8432CY-111T [IDT]

PLL Based Clock Driver, 8432 Series, 2 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026BBA, LQFP-32;
8432CY-111T
型号: 8432CY-111T
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

PLL Based Clock Driver, 8432 Series, 2 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026BBA, LQFP-32

驱动 逻辑集成电路
文件: 总18页 (文件大小:148K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS8432-111  
700MHZ/350MHZ  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
GENERAL DESCRIPTION  
FEATURES  
The ICS8432-111 is a general purpose, dual output  
Differential-to-3.3V LVPECL High Frequency Synthesizer.  
The ICS8432-111 has a selectable differential CLK, nCLK  
pair or LVCMOS/LVTTL TEST_CLK. The TEST_CLK input  
accepts LVCMOS or LVTTL input levels and translates them  
to 3.3V LVPECL levels. The CLK, nCLK pair can accept most  
standard differential input levels.The VCO operates at a  
frequency range of 200MHz to 700MHz. The VCO frequency  
is programmed in steps equal to the value of the input differ-  
ential or single ended reference frequency. Output frequen-  
cies up to 700MHz for FOUT and 350MHz for FOUT/2 can be  
programmed using the serial or parallel interfaces to the con-  
figuration logic. The low phase noise characteristics and the  
multiple frequency outputs of the ICS8432-111 makes it an  
ideal clock source for Fibre Channel 1 and 2, and Infiniband  
applications.  
Dual differential 3.3V LVPECL outputs  
Selectable differential CLK, nCLK pair or LVCMOSTEST_CLK  
CLK, nCLK pair can accept the following differential input  
levels: LVPECL, LVDS, LVHSTL, SSTL, HCSL  
TEST_CLK can accept the following input types:  
LVCMOS or LVTTL  
Maximum FOUT frequency: 700MHz  
Maximum FOUT/2 frequency: 350MHz  
CLK, nCLK or TEST_CLK input frequency: 40MHz  
VCO range: 250MHz to 700MHz  
Parallel or serial interface for programming counter  
andVCO frequency multiplier and dividers  
RMS period jitter: 5ps (maximum)  
Cycle-to-cycle jitter: 40ps (maximum)  
3.3V supply voltage  
0°C to 70°C ambient operating temperature  
Available in both standard (RoHS 5) and lead-free  
(RoHS 6) packages  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
VCO_SEL  
CLK_SEL  
TEST_CLK  
0
1
32 31 30 29 28 27 26 25  
CLK  
nCLK  
M5  
M6  
M7  
M8  
N0  
N1  
nc  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
CLK  
TEST_CLK  
CLK_SEL  
VCCA  
ICS8432-111  
10 11 12 13 14 15 16  
32-Lead LQFP  
S_LOAD  
S_DATA  
S_CLOCK  
MR  
PLL  
PHASE DETECTOR  
÷1  
÷2  
÷4  
÷8  
MR  
0
1
VEE  
VCO  
FOUT  
nFOUT  
FOUT/2  
nFOUT/2  
9
÷M  
÷2  
S_LOAD  
S_DATA  
S_CLOCK  
nP_LOAD  
CONFIGURATION  
INTERFACE  
LOGIC  
TEST  
7mm x 7mm x 1.4mm package body  
M0:M8  
N0:N1  
Y Package  
TopView  
8432CY-111  
www.idt.com  
REV. C OCTOBER 5, 2010  
1
ICS8432-111  
700MHZ/350MHZ  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
FUNCTIONAL DESCRIPTION  
NOTE: The functional description that follows describes op-  
rial event occurs. As a result, the M and N bits can be hardwired  
eration using a 25MHz clock input. Valid PLL loop divider to set the M divider and N output divider to a specific default  
values for different input frequencies are defined in the Input state that will automatically occur during power-up.The TEST  
output is LOW when operating in the parallel input mode. The  
relationship between the VCO frequency, the input frequency  
Frequency Characteristics, Table 5, NOTE 1.  
The ICS8432-111 features a fully integrated PLL and there- and the M divider is defined as follows: fVCO = fIN x M  
fore requires no external components for setting the loop band-  
width. A differential clock input is used as the input to the The M value and the required values of M0 through M8 are shown  
ICS8432-111. This input is fed into the phase detector. A inTable 3B, ProgrammableVCO Frequency FunctionTable.When  
the input clock is at 25MHz, the valid M values for which the  
25MHz clock input provides a 25MHz phase detector refer-  
ence frequency. The VCO of the PLL operates over a range PLL will achieve lock are defined as 10 M 28.The frequency  
fOUT = fVCO = f x M  
of 250MHz to 700MHz. The output of the M divider is also out is defined as follows:  
applied to the phase detector.  
IN  
N
N
Serial operation occurs when nP_LOAD is HIGH and S_LOAD is  
The phase detector and the M divider force the VCO output LOW. The shift register is loaded by sampling the S_DATA  
bits with the rising edge of S_CLOCK. The contents of the shift  
frequency to be M times the reference frequency by adjust-  
ing the VCO control voltage. Note, that for some values of M register are loaded into the M divider and N output divider when  
(either too high or too low), the PLL will not achieve lock.The S_LOAD transitions from LOW-to-HIGH.The M divide and N out-  
put divide values are latched on the HIGH-to-LOW transition of  
each of the LVPECL output buffers. The divider provides a S_LOAD. If S_LOAD is held HIGH, data at the S_DATA input is  
output of the VCO is scaled by a divider prior to being sent to  
50% output duty cycle.  
passed directly to the M divider and N output divider on each rising  
edge of S_CLOCK. The serial mode can be used to  
The programmable features of the ICS8432-111 support two program the M and N bits and test bitsT1 andT0.The internal reg-  
input modes to program the PLL M divider and N output divider. istersT0 andT1 determine the state of theTEST output as follows:  
The two input operational modes are parallel and serial. Figure1  
T1 T0  
TEST Output  
LOW  
shows the timing diagram for each mode. In parallel mode, the  
nP_LOAD input is initially LOW.The data on inputs M0 through  
M8 and N0 and N1 is passed directly to the M divider and  
N output divider. On the LOW-to-HIGH transition of the  
nP_LOAD input, the data is latched and the M divider remains  
loaded until the next LOW transition on nP_LOAD or until a se-  
0
0
1
1
0
1
0
1
S_Data, Shift Register Input  
Output of M divider  
CMOS Fout/2  
SERIAL LOADING  
S_CLOCK  
S_DATA  
S_LOAD  
nP_LOAD  
T1  
T0 *NULL N1  
N0  
M8  
M7  
M6  
M5  
M4 M3  
M2  
M1  
M0  
PARALLEL LOADING  
M0:M8, N0:N1  
nP_LOAD  
M, N  
S_LOAD  
Time  
FIGURE 1. PARALLEL & SERIAL LOAD OPERATIONS  
*NOTE: The NULL timing slot must be observed.  
8432CY-111  
www.idt.com  
REV. C OCTOBER 5, 2010  
2
ICS8432-111  
700MHZ/350MHZ  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
1
M5  
Input  
Input  
Pullup  
M counter/divider inputs. Data latched on LOW-to-HIGH transistion  
of nP_LOAD input. LVCMOS/LVTTL interface levels.  
2, 3, 4,  
28, 29,  
M6, M7, M8,  
M0, M1,  
Pulldown  
30, 31, 32  
M2, M3, M4  
Determines output divider value as defined in Table 3C  
Function Table. LVCMOS/LVTTL interface levels.  
5, 6  
N0, N1  
Input  
Pulldown  
7
nc  
Unused  
Power  
No connect.  
8, 16  
VEE  
Negative supply pins.  
Test output which is ACTIVE in the serial mode of operation.  
Output driven LOW in parallel mode. LVCMOS/LVTTL interface levels.  
9
TEST  
VCC  
Output  
Power  
Output  
10  
Core supply pin.  
11,  
12  
FOUT/2,  
nFOUT/2  
Half frequency differential output for the synthesizer.  
3.3V LVPECL interface levels.  
13  
VCCO  
Power  
Output  
Output supply pin.  
14, 15  
FOUT, nFOUT  
Differential output for the synthesizer. 3.3V LVPECL interface levels.  
Active High Master Reset. When logic HIGH, the internal dividers  
are reset causing the true outputs FOUTx to go low and the inverted  
17  
MR  
Input  
Pulldown outputs nFOUTx to go high. When logic LOW, the internal dividers  
are the outputs are enabled. Assertion of MR does not effect loaded  
M, N, and T values. LVCMOS/LVTTL interface levels.  
Clocks in serial data present at S_DATA input into the shift register  
on the rising edge of S_CLOCK. LVCMOS/LVTTL interface levels.  
Shift register serial input. Data sampled on the rising edge  
of S_CLOCK. LVCMOS/LVTTL interface levels.  
18  
19  
S_CLOCK  
S_DATA  
Input  
Input  
Pulldown  
Pulldown  
Controls transition of data from shift register into the dividers.  
LVCMOS/LVTTL interface levels.  
20  
21  
S_LOAD  
VCCA  
Input  
Pulldown  
Power  
Analog supply pin.  
Selects between differential clock input or test input as the PLL  
22  
CLK_SEL  
Input  
Pullup  
reference source. LVCMOS/LVTTL interface levels. Selects CLK,  
nCLK inputs when HIGH. Selects TEST_CLK when LOW.  
23  
24  
25  
TEST_CLK  
CLK  
Input  
Input  
Input  
Pulldown Test clock input. LVCMOS/LVTTL interface levels.  
Pulldown Non-inverting differential clock input.  
nCLK  
Pullup  
Inverting differential clock input.  
Parallel load input. Determines when data present at M8:M0 is loaded  
26  
27  
nP_LOAD  
VCO_SEL  
Input  
Input  
Pulldown into M divider, and when data present at N1:N0 sets the N output  
divider value. LVCMOS/LVTTL interface levels.  
Determines whether synthesizer is in PLL or bypass mode.  
Pullup  
LVCMOS/LVTTL interface levels.  
NOTE: Pullup and Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Input Capacitance  
Input Pullup Resistor  
4
pF  
kΩ  
kΩ  
RPULLUP  
51  
51  
RPULLDOWN Input Pulldown Resistor  
8432CY-111  
www.idt.com  
REV. C OCTOBER 5, 2010  
3
ICS8432-111  
700MHZ/350MHZ  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
TABLE 3A. PARALLEL AND SERIAL MODE FUNCTION TABLE  
Inputs  
S_LOAD S_CLOCK S_DATA  
Conditions  
MR nP_LOAD  
M
N
H
X
X
X
X
X
X
Reset. Forces outputs LOW.  
Data on M and N inputs passed directly to the M  
divider and N output divider. TEST output forced LOW.  
L
L
Data Data  
Data Data  
X
X
X
Data is latched into input registers and remains loaded  
until next LOW transition or until a serial event occurs.  
Serial input mode. Shift register is loaded with data on  
S_DATA on each rising edge of S_CLOCK.  
Contents of the shift register are passed to the M  
divider and N output divider.  
L
L
L
L
L
X
L
X
H
H
X
X
X
X
Data  
Data  
L
L
L
H
H
H
X
X
X
X
X
X
L
L
X
Data  
X
M divider and N output divider values are latched.  
Parallel or serial input do not affect shift registers.  
S_DATA passed directly to ripple counter as it is  
clocked.  
H
Data  
NOTE: L = LOW  
H = HIGH  
X = Don't care  
= Rising edge transition  
= Falling edge transition  
TABLE 3B. PROGRAMMABLE VCO FREQUENCY FUNCTION TABLE  
256  
M8  
0
128  
M7  
0
64  
M6  
0
32  
M5  
0
16  
M4  
0
8
M3  
1
4
M2  
0
2
M1  
1
1
M0  
0
VCO Frequency  
(MHz)  
M Count  
250  
275  
10  
11  
0
0
0
0
0
1
0
1
1
650  
675  
700  
26  
27  
28  
0
0
0
0
1
1
0
1
0
0
0
0
0
1
1
0
1
1
0
0
0
0
1
1
1
0
0
NOTE 1: These M count values and the resulting frequencies correspond to differential input or TEST_CLK input frequency  
of 25MHz.  
TABLE 3C. PROGRAMMABLE OUTPUT DIVIDER FUNCTION TABLE  
Output Frequency (MHz)  
Inputs  
N Divider Value  
FOUT  
FOUT/2  
N1  
0
N0  
0
Minimum  
250  
Maximum  
700  
Minimum  
125  
Maximum  
350  
1
2
4
8
0
1
125  
350  
62.5  
175  
1
0
62.5  
175  
31.25  
15.625  
87.5  
1
1
31.25  
87.5  
43.75  
8432CY-111  
www.idt.com  
REV. C OCTOBER 5, 2010  
4
ICS8432-111  
700MHZ/350MHZ  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
CC  
Inputs, V  
-0.5V to VCC + 0.5 V  
I
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
PackageThermal Impedance, θ  
47.9°C/W (0 lfpm)  
-65°C to 150°C  
JA  
StorageTemperature, T  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum Units  
VCC  
VCCA  
VCCO  
IEE  
Core Supply Voltage  
3.465  
3.465  
3.465  
140  
V
V
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
3.135  
3.3  
3.135  
3.3  
V
mA  
mA  
ICCA  
15  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VCO_SEL, CLK_SEL,  
S_LOAD, S_DATA, S_CLOCK,  
nP_LOAD, N0:N1, M0:M8, MR  
2
2
VCC + 0.3  
V
V
Input  
VIH  
High Voltage  
TEST_CLK  
VCC + 0.3  
VCO_SEL, CLK_SEL,  
S_LOAD, S_DATA, S_CLOCK,  
nP_LOAD, N0:N1, M0:M8, MR  
-0.3  
0.8  
V
Input  
VIL  
Low Voltage  
TEST_CLK  
1.3  
V
M0-M4, M6-M8, N0, N1,  
S_CLOCK, S_DATA, S_LOAD,  
TEST_CLK, nP_LOAD, MR  
VCC = VIN = 3.465V  
150  
µA  
Input  
IIH  
High Current  
M5, CLK_SEL, VCO_SEL  
V
CC = VIN = 3.465V  
5
µA  
µA  
M0-M4, M6-M8, N0, N1,  
S_CLOCK, S_DATA, S_LOAD,  
TEST_CLK, nP_LOAD, MR  
VCC = 3.465V,  
IN = 0V  
-5  
V
Input  
IIL  
Low Current  
V
CC = 3.465V,  
IN = 0V  
M5, CLK_SEL, VCO_SEL  
TEST; NOTE 1  
-150  
2.6  
µA  
V
V
Output  
VOH  
High Voltage  
Output  
VOL  
TEST; NOTE 1  
0.5  
V
Low Voltage  
NOTE 1: Outputs terminated with 50Ω toVCCO/2.See Parameter Information, 3.3V Output LoadTest Circuit.  
8432CY-111  
www.idt.com  
REV. C OCTOBER 5, 2010  
5
ICS8432-111  
700MHZ/350MHZ  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
IIH Input High Current  
CLK  
V
CC = VIN = 3.465V  
VCC = VIN = 3.465V  
CC = 3.465V, VIN = 0V  
150  
5
µA  
µA  
µA  
µA  
V
nCLK  
CLK  
V
-5  
-150  
IIL  
Input Low Current  
nCLK  
VCC = 3.465V, VIN = 0V  
VPP  
Peak-to-Peak Input Voltage  
0.15  
1.3  
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
VEE + 0.5  
VCC - 0.85  
V
NOTE 1: Common mode voltage is defined as VIH.  
NOTE 2: For single ended applications, the maximum input voltage for CLK, nCLK is VCC + 0.3V.  
TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCCO - 1.4  
VCCO - 2.0  
0.6  
VCCO - 0.9  
VCCO - 1.7  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50 Ω to VCCO - 2V.  
TABLE 5. INPUT FREQUENCY CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
TEST_CLK; NOTE 1  
10  
10  
40  
40  
50  
MHz  
MHz  
MHz  
fIN  
Input Frequency CLK, nCLK; NOTE 1  
S_CLOCK  
NOTE 1: For the input frequency range, the M value must be set for the VCO to operate within the 250MHz to 700MHz  
range. Using the minimum input frequency of 10MHz, valid values of M are 25 M 70. Using the maximum frequency  
of 40MHz, valid values of M are 7 M 17.  
8432CY-111  
www.idt.com  
REV. C OCTOBER 5, 2010  
6
ICS8432-111  
700MHZ/350MHZ  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
TABLE 6. AC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
31.25  
Typical  
Maximum  
Units  
MHz  
MHz  
ps  
FOUT  
Output Frequency  
700  
FOUT/2  
tjit(cc)  
tjit(per)  
tsk(o)  
Output Frequency  
15.625  
350  
Cycle-to-Cycle Jitter; NOTE 2  
Period Jitter, RMS; NOTE 2  
Output Skew; NOTE 1, 2  
Output Rise/Fall Time  
40  
fOUT > 100  
20% to 80%  
5
ps  
60  
ps  
tR / tF  
200  
700  
ps  
M, N to nP_LOAD  
5
ns  
tS  
Setup Time S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
M, N to nP_LOAD  
5
ns  
5
ns  
5
ns  
tH  
Hold Time  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
5
ns  
5
ns  
odc  
tPW  
Output Duty Cycle  
Output Pulse Width  
PLL Lock Time  
fOUT/2; fOUT, N > 1  
47  
53  
%
tPeriod/2 - 150  
tPeriod/2 + 150  
1
ps  
tLOCK  
ms  
NOTE 1: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.  
8432CY-111  
www.idt.com  
REV. C OCTOBER 5, 2010  
7
ICS8432-111  
700MHZ/350MHZ  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
VCC  
,
Qx  
VCCA, VCCO  
nCLK  
LVPECL  
VPP  
VCMR  
Cross Points  
nQx  
VEE  
CLK  
-1.3V 0.165V  
VEE  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nFOUT  
FOUT  
nFOUT,  
nFOUT/2  
FOUT,  
FOUT/2  
nFOUT/2  
tcycle n  
tcycle n+1  
FOUT/2  
tsk(o)  
tjit(cc) = tcycle n –tcycle n+1  
1000 Cycles  
OUTPUT SKEW  
CYCLE-TO-CYCLE JITTER  
VOH  
80%  
tF  
80%  
tR  
VREF  
VSWING  
Clock  
Outputs  
20%  
20%  
VOL  
1σ contains 68.26% of all measurements  
2σ contains 95.4% of all measurements  
3σ contains 99.73% of all measurements  
4σ contains 99.99366% of all measurements  
6σ contains (100-1.973x10-7)% of all measurements  
Histogram  
Reference Point  
(Trigger Edge)  
Mean Period  
(First edge after trigger)  
PERIOD JITTER  
OUTPUT RISE/FALL TIME  
nFOUT,  
nFOUT/2  
FOUT,  
FOUT/2  
Pulse Width  
tPERIOD  
tPW  
odc =  
tPERIOD  
OUPUT DUTY CYCLE/OUTPUT PULSE WIDTH/PERIOD  
8432CY-111  
www.idt.com  
REV. C OCTOBER 5, 2010  
8
ICS8432-111  
700MHZ/350MHZ  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
APPLICATION INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS8432-111 provides  
separate power supplies to isolate any high switching  
noise from the outputs to the internal PLL. Vcc, VccA, and VccO  
should be individually connected to the power supply  
plane through vias, and bypass capacitors should be  
used for each pin. To achieve optimum jitter performance,  
power supply isolation is required. Figure 2 illustrates how  
a 10Ω resistor along with a 10μF and a .01μF bypass  
capacitor should be connected to each VccA pin.  
3.3V  
Vcc  
.01μF  
.01μF  
10Ω  
VccA  
10μF  
FIGURE 2. POWER SUPPLY FILTERING  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 3 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = VCC/2 is  
generated by the bias resistors R1, R2 and C1.This bias circuit  
should be located as close as possible to the input pin.The ratio  
of R1 and R2 might need to be adjusted to position theV_REF in  
the center of the input voltage swing. For example, if the input  
clock swing is only 2.5V and VCC = 3.3V, V_REF should be 1.25V  
and R2/R1 = 0.609.  
VCC  
R1  
1K  
Single Ended Clock Input  
V_REF  
CLK  
nCLK  
C1  
0.1u  
R2  
1K  
FIGURE 3. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
8432CY-111  
www.idt.com  
REV. C OCTOBER 5, 2010  
9
ICS8432-111  
700MHZ/350MHZ  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
TERMINATION FOR LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs.The two different layouts mentioned  
are recommended only as guidelines.  
50Ω transmission lines. Matched impedance techniques should  
be used to maximize operating frequency and minimize signal  
distortion. Figures 4A and 4B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs.Therefore, terminating  
resistors (DC current path to ground) or current sources must  
be used for functionality. These outputs are designed to drive  
3.3V  
Zo = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Z
Z
o = 50Ω  
o = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 4A. LVPECL OUTPUT TERMINATION  
FIGURE 4B. LVPECL OUTPUT TERMINATION  
8432CY-111  
www.idt.com  
REV. C OCTOBER 5, 2010  
10  
ICS8432-111  
700MHZ/350MHZ  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL examples only. Please consult with the vendor of the driver  
and other differential signals.BothVSWING andVOH must meet the component to confirm the driver termination requirements. For  
VPP and VCMR input requirements. Figures 5A to 5E show  
example in Figure 5A, the input termination applies for LVHSTL  
interface examples for the CLK/nCLK input driven by the most drivers. If you are using an LVHSTL driver from another ven-  
common driver types.The input interfaces suggested here are dor, use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
Input  
LVPECL  
nCLK  
HiPerClockS  
Input  
LVHSTL  
R1  
50  
R2  
50  
ICS  
HiPerClockS  
R1  
50  
R2  
50  
LVHSTL Driver  
R3  
50  
FIGURE 5A. CLK/nCLK INPUT DRIVEN BY  
LVHSTL DRIVER  
FIGURE 5B. CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
R4  
125  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiv er  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 5C. CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 5D. CLK/nCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
C1  
LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
C2  
nCLK  
HiPerClockS  
Input  
R5  
100 - 200  
R6  
100 - 200  
R1  
84  
R2  
84  
R5,R6 locate near the driver pin.  
FIGURE 5E. CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER WITH AC COUPLE  
8432CY-111  
www.idt.com  
REV. C OCTOBER 5, 2010  
11  
ICS8432-111  
700MHZ/350MHZ  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS8432-111.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8432-111 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 140mA = 485.1mW  
Power (outputs)MAX = 30mW/Loaded Output pair  
If all outputs are loaded, the total power is 2 * 30mW = 60mW  
Total Power_MAX (3.465V, with all outputs switching) = 485.1mW + 60mW = 545.1mW  
2. JunctionTemperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device. The maximum recommended junction temperature for the devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = junction-to-ambient thermal resistance  
Pd_total =Total device power dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W per Table 7 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.545W * 42.1°C/W = 93°C. This is well below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
Table 7. THERMAL RESISTANCE θJA FOR 32-PIN LQFP, FORCED CONVECTION  
θJA byVelocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
55.9°C/W  
50.1°C/W  
47.9°C/W  
42.1°C/W  
39.4°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
8432CY-111  
www.idt.com  
REV. C OCTOBER 5, 2010  
12  
ICS8432-111  
700MHZ/350MHZ  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 6.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
FIGURE 6. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a  
termination voltage of V - 2V.  
CCO  
For logic high, VOUT = V  
= V  
– 0.9V  
OH_MAX  
CCO_MAX  
)
= 0.9V  
OH_MAX  
(V  
- V  
CCO_MAX  
For logic low, VOUT = V  
= V  
– 1.7V  
OL_MAX  
CCO_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CCO_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
_MAX  
OH_MAX  
CCO _MAX  
OH_MAX  
L
CCO  
L
[(2V - 0.9V)/50Ω] * 0.9V = 19.8mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
L
CCO  
L
[(2V - 1.7V)/50Ω] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
8432CY-111  
www.idt.com  
REV. C OCTOBER 5, 2010  
13  
ICS8432-111  
700MHZ/350MHZ  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
RELIABILITY INFORMATION  
TABLE 8. θJAVS. AIR FLOW TABLE FOR 32 LEAD LQFP  
θJA byVelocity (Linear Feet per Minute)  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS8432-111 is: 3765  
8432CY-111  
www.idt.com  
REV. C OCTOBER 5, 2010  
14  
ICS8432-111  
700MHZ/350MHZ  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP  
TABLE 9. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBA  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
--  
--  
--  
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
A2  
b
0.05  
1.35  
0.30  
0.09  
1.40  
0.37  
c
--  
D
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
0.80 BASIC  
0.60  
D1  
D2  
E
E1  
E2  
e
L
0.45  
0.75  
θ
--  
0°  
7°  
ccc  
--  
--  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
8432CY-111  
www.idt.com  
REV. C OCTOBER 5, 2010  
15  
ICS8432-111  
700MHZ/350MHZ  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
TABLE 10. ORDERING INFORMATION  
Part/Order Number  
Marking  
Package  
Shipping Packaging Temperature  
8432CY-111  
8432CY-111T  
8432CY-111LF  
8432CY-111LFT  
ICS8432C-111  
ICS8432C-111  
ICS8432C111L  
ICS8432C111L  
32 Lead LQFP  
tray  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
32 Lead LQFP  
1000 tape & reel  
tray  
32 lead Lead Free LQFP  
32 lead Lead Free LQFP  
1000 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated DeviceTechnology, Inc. (IDT) assumes no responsibility for either its use or for infringement of  
any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial  
applications.Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves  
the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
8432CY-111  
www.idt.com  
REV. C OCTOBER 5, 2010  
16  
ICS8432-111  
700MHZ/350MHZ  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
REVISION HISTORY SHEET  
Rev  
Table  
Page  
Description of Change  
Date  
T4A  
5
12  
Power Supply table - adjusted the IEE limit from 120mA max. to 140mA max.  
Adjusted Power Dissipation to comply with IEE.  
B
3/3/04  
1
2
6
Features Section - added lead-free bullet.  
Corrected Figure 1, Paralle & Serial Load Operations Diagram  
LVPECL DC Characteristics Table -corrected VOH max. from VCCO - 1.0V to  
T4D  
T10  
C
C
VCCO - 0.9V  
4/12/07  
10/5/10  
12 - 13 Power Considerations - corrected power dissipation to reflect VOH max in Table  
4D.  
Ordering Information Table - added lead-free part number and note.  
Updated datasheet's header/footer with IDT from ICS.  
Ordering Information Table - removed ICS prefix from Part/Order Number  
column. Added LF marking and corrected non-LF marking.  
Added Contact Page.  
16  
18  
8432CY-111  
www.idt.com  
REV. C OCTOBER 5, 2010  
17  
ICS8432-111  
700MHZ/350MHZ  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
We’ve Got Your Timing Solution.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Sales  
Tech Support  
netcom@idt.com  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
Fax: 408-284-2775  
© 2010 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks of Integrated Device Technology, Inc.  
Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of  
their respective owners.  
Printed in USA  
8432CY-111  
www.idt.com  
REV. C OCTOBER 5, 2010  
18  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY