8432CY-11 [IDT]

Clock Generator, 700MHz, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026BBC-HD, LQFP-32;
8432CY-11
型号: 8432CY-11
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Clock Generator, 700MHz, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026BBC-HD, LQFP-32

时钟 外围集成电路 晶体
文件: 总20页 (文件大小:923K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS8432-11  
700MHz/350MHz, Crystal-to-3.3V LVPECL  
Frequency Synthesizer  
DATA SHEET  
General Description  
Features  
The ICS8432-11 is a general purpose, dual output Crystal-to-3.3V  
Differential LVPECL High Frequency Synthesizer. The ICS8432-11  
has a selectable TEST_CLK or crystal inputs. The TEST_CLK input  
accepts LVCMOS or LVTTL levels and translates them to 3.3V  
LVPECL levels. The VCO operates at a frequency range of 200MHz  
to 700MHz. The VCO frequency is programmed in steps equal to the  
value of the input reference or crystal frequency. Output frequencies  
up to 700MHz for FOUT and 350MHz for FOUT/2 can be  
programmed using the serial or parallel interfaces to the  
configuration logic.  
Dual differential 3.3V LVPECL outputs  
Selectable crystal oscillator interface or LVCMOS/LVTTL  
TEST_CLK  
TEST_CLK can accept the following input levels: LVCMOS or  
LVTTL  
Maximum FOUT frequency: 700MHz  
Maximum FOUT/2 frequency: 350MHz  
VCO range: 200MHz to 700MHz  
Parallel interface for programming counter and VCO frequency  
multiplier and dividers  
RMS period jitter: 25ps (maximum)  
Cycle-to-cycle jitter: 65ps (maximum)  
Full 3.3V supply voltage  
0°C to 70°C ambient operating temperature  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
Pin Assignment  
Block Diagram  
Pullup  
VCO_SEL  
Pullup  
XTAL_SEL  
Pulldown  
TEST_CLK  
0
32 31 30 29 28 27 26 25  
XTAL_IN  
1
2
3
4
5
6
7
8
M5  
XTAL_IN  
24  
23  
22  
21  
20  
1
OSC  
M6  
M7  
XTAL_OUT  
TEST_CLK  
XTAL_SEL  
VCCA  
M8  
N0  
S_LOAD  
PLL  
N1  
nc  
Phase Detector  
S_DATA  
S_CLOCK  
MR  
19  
18  
17  
Pulldown  
MR  
0
FOUT  
nFOUT  
VCO  
VEE  
÷N  
9
10 11 12 13 14 15 16  
1
÷M  
FOUT/2  
nFOUT/2  
÷2  
Pulldown  
S_LOAD  
S_DATA  
S_CLOCK  
nP_LOAD  
Pulldown  
Pulldown  
Pulldown  
TEST  
Configuration Interface Logic  
ICS8432-11  
32 Lead LQFP  
7mm x 7mm x 1.4mm package body  
M5 Pullup; M[0:4, 6:8] Pulldown  
Pulldown  
M0:M8  
N0:N1  
Y Package  
Top View  
ICS8432CY-11 REVISION A DECEMBER 1, 2010  
1
©2010 Integrated Device Technology, Inc.  
ICS8432-11 Data Sheet  
700MHz/350MHz, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Functional Description  
NOTE: The functional description that follows describes operation  
using a 25MHz crystal. Valid PLL loop divider values for different  
crystal or input frequencies are defined in the Input Frequency  
Characteristics, Table 5, NOTE 1.  
The relationship between the VCO frequency, the input frequency  
and the M divider is defined as follows: fVCO = fxtal x M  
The M value and the required values of M0 through M8 are  
shown in Table 3B, Programmable VCO Frequency Function Table.  
Valid M values for which the PLL will achieve lock are defined as 8 ≤  
M 28. The frequency out is defined as follows:  
The ICS8432-11 features a fully integrated PLL and therefore  
requires no external components for setting the loop bandwidth. A  
25MHz clock input provides a 25MHz phase detector reference  
frequency. The VCO of the PLL operates over a range of 200MHz to  
700MHz. The output of the M divider is also applied to the phase  
detector.  
fOUT = fVCO = fXTAL x M  
N
N
Serial operation occurs when nP_LOAD is HIGH and S_LOAD is  
LOW. The shift register is loaded by sampling the S_DATA bits with  
the rising edge of S_CLOCK. The contents of the shift register are  
loaded into the M divider and N output divider when S_LOAD  
transitions from LOW-to-HIGH. The M divide and N output divide  
values are latched on the HIGH-to-LOW transition of S_LOAD. If  
S_LOAD is held HIGH, data at the S_DATA input is passed directly to  
the M divider and N output divider on each rising edge of S_CLOCK.  
The serial mode can be used to program the M and N bits and test  
bits T1 and T0. The internal registers T0 and T1 determine the state  
of the TEST output as follows:  
The phase detector and the M divider force the VCO output  
frequency to be M times the reference frequency by adjusting the  
VCO control voltage. Note, that for some values of M (either too high  
or too low), the PLL will not achieve lock. The output of the VCO is  
scaled by a divider prior to being sent to each of the LVPECL output  
buffers. The divider provides a 50% output duty cycle.  
The programmable features of the ICS8432-11 support two input  
modes to program the PLL M divider and N output divider. The two  
input operational modes are parallel and serial. Figure1 shows the  
timing diagram for each mode. In parallel mode, the nP_LOAD input  
is initially LOW. The data on inputs M0 through M8 and N0 and N1 is  
passed directly to the M divider and N output divider. On the  
LOW-to-HIGH transition of the nP_LOAD input, the data is latched  
and the M divider remains loaded until the next LOW transition on  
nP_LOAD or until a serial event occurs. As a result, the M and N bits  
can be hardwired to set the M divider and N output divider to a  
specific default state that will automatically occur during power-up.  
The TEST output is LOW when operating in the parallel input mode.  
T1  
0
T0  
0
TEST Output  
LOW  
0
1
S_DATA, Shift Register Input  
Output of M Divider  
CMOS FOUT/2  
1
0
1
1
SERIAL LOADING  
S_CLOCK  
T1 T0 *NULL N1 N0 M8 M7 M6 M5 M4 M3 M2 M1 M0  
S_DATA  
S_LOAD  
t
t
S
H
t
nP_LOAD  
S
PARALLEL LOADING  
M, N  
M0:M8, N0:N1  
nP_LOAD  
t
t
H
S
S_LOAD  
Time  
*NOTE: The NULL timing slot must be observed.  
Figure 1. Parallel & Serial Load Operations  
ICS8432CY-11 REVISION A DECEMBER 1, 2010  
2
©2010 Integrated Device Technology, Inc.  
ICS8432-11 Data Sheet  
700MHz/350MHz, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Table 1. Pin Descriptions  
Number  
Name  
Type  
Pullup  
Description  
1
M5  
Input  
Input  
M divider inputs. Data latched on LOW-to-HIGH transition of nP_LOAD  
input. LVCMOS/LVTTL interface levels.  
2, 3, 4,  
28, 29,  
30, 31, 32  
M6, M7, M8,  
M0, M1,  
M2, M3, M4  
Pulldown  
Pulldown  
Determines N output divider value as defined in Table 3C, Function  
Table. LVCMOS/LVTTL interface levels.  
5, 6  
N0, N1  
Input  
7
nc  
Unused  
Power  
No connect.  
8, 16  
VEE  
Negative supply pins.  
Test output which is ACTIVE in the serial mode of operation.  
Output driven LOW in parallel mode. LVCMOS/LVTTL interface levels.  
9
TEST  
VCC  
Output  
Power  
Output  
10  
Core supply pin.  
Half frequency differential output for the synthesizer.  
LVPECL interface levels.  
11, 12  
FOUT/2, nFOUT/2  
13  
VCCO  
Power  
Output  
Output supply pin.  
14, 15  
Differential output for the synthesizer. LVPECL interface levels.  
FOUT, nFOUT  
Active High Master Reset. When logic HIGH, the internal dividers are  
reset causing the true outputs FOUTx to go low and the inverted outputs  
17  
MR  
Input  
Pulldown nFOUTx to go high. When Logic LOW, the internal dividers and the  
outputs are enabled. Assertion of MR does not affect loaded M, N, and T  
values. LVCMOS/LVTTL interface levels.  
Clocks in serial data present at S_DATA input into the shift register on  
Pulldown  
18  
19  
S_CLOCK  
S_DATA  
Input  
Input  
the rising edge of S_CLOCK. LVCMOS/LVTTL interface levels.  
Shift register serial input. Data sampled on the rising edge of S_CLOCK.  
Pulldown  
LVCMOS/LVTTL interface levels.  
Controls transition of data from shift register into the dividers.  
LVCMOS/LVTTL interface levels.  
20  
21  
S_LOAD  
VCCA  
Input  
Pulldown  
Power  
Analog supply pin.  
Selects between crystal or test clock inputs as the PLL reference source.  
22  
XTAL_SEL  
Input  
Pullup  
Selects XTAL inputs when HIGH. Selects TEST_CLK when LOW.  
LVCMOS/LVTTL interface levels.  
23  
TEST_CLK  
Input  
Input  
Pulldown Single-ended test clock input. LVCMOS/LVTTL interface levels.  
24,  
25  
XTAL_IN  
XTAL_OUT  
Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the  
output.  
Parallel load input. Determines when data present at M8:M0 is loaded  
Pulldown into M divider, and when data present at N1:N0 sets the N output divider  
value. LVCMOS/LVTTL interface levels.  
26  
27  
nP_LOAD  
VCO_SEL  
Input  
Input  
Determines whether synthesizer is in PLL or bypass mode. When LOW,  
Pullup  
synthesizer is in bypass mode, when HIGH synthesizer is in PLL mode.  
LVCMOS/LVTTL interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
ICS8432CY-11 REVISION A DECEMBER 1, 2010  
3
©2010 Integrated Device Technology, Inc.  
ICS8432-11 Data Sheet  
700MHz/350MHz, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Table 2. Pin Characteristics  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
Input Pulldown Resistor  
4
RPULLUP  
RPULLDOWN  
51  
51  
kΩ  
kΩ  
Function Tables  
Table 3A. Parallel and Serial Mode Function Table  
Inputs  
MR  
nP_LOAD  
M
N
S_LOAD  
S_CLOCK  
S_DATA Conditions  
H
X
X
X
X
X
X
X
Reset. Forces true outputs LOW.  
Data on M and N inputs passed directly to the M divider.  
TEST output forced LOW.  
L
L
L
L
H
Data  
Data  
X
Data  
Data  
X
X
L
L
X
X
Data is latched into input registers and remains loaded until  
next LOW transition or until a serial event occurs.  
X
Serial input mode. Shift register is loaded with data on  
S_DATA on each rising edge of S_CLOCK.  
Data  
L
L
L
L
H
H
H
H
X
X
X
X
X
X
X
X
L
L
L
X
Data  
Data  
X
Contents of the shift register are passed to the M divider.  
M divider and N output divider values are latched.  
Parallel or serial input do not affect shift registers.  
S_DATA passed directly to M divider as it is clocked.  
H
Data  
NOTE: L =  
H = HIGH  
X = Don’t care = static DC level  
LOW  
=  
=  
Rising edge transition  
Falling edge transition  
DC = LOW or HIGH  
Table 3B. Programmable VCO Frequency Function Table  
256  
M8  
0
128  
M7  
0
64  
M6  
0
32  
M5  
0
16  
M4  
0
8
M3  
1
4
M2  
0
2
M1  
0
1
M0  
0
VCO Frequency  
(MHz)  
M Divide  
200  
225  
250  
275  
8
9
0
0
0
0
0
1
0
0
1
10  
11  
0
0
0
0
0
1
0
1
0
0
0
0
0
0
1
0
1
1
650  
675  
700  
26  
27  
28  
0
0
0
0
1
1
0
1
0
0
0
0
0
1
1
0
1
1
0
0
0
0
1
1
1
0
0
NOTE 1: These M divide values and the resulting frequencies correspond to crystal frequency of 25MHz.  
ICS8432CY-11 REVISION A DECEMBER 1, 2010  
4
©2010 Integrated Device Technology, Inc.  
ICS8432-11 Data Sheet  
700MHz/350MHz, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Table 3C. Programmable Output Divider Function Table  
Inputs  
Output Frequency (MHz)  
FOUT  
FOUT/2  
N1  
0
N0  
0
N Divider Value  
Minimum  
200  
Maximum  
700  
Minimum  
125  
Maximum  
350  
1
2
4
8
0
1
100  
350  
62.5  
175  
1
0
50  
175  
31.25  
15.625  
87.5  
1
1
25  
87.5  
43.75  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VCC  
4.6V  
Inputs, VI  
XTAL_IN  
0V to VCC  
Other Inputs  
-0.5V to VCC + 0.5V  
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, θJA  
65.7°C/W (0 mps)  
-65°C to 150°C  
Storage Temperature, TSTG  
DC Electrical Characteristics  
Table 4A. Power Supply DC Characteristics, VCC = VCCO = 3.3V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol  
VCC  
Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum  
Units  
Core Supply Voltage  
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
3.465  
VCC  
3.465  
177  
V
V
VCCA  
VCCO  
IEE  
VCC – 0.17  
3.135  
3.3  
3.3  
V
mA  
mA  
ICCA  
17  
ICS8432CY-11 REVISION A DECEMBER 1, 2010  
5
©2010 Integrated Device Technology, Inc.  
ICS8432-11 Data Sheet  
700MHz/350MHz, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Table 4B. LVCMOS/LVTTL DC Characteristics, VCC = VCCO = 3.3V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
VCC + 0.3  
0.8  
Units  
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
MR, S_CLOCK,  
2
V
V
-0.3  
TEST_CLK, S_DATA,  
S_LOAD, nP_LOAD, M[0:4],  
M[6:8], N0, N1  
VCC = VIN = 3.465V  
VCC = VIN = 3.465V  
VCC = 3.465V, VIN = 0V  
150  
5
µA  
µA  
µA  
Input  
High Current  
IIH  
M5, XTAL_SEL, VCO_SEL  
MR, S_CLOCK,  
TEST_CLK, S_DATA,  
S_LOAD, nP_LOAD, M[0:4],  
M[6:8], N0, N1  
-5  
Input  
Low Current  
IIL  
M5, XTAL_SEL, VCO_SEL  
TEST; NOTE 1  
VCC = 3.465V, VIN = 0V  
VCCO = 3.3V 5%  
-150  
2.6  
µA  
V
Output  
High Voltage  
VOH  
VOL  
Output  
Low Voltage  
TEST; NOTE 1  
VCCO = 3.3V 5%  
0.5  
V
NOTE 1: Outputs terminated with 50to VCCO/2. See Parameter Measurement Information section. 3.3V Output Load Test Circuit diagram.  
Table 4C. LVPECL DC Characteristics, VCC = VCCO = 3.3V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol  
VOH  
Parameter  
Test Conditions  
Minimum  
VCCO – 1.4  
VCCO– 2.0  
0.6  
Typical  
Maximum  
VCCO – 0.9  
VCCO – 1.7  
1.0  
Units  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Output Voltage Swing  
V
V
V
VOL  
VSWING  
NOTE 1: Outputs terminated with 50to VCCO – 2V.  
Table 5. Input Characteristics, VCC = VCCO = 3.3V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
MHz  
MHz  
MHz  
TEST_CLK; NOTE 1  
XTAL; NOTE 1  
S_CLOCK  
12  
12  
25  
25  
50  
Input  
fIN  
Frequency  
NOTE 1: For the input crystal frequency range, the M value must be set for the VCO to operate within the 200MHz to 700MHz range. Using  
the minimum input frequency of 12MHz, valid values of M are 17 M 58. Using the maximum input frequency of 25MHz, valid values of M  
are 8 M 28.  
ICS8432CY-11 REVISION A DECEMBER 1, 2010  
6
©2010 Integrated Device Technology, Inc.  
ICS8432-11 Data Sheet  
700MHz/350MHz, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Table 6. Crystal Characteristics  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
Mode of Oscillation  
Fundamental  
Frequency  
12  
25  
70  
7
MHz  
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
pF  
AC Electrical Characteristics  
Table 7. AC Characteristics, VCC = VCCO = 3.3V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol  
fOUT  
Parameter  
Test Conditions  
Minimum  
25  
Typical  
Maximum  
700  
Units  
MHz  
MHz  
ps  
Output Frequency  
fOUT/2  
tjit(cc)  
tjit(per)  
tsk(o)  
tR / tF  
Output Frequency  
12.5  
350  
Cycle-to-Cycle Jitter; NOTE 1, 2  
Period Jitter, RMS; NOTE 1, 2, 3  
Output Skew; NOTE 2, 4  
Output Rise/Fall Time  
M, N to nP_LOAD  
FOUT, N = 1  
65  
8.8  
25  
ps  
45  
ps  
20% to 80% @ 50MHz  
300  
5
700  
ps  
ns  
tS  
Setup Time  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
M, N to nP_LOAD  
5
ns  
5
ns  
5
ns  
tH  
Hold Time  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
5
ns  
5
ns  
odc  
Output Duty Cycle  
PLL Lock Time  
FOUT/2, FOUT, N > 1  
46  
54  
10  
%
tLOCK  
ms  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions.  
NOTE: All parameters measured at 500MHz unless noted otherwise.  
NOTE 1: Jitter performance using XTAL input.  
NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 3: If using the RMS Period Jitter to calculate peak-to-peak jitter, then use the typical RMS Period Jitter specification x the RMS jitter. For  
example, for a bit error of 10E-12, the peak-to-peak jitter would be 8.8 x 14 = 123.2ps.  
NOTE 4: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
ICS8432CY-11 REVISION A DECEMBER 1, 2010  
7
©2010 Integrated Device Technology, Inc.  
ICS8432-11 Data Sheet  
700MHz/350MHz, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Parameter Measurement Information  
2V  
VOH  
2V  
VREF  
SCOPE  
V
V
CC,  
Qx  
VOL  
1σ contains 68.26% of all measurements  
CCO  
V
CCA  
2σ contains 95.4% of all measurements  
3σ contains 99.73% of all measurements  
LVPECL  
4σ contains 99.99366% of all measurements  
6σ contains (100-1.973x10-7)% of all measurements  
nQx  
Histogram  
Reference Point  
(Trigger Edge)  
VEE  
Mean Period  
(First edge after trigger)  
-
-1.3V 0.165V  
3.3/3.3V LVPECL Output Load AC Test Circuit  
Period Jitter  
nFOUT  
FOUT  
nFOUT,  
nFOUT/2  
80%  
80%  
tR  
VSWING  
20%  
nFOUT/2  
FOUT,  
FOUT/2  
20%  
FOUT/2  
tF  
tsk(o)  
Output Skew  
Output Rise/Fall Time  
nFOUT,  
nFOUT/2  
nFOUT  
FOUT  
FOUT,  
FOUT/2  
tPW  
tPERIOD  
tcycle n  
tcycle n+1  
tjit(cc) = tcycle n – tcycle n+1  
|
|
tPW  
1000 Cycles  
odc =  
x 100%  
tPERIOD  
Cycle-to-Cycle Jitter  
Output Duty Cycle/Pulse Width/Period  
ICS8432CY-11 REVISION A DECEMBER 1, 2010  
8
©2010 Integrated Device Technology, Inc.  
ICS8432-11 Data Sheet  
700MHz/350MHz, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Applications Information  
Storage Area Networks  
A variety of technologies are used for interconnection of the elements  
within a SAN. The tables below list the common application  
frequencies as well as the ICS8432-11 configurations used to  
generate the appropriate frequency.  
Table 8. Common SANs Application Frequencies  
Interconnect Technology  
Gigabit Ethernet  
Fibre Channel  
Clock Rate  
1.25GHz  
Reference Frequency to SERDES (MHz)  
Crystal Frequency (MHz)  
125, 250, 156.25  
106.25, 53.125  
125, 250  
25, 19.53125  
FC1, 1.0625GHz  
2.5GHz  
25  
25  
Infiniband  
Table 9. Configuration Details for SANs Applications  
Crystal  
Frequency  
(MHz)  
ICS8432-11  
Output Frequency  
to SERDES (MHz)  
ICS8432-11 M & N Settings  
Interconnect  
Technology  
M8  
M7  
M6  
M5  
M4  
M3  
M2  
M1  
M0  
N1  
N0  
25  
25  
125  
250  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
0
1
1
1
1
0
0
1
0
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
1
0
1
1
0
0
1
0
1
1
1
1
1
0
0
1
0
0
1
0
0
1
Gigabit Ethernet  
25  
156.25  
156.25  
53.125  
106.25  
125  
19.53125  
25  
Fibre Channel 1  
Infiniband  
25  
25  
25  
250  
ICS8432CY-11 REVISION A DECEMBER 1, 2010  
9
©2010 Integrated Device Technology, Inc.  
ICS8432-11 Data Sheet  
700MHz/350MHz, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Power Supply Filtering Technique  
As in any high speed analog circuitry, the power supply pins are  
vulnerable to random noise. To achieve optimum jitter performance,  
power supply isolation is required. The ICS8432-11 provides  
separate power supplies to isolate any high frequency switching  
noise from the outputs to the internal PLL. VCC, VCCA and VCCO  
should be individually connected to the power supply plane through  
vias, and 0.01µF bypass capacitors should be used for each pin.  
Figure 2 illustrates this for a generic VCC pin and also shows that  
VCCA requires that an additional 10resistor along with a 10µF  
bypass capacitor be connected to the VCCA pin.  
3.3V  
VCC  
.01µF  
.01µF  
10  
VCCA  
10µF  
Figure 2. Power Supply Filtering  
Recommendations for Unused Input and Output Pins  
Inputs:  
Outputs:  
Crystal Inputs  
TEST Output  
The unused TEST output can be left floating. There should be no  
trace attached.  
For applications not requiring the use of the crystal oscillator input,  
both XTAL_IN and XTAL_OUT can be left floating. Though not  
required, but for additional protection, a 1kresistor can be tied from  
XTAL_IN to ground.  
LVPECL Outputs  
All unused LVPECL outputs can be left floating. We recommend that  
there is no trace attached. Both sides of the differential output pair  
should either be left floating or terminated.  
TEST_CLK Input  
For applications not requiring the use of the test clock, it can be left  
floating. Though not required, but for additional protection, a 1kΩ  
resistor can be tied from the TEST_CLK to ground.  
LVCMOS Control Pins  
All control pins have internal pullups or pulldowns; additional  
resistance is not required but can be added for additional protection.  
A 1kresistor can be used.  
ICS8432CY-11 REVISION A DECEMBER 1, 2010  
10  
©2010 Integrated Device Technology, Inc.  
ICS8432-11 Data Sheet  
700MHz/350MHz, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Crystal Input Interface  
The ICS8432-11 has been characterized with 18pF parallel resonant  
crystals. The capacitor values, C1 and C2, shown in Figure 3 below  
were determined using an 18pF parallel resonant crystal and were  
chosen to minimize the ppm error. These same capacitor values will  
tune any 18pF parallel resonant crystal over the frequency range and  
other parameters specified in this data sheet. The optimum C1 and  
C2 values can be slightly adjusted for different board layouts.  
XTAL_IN  
C1  
22pF  
X1  
18pF Parallel Crystal  
XTAL_OUT  
C2  
22pF  
Figure 3. Crystal Input Interface  
Overdriving the XTAL Interface  
The XTAL_IN input can accept a single-ended LVCMOS signal  
through an AC coupling capacitor. A general interface diagram is  
shown in Figure 4A. The XTAL_OUT pin can be left floating. The  
maximum amplitude of the input signal should not exceed 2V and the  
input edge rate can be as slow as 10ns. This configuration requires  
that the output impedance of the driver (Ro) plus the series  
resistance (Rs) equals the transmission line impedance. In addition,  
matched termination at the crystal input will attenuate the signal in  
half. This can be done in one of two ways. First, R1 and R2 in parallel  
should equal the transmission line impedance. For most 50Ω  
applications, R1 and R2 can be 100. This can also be  
accomplished by removing R1 and making R2 50. By overdriving  
the crystal oscillator, the device will be functional, but note, the device  
performance is guaranteed by using a quartz crystal.  
VCC  
XTAL_OUT  
R1  
100  
C1  
Rs  
Zo = 50 ohms  
Ro  
XTAL_IN  
.1uf  
R2  
100  
Zo = Ro + Rs  
LVCMOS Driver  
Figure 4A. General Diagram for LVCMOS Driver to XTAL Input Interface  
XTAL_OUT  
C2  
Zo = 50 ohms  
XTAL_I N  
.1uf  
Zo = 50 ohms  
R1  
50  
R2  
50  
LVPECL Driver  
R3  
50  
Figure 4B. General Diagram for LVPECL Driver to XTAL Input Interface  
ICS8432CY-11 REVISION A DECEMBER 1, 2010  
11  
©2010 Integrated Device Technology, Inc.  
ICS8432-11 Data Sheet  
700MHz/350MHz, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Termination for 3.3V LVPECL Outputs  
The clock layout topology shown below is a typical termination for  
LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
transmission lines. Matched impedance techniques should be used  
to maximize operating frequency and minimize signal distortion.  
Figures 5A and 5B show two different layouts which are  
recommended only as guidelines. Other suitable clock layouts may  
exist and it would be recommended that the board designers  
simulate to guarantee compatibility across all printed circuit and clock  
component process variations.  
The differential outputs are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must be  
used for functionality. These outputs are designed to drive 50Ω  
3.3V  
3.3V  
R3  
R4  
3.3V  
125Ω  
125Ω  
3.3V  
Z
o = 50Ω  
3.3V  
+
_
Z
o = 50Ω  
+
_
Input  
LVPECL  
Zo = 50Ω  
LVPECL  
Input  
R1  
50Ω  
R2  
50Ω  
Zo = 50Ω  
R1  
84Ω  
R2  
84Ω  
VCC - 2V  
1
RTT =  
* Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
Figure 5A. 3.3V LVPECL Output Termination  
Figure 5B. 3.3V LVPECL Output Termination  
ICS8432CY-11 REVISION A DECEMBER 1, 2010  
12  
©2010 Integrated Device Technology, Inc.  
ICS8432-11 Data Sheet  
700MHz/350MHz, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Layout Guideline  
Figure 6A shows an example of ICS8432-11 application schematic.  
In this example, the device is operated at VCC = VCCO = 3.3V. The  
device is driven by a crystal input source. The 18pF parallel resonant  
25MHz crystal is used. The C1 and C2 = 22pF are recommended for  
frequency accuracy. For different board layouts, the C1 and C2 may  
be slightly adjusted for optimizing frequency accuracy. For the  
LVPECL output drivers, only two termination examples are show in  
this schematic. Additional termination approaches are shown in the  
LVPECL Termination Application Note.  
C1  
25MHzX1  
18pF  
22pF  
U1  
VCC  
C2  
22pF  
M5  
M5  
M5  
M5  
M5  
M5  
M5  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
R7  
10  
M5  
M6  
M7  
M8  
N0  
N1  
nc  
XTAL_IN  
TEST_CLK  
XTAL_SEL  
VCCA  
TEST_CLK  
XTAL_SEL  
VCCA  
S_LOAD  
S_DATA  
S_CLOCK  
MR  
S_LOAD  
S_DATA  
S_CLOCK  
MR  
C11  
C16  
0.01u  
10u  
VEE  
VCC=3.3V  
VCCO=3.3V  
VCC  
R1  
R3  
125  
125  
Zo = 50 Ohm  
TL1  
+
-
C14  
C15  
0.01u  
0.01u  
Zo = 50 Ohm  
TL2  
Logic Control Input Examples  
R2  
84  
R4  
84  
Set Logic  
Input to  
'1'  
Set Logic  
Input to  
'0'  
VCC  
VCC  
RU1  
1K  
RU2  
Not Install  
Zo = 50 Ohm  
FOUT/2  
+
-
To Logic  
Input  
To Logic  
Input  
pins  
Zo = 50 Ohm  
nFOUT/2  
pins  
RD1  
RD2  
1K  
Not Install  
R10  
50  
R11  
50  
R12  
50  
Optional  
Y-Termination  
Figure 6A. ICS8432-11 Schematic of Recommended Layout  
ICS8432CY-11 REVISION A DECEMBER 1, 2010  
13  
©2010 Integrated Device Technology, Inc.  
ICS8432-11 Data Sheet  
700MHz/350MHz, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
The following component footprints are used in this layout example.  
All the resistors and capacitors are size 0603.  
• The differential 50output traces should have same length.  
• Avoid sharp angles on the clock trace. Sharp angle turns  
cause the characteristic impedance to change on the  
transmission lines.  
Power and Grounding  
Place the decoupling capacitors C14 and C15, as close as possible  
to the power pins. If space allows, placement of the decoupling  
capacitor on the component side is preferred. This can reduce  
unwanted inductance between the decoupling capacitor and the  
power pin caused by the via.  
• Keep the clock trace on the same layer. When ever possible,  
avoid any vias on the clock traces. Placement of vias on the  
traces can affect the trace characteristic impedance and hence  
degrade signal integrity.  
To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow a separation of at least three trace widths  
between the differential clock trace and the other signal trace.  
Maximize the power and ground pad sizes and number of vias  
capacitors. This can reduce the inductance between the power and  
ground planes and the component power and ground pins.  
• Make sure no other signal traces are routed between the  
clock trace pair.  
The RC filter consisting of R7, C11, and C16 should be placed as  
close to the VCCA pin as possible.  
• The matching termination resistors should be located as close to  
the receiver input pins as possible.  
Clock Traces and Termination  
Poor signal integrity can degrade the system performance or cause  
system failure. In synchronous high-speed digital systems, the clock  
signal is less tolerant to poor signal integrity than other signals. Any  
ringing on the rising or falling edge or excessive ring back can cause  
system failure. The shape of the trace and the trace delay might be  
restricted by the available space on the board and the component  
location. While routing the traces, the clock signal traces should be  
routed first and should be locked prior to routing other signal traces.  
Crystal  
The crystal X1 should be located as close as possible to the pins 24  
(XTAL_IN) and 25 (XTAL_OUT). The trace length between the X1  
and U1 should be kept to a minimum to avoid unwanted parasitic  
inductance and capacitance. Other signal traces should not be  
routed near the crystal traces.  
X1  
GND  
VCC  
VIA  
U1  
PIN 1  
C11  
C16  
VCCA  
R7  
Close to the input  
pins of the  
receiver  
R4  
R3  
TL1N  
C15  
C14  
TL1  
R2  
R1  
TL1, TL2 are 50 Ohm traces and  
equal length  
Figure 6B. PCB Board Layout for ICS8432-11  
ICS8432CY-11 REVISION A DECEMBER 1, 2010  
14  
©2010 Integrated Device Technology, Inc.  
ICS8432-11 Data Sheet  
700MHz/350MHz, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Power Considerations  
This section provides information on power dissipation and junction temperature for the ICS8432-11.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8432-11 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 177mA = 613.3mW  
Power (outputs)MAX = 30mW/Loaded Output pair  
If all outputs are loaded, the total power is 2 * 30mW = 60mW  
Total Power_MAX (3.465V, with all outputs switching) = 613.3mW + 60mW = 673.3mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The  
maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond  
wire and bond pad temperature remains below 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming no air flow and  
a multi-layer board, the appropriate value is 65.7°C/W per Table 8 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.673W * 65.7°C/W = 114.2°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of  
board (multi-layer).  
Table 10. Thermal Resistance θJA for 32 Lead LQFP, Forced Convection  
θJA by Velocity  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
65.7°C/W  
55.9°C/W  
52.4°C/W  
ICS8432CY-11 REVISION A DECEMBER 1, 2010  
15  
©2010 Integrated Device Technology, Inc.  
ICS8432-11 Data Sheet  
700MHz/350MHz, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
3. Calculations and Equations.  
The purpose of this section is to calculate the power dissipation for the LVPECL output pair.  
LVPECL output driver circuit and termination are shown in Figure 7.  
VCCO  
Q1  
VOUT  
RL  
50Ω  
VCCO - 2V  
Figure 7. LVPECL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination voltage of  
VCCO – 2V.  
For logic high, VOUT = VOH_MAX = VCCO_MAX – 0.9V  
(VCCO_MAX – VOH_MAX) = 0.9V  
For logic low, VOUT = VOL_MAX = VCCO_MAX 1.7V  
(VCCO_MAX – VOL_MAX) = 1.7V  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = [(VOH_MAX – (VCCO_MAX – 2V))/RL] * (VCCO_MAX – VOH_MAX) = [(2V – (VCCO_MAX – VOH_MAX))/RL] * (VCCO_MAX – VOH_MAX) =  
[(2V – 0.9V)/50] * 0.9V = 19.8mW  
Pd_L = [(VOL_MAX – (VCCO_MAX – 2V))/RL] * (VCCO_MAX – VOL_MAX) = [(2V – (VCCO_MAX – VOL_MAX))/RL] * (VCCO_MAX – VOL_MAX) =  
[(2V – 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
ICS8432CY-11 REVISION A DECEMBER 1, 2010  
16  
©2010 Integrated Device Technology, Inc.  
ICS8432-11 Data Sheet  
700MHz/350MHz, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Reliability Information  
Table 11. θJA vs. Air Flow Table for a 32 Lead LQFP  
θJA vs. Air Flow  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
65.7°C/W  
55.9°C/W  
52.4°C/W  
Transistor Count  
The transistor count for ICS8432-11 is: 3765  
ICS8432CY-11 REVISION A DECEMBER 1, 2010  
17  
©2010 Integrated Device Technology, Inc.  
ICS8432-11 Data Sheet  
700MHz/350MHz, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Package Outline and Package Dimensions  
Package Outline - Y Suffix for 32 Lead LQFP  
Table 12. Package Dimensions for 32 Lead LQFP  
JEDEC Variation: BBC - HD  
All Dimensions in Millimeters  
Symbol  
Minimum  
Nominal  
Maximum  
N
32  
A
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
0.05  
1.35  
0.30  
0.09  
0.10  
1.40  
0.37  
A2  
b
c
D & E  
9.00 Basic  
7.00 Basic  
5.60 Ref.  
0.80 Basic  
0.60  
D1 & E1  
D2 & E2  
e
L
0.45  
0°  
0.75  
7°  
θ
ccc  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
ICS8432CY-11 REVISION A DECEMBER 1, 2010  
18  
©2010 Integrated Device Technology, Inc.  
ICS8432-11 Data Sheet  
700MHz/350MHz, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Ordering Information  
Table 13. Ordering Information  
Part/Order Number  
8432CY-11  
8432CY-11T  
8432CY-11LF  
8432CY-11LFT  
Marking  
Package  
32 Lead LQFP  
32 Lead LQFP  
Shipping Packaging  
Tray  
1000 Tape & Reel  
Tray  
Temperature  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
ICS8432CY-11  
ICS8432CY-11  
ICS8432CY11L  
ICS8432CY11L  
“Lead-Free” 32 Lead LQFP  
“Lead-Free” 32 Lead LQFP  
1000 Tape & Reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal  
commercial applications. Any other applications, such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not  
recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product  
for use in life support devices or critical medical instruments.  
ICS8432CY-11 REVISION A DECEMBER 1, 2010  
19  
©2010 Integrated Device Technology, Inc.  
ICS8432-11 Data Sheet  
700MHz/350MHz, CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
We’ve Got Your Timing Solution  
6024 Silver Creek Valley Road Sales  
Technical Support  
800-345-7015 (inside USA)  
netcom@idt.com  
San Jose, California 95138  
+408-284-8200 (outside USA) +480-763-2056  
Fax: 408-284-2775  
www.IDT.com/go/contactIDT  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in this document,  
including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not  
guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the  
suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any  
license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT  
product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third  
party owners.  
Copyright 2010. All rights reserved.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY