
REV. A SEPTEMBER 18, 2003  
12  
PRELIMINARY  
ICS84327  
Integrated  
Circuit  
Systems, Incꢀ  
C
RYSTAL  
-TO-3.3V LVPECL  
FREQUENCY  
SYNTHESIZER W/INTEGRATED  
FANOUT  
BUFFER  
RELIABILITY INFORMATION  
TABLE 8. θJAVS. AIR FLOW TABLE FOR 24 LEAD SOIC  
θJA by Velocity (Linear Feet per Minute)  
0
200  
43°C/W  
500  
38°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
50°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS84327 is: 2804  
84327AM  
www.icst.com/products/hiperclocks.html  
REV. A SEPTEMBER 18, 2003  
13  
PRELIMINARY  
ICS84327  
Integrated  
Circuit  
Systems, Incꢀ  
C
RYSTAL  
-TO-3.3V LVPECL  
FREQUENCY  
SYNTHESIZER W/INTEGRATED  
FANOUT  
BUFFER  
PACKAGE OUTLINE - M SUFFIX FOR 24 LEAD SOIC  
TABLE 9. PACKAGE DIMENSIONS  
Millimeters  
SYMBOL  
Minimum  
Maximum  
N
A
24  
--  
2.65  
--  
A1  
A2  
B
0.10  
2.05  
0.33  
0.18  
15.20  
7.40  
2.55  
0.51  
0.32  
15.85  
7.60  
C
D
E
e
1.27 BASIC  
H
h
10.00  
0.25  
0.40  
0°  
10.65  
0.75  
1.27  
8°  
L
Reference Document: JEDEC Publication 95, MS-013, MO-119  
84327AM  
www.icst.com/products/hiperclocks.html  
REV. A SEPTEMBER 18, 2003  
14  
PRELIMINARY  
ICS84327  
Integrated  
Circuit  
Systems, Incꢀ  
C
RYSTAL  
-TO-3.3V LVPECL  
FREQUENCY  
SYNTHESIZER W/INTEGRATED  
FANOUT  
BUFFER  
TABLE 10. ORDERING INFORMATION  
Part/Order Number  
Marking  
Package  
24 Lead SOIC  
24 Lead SOIC on Tape and Reel  
Count  
Temperature  
0°C to 70°C  
0°C to 70°C  
ICS84327AM  
ICS84327AM  
ICS84327AM  
30 per tube  
1000  
ICS84327AMT  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are  
not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS  
product for use in life support devices or critical medical instruments.  
84327AM  
www.icst.com/products/hiperclocks.html  
REV. A SEPTEMBER 18, 2003  
15  

相关型号:

84327AMLFT

Clock Generator, 625MHz, PDSO24, 7.50 X 15.33 MM, 2.30 MM HEIGHT, MS-013, MO-119, SOIC-24
IDT

84327AMT

Clock Generator, PDSO24
IDT

84329AM-01

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
IDT

84329AM-01LF

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
IDT

84329AM-01LFT

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
IDT

84329AM-01T

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
IDT

84329AV-01

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
IDT

84329AV-01LF

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
IDT

84329AV-01LFT

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
IDT

84329AV-01T

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
IDT

84329AVLFT

Clock Generator, PQCC28
IDT

84329AVT

Clock Generator, PQCC28
IDT