853111AV-01LF [IDT]

Low Skew Clock Driver, 853111 Series, 9 True Output(s), 0 Inverted Output(s), PQCC28, 11.60 X 11.40 MM, 4.10 MM HEIGHT, ROHS COMPLIANT, PLASTIC, MS-018, LCC-28;
853111AV-01LF
型号: 853111AV-01LF
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Low Skew Clock Driver, 853111 Series, 9 True Output(s), 0 Inverted Output(s), PQCC28, 11.60 X 11.40 MM, 4.10 MM HEIGHT, ROHS COMPLIANT, PLASTIC, MS-018, LCC-28

驱动 逻辑集成电路
文件: 总15页 (文件大小:210K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS853111-01  
LOW SKEW, 1-TO-9  
DIFFERENTIAL-TO-3.3V LVPECL/ECL FANOUT BUFFER  
GENERAL DESCRIPTION  
FEATURES  
The ICS853111-01 is a low skew, high perfor- 9 differential 3.3V LVPECL / ECL outputs  
ICS  
HiPerClockS™  
mance 1-to-9 Differential-to-3.3V LVPECL/ECL  
1 differential LVPECL input pair  
Fanout Buffer and a member of the  
HiPerClockS™ family of High Performance  
Clock Solutions from IDT. The PCLK, nPCLK  
PLCK, nPLCK pair can accept the following  
differential input levels: LVPECL, LVDS, CML, SSTL  
pair can accept LVPECL, CML and SSTL differential input  
levels.The ICS853111-01 is characterized to operate from  
a 3.3V power supply. Guaranteed output and part-to-part  
skew characteristics make the ICS853111-01 ideal for  
those clock distribution applications demanding well  
defined performance and repeatability.  
Maximum output frequency: >2GHz (typical)  
Translates any single ended input signal to 3.3V  
LVPECL levels with resistor bias on nPCLK input  
Additive phase jitter, RMS: 0.03ps (typical)  
Output skew: 35ps (maximum)  
Part-to-part skew: 300ps (maximum)  
Propagation delay: 675ps (maximum)  
LVPECL mode operating voltage supply range:  
VCC = 3V to 3.8V, VEE = 0V  
ECL mode operating voltage supply range:  
VCC = 0V, VEE = -3V to -3.8V  
-40°C to 85°C ambient operating temperature  
Available in both standard (RoHS5) and lead-free (RoHS 6)  
packages  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
Q0  
nQ0  
PCLK  
nPCLK  
Q1  
25 24 23 22 21 20 19  
nQ1  
VEE  
nc  
26  
27  
28  
Q3  
18  
17  
16  
Q2  
nQ2  
nQ3  
Q4  
PCLK  
Q3  
nQ3  
ICS853111-01  
VCC  
nPCLK  
VBB  
1
2
3
VCCO  
nQ4  
Q5  
15  
14  
13  
12  
Q4  
nQ4  
VBB  
Q5  
nQ5  
nQ5  
nc  
4
5
6
7
8
9
10 11  
Q6  
nQ6  
Q7  
nQ7  
28-Lead PLCC  
11.6mm x 11.4mm x 4.1mm package body  
Q8  
nQ8  
V Package  
TopView  
853111AV-01  
1
REV.A NOVEMBER 14, 2007  
ICS853111-01  
LOW SKEW, 1-TO-9  
DIFFERENTIAL-TO-3.3V LVPECL/ECL FANOUT BUFFER  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
1
VCC  
Power  
Input  
Core supply pin.  
Pullup/  
Pulldown1  
2
nPCLK  
Inverting differential LVPECL clock input. Bias to VCC/2 w/no input.  
3
4, 27  
5, 6  
VBB  
Output  
Unused  
Output  
Output  
Power  
Bias voltage.  
nc  
No connect.  
nQ8, Q8  
nQ7, Q7  
VCCO  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Output supply pins.  
7, 9  
8, 15, 22  
10, 11  
12, 13  
14, 16  
17, 18  
19, 20  
21, 23  
24, 25  
26  
nQ6, Q6  
nQ5, Q5  
nQ4, Q4  
nQ3, Q3  
nQ2, Q2  
Output  
Output  
Output  
Output  
Output  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Negative supply pin.  
nQ1, Q1 Output  
nQ0, Q0  
VEE  
Output  
Power  
Input  
28  
PCLK  
Pulldown Non-inverting differential LVPECL clock input.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
1
RPULLUP  
50  
75  
50  
KΩ  
RPULLDOWN  
Input Pulldown Resistor  
Input Pulldown Resistor  
KΩ  
KΩ  
1
RPULLDOWN  
853111AV-01  
2
REV.A NOVEMBER 14, 2007  
ICS853111-01  
LOW SKEW, 1-TO-9  
DIFFERENTIAL-TO-3.3V LVPECL/ECL FANOUT BUFFER  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, VCC  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage  
to the device. These ratings are stress specifi-  
cations only. Functional operation of product at  
these conditions or any conditions beyond those  
listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maxi-  
mum rating conditions for extended periods may  
affect product reliability.  
4.6V (LVPECL mode, VEE = 0)  
-4.6V (LVECL mode, VCC = 0)  
-0.5V to VCC + 0.5 V  
Negative SupplyVoltage,VEE  
Inputs, VI (LVPECL mode)  
Inputs, VI (LVECL mode)  
0.5V to VEE - 0.5V  
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
V
BB Sink/Source, IBB  
0.5mA  
OperatingTemperature Range, TA -40°C to +85°C  
StorageTemperature, TSTG -65°C to 150°C  
PackageThermal Impedance, θJA 37.8°C/W (0 lfpm)  
(Junction-to-Ambient)  
TABLE 3A. LVPECL POWER SUPPLY DC CHARACTERISTICS, VCC = 3V TO 3.8V; VEE = 0V  
Symbol Parameter  
Test Conditions  
Minimum  
3.0  
Typical  
3.3  
Maximum Units  
VCC  
VCCO  
IEE  
Core Supply Voltage  
3.8  
3.8  
75  
V
V
Output Supply Voltage  
Power Supply Current  
3.0  
3.3  
mA  
Table 3B. LVPECL DC Characteristics, VCC = 3.3V; VEE = 0V  
-40°C  
25°C  
85°C  
Typ  
Symbol Parameter  
Units  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Max  
2.175 2.275 2.38 2.225 2.295 2.37 2.295 2.33 2.365  
1.405 1.545 1.68 1.425 1.52 1.615 1.44 1.535 1.63  
V
V
V
V
V
V
VOH  
VOL  
VIH  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Input High Voltage(Single-Ended)  
Input Low Voltage(Single-Ended)  
Output Voltage Reference; NOTE 2  
Peak-to-Peak Input Voltage  
2.075  
1.43  
1.86  
150  
2.36 2.075  
1.765 1.43  
2.36 2.075  
1.765 1.43  
2.36  
1.765  
1.98  
VIL  
1.98  
1.86  
150  
1.98  
1.86  
150  
VBB  
VPP  
800  
1200  
800  
1200  
800  
1200  
Input High Voltage  
Common Mode Range; NOTE 3, 4  
1.2  
3.3  
1.2  
3.3  
1.2  
3.3  
V
VCMR  
IIH  
Input  
150  
150  
150  
µA  
PCLK, nPCLK  
High Current  
Input  
-150  
-150  
µA  
IIL  
PCLK, nPCLK  
Low Current  
-150  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50Ω to VCCO - 2V.  
NOTE 2: Single-ended input operation is limited. VCC 3V in LVPECL mode.  
NOTE 3: Common mode voltage is defined as VIH.  
NOTE 4: For single-ended applications, the maximum input voltage for PCLK, nPCLK is VCC + 0.3V.  
853111AV-01  
3
REV.A NOVEMBER 14, 2007  
ICS853111-01  
LOW SKEW, 1-TO-9  
DIFFERENTIAL-TO-3.3V LVPECL/ECL FANOUT BUFFER  
TABLE 3C. ECL POWER SUPPLY DC CHARACTERISTICS, VCC = 0V; VEE = -3V TO -3.8V  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
-3.3  
Maximum Units  
VEE  
IEE  
Supply Voltage  
Power Supply Current  
-3.0  
-3.8  
V
55  
mA  
Table 3D. ECL DC Characteristics, VCC = 0V; VEE = -3V to -3.8V  
-40°C  
25°C  
85°C  
Typ Max  
Symbol Parameter  
Units  
Min  
-1.125  
-1.895  
-1.225  
-1.87  
-1.44  
150  
Typ Max  
Min  
-1.075  
-1.875  
-1.225  
-1.87  
-1.44  
150  
Typ Max  
Min  
-1.005  
-1.86  
-1.225  
-1.87  
-1.44  
150  
-1.025  
-1.755  
-0.92  
-1.62  
-0.94  
-1.535  
-1.32  
1200  
-1.005  
-1.78  
-0.93  
-1.685  
-0.94  
-1.535  
-1.32  
1200  
-0.97  
-0.935  
-1.67  
-0.94  
-1.535  
-1.32  
1200  
V
V
V
V
V
V
VOH  
VOL  
VIH  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Input High Voltage(Single-Ended)  
Input Low Voltage(Single-Ended)  
Output Voltage Reference; NOTE 2  
Peak-to-Peak Input Voltage  
-1.765  
VIL  
VBB  
VPP  
800  
800  
800  
Input High Voltage  
Common Mode Range; NOTE 3, 4  
VEE+1.2V  
0
VEE+1.2V  
0
VEE+1.2V  
0
V
VCMR  
IIH  
Input  
150  
150  
150  
µA  
PCLK, nPCLK  
High Current  
Input  
-150  
-150  
-150  
µA  
IIL  
PCLK, nPCLK  
Low Current  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50Ω to VCCO - 2V.  
NOTE 2: Single-ended input operation is limited. VCC 3V in LVPECL mode.  
NOTE 3: Common mode voltage is defined as VIH.  
NOTE 4: For single-ended applications, the maximum input voltage for PCLK, nPCLK is VCC + 0.3V.  
TABLE 4. AC CHARACTERISTICS, VCC = 3V TO 3.8V; VEE = 0V OR VCC = 0V; VEE = -3V TO -3.8V  
-40°C  
Min Typ  
25°C  
Max Min Typ  
85°C  
Symbol Parameter  
Units  
Max Min Typ  
Max  
fMAX  
tpLH  
Output Frequency  
>2  
>2  
>2  
GHz  
ps  
Propagation Delay, Low to High;  
NOTE 1  
Propagation Delay, High to Low;  
NOTE 1  
350 500  
650  
750  
385 525  
675  
760  
410 350  
700  
785  
tpHL  
450 600  
20  
480 620  
20  
515 650  
20  
ps  
tsk(o)  
Output Skew; NOTE 2, 4  
35  
35  
35  
ps  
ps  
tsk(pp)  
Part-to-Part Skew; NOTE 3, 4  
200  
200  
200  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter Section  
tjit  
0.03  
0.03  
0.03  
ps  
ps  
tR/tF  
Output Rise/Fall Time  
20% to 80%  
90  
200  
315  
100 203  
310  
95 210  
300  
All parameters measured at f 1GHz unless noted otherwise.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load  
conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
853111AV-01  
4
REV.A NOVEMBER 14, 2007  
ICS853111-01  
LOW SKEW, 1-TO-9  
DIFFERENTIAL-TO-3.3V LVPECL/ECL FANOUT BUFFER  
ADDITIVE PHASE JITTER  
the 1Hz band to the power in the fundamental. When the re-  
quired offset is specified, the phase noise is called a dBc value,  
which simply means dBm at a specified offset from the funda-  
mental. By investigating jitter in the frequency domain, we get a  
better understanding of its effects on the desired application over  
the entire time record of the signal. It is mathematically possible  
to calculate an expected bit error rate given a phase noise plot.  
The spectral purity in a band at a specific offset from the funda-  
mental compared to the power of the fundamental is called the  
dBc Phase Noise. This value is normally expressed using a  
Phase noise plot and is most often the specified plot in many  
applications. Phase noise is defined as the ratio of the noise  
power present in a 1Hz band at a specified offset from the fun-  
damental frequency to the power value of the fundamental.This  
ratio is expressed in decibels (dBm) or a ratio of the power in  
0
-10  
-20  
-30  
-40  
Input/Output Additive  
Phase Jitter at 155.52MHz  
= 0.03ps (typical)  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FROM CARRIER FREQUENCY (HZ)  
As with most timing specifications, phase noise measurements vice meets the noise floor of what is shown, but can actually be  
have issues.The primary issue relates to the limitations of the lower. The phase noise is dependant on the input source and  
equipment. Often the noise floor of the equipment is higher than measurement equipment.  
the noise floor of the device. This is illustrated above. The de-  
853111AV-01  
5
REV.A NOVEMBER 14, 2007  
ICS853111-01  
LOW SKEW, 1-TO-9  
DIFFERENTIAL-TO-3.3V LVPECL/ECL FANOUT BUFFER  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
VCC  
Qx  
nPCLK  
PCLK  
LVPECL  
VPP  
VCMR  
Cross Points  
nQx  
VEE  
-1.3V 0.3V  
V
EE  
DIFFERENTIAL INPUT LEVEL  
OUTPUT LOAD ACTEST CIRCUIT  
nQx  
PART 1  
Qx  
nQx  
Qx  
nQy  
PART 2  
Qy  
nQy  
tsk(pp)  
Qy  
tsk(o)  
OUTPUT SKEW  
PART-TO-PART SKEW  
nPCLK  
PCLK  
80%  
tF  
80%  
tR  
VSWING  
Clock  
20%  
20%  
Outputs  
nQ0:nQ8  
Q0:Q8  
tPD  
OUTPUT RISE/FALLT IME  
PROPAGATION DELAY  
853111AV-01  
6
REV.A NOVEMBER 14, 2007  
ICS853111-01  
LOW SKEW, 1-TO-9  
DIFFERENTIAL-TO-3.3V LVPECL/ECL FANOUT BUFFER  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
negative input. The C1 capacitor should be located as close  
as possible to the input pin.  
Figure 1 shows an example of the differential input that can  
be wired to accept single ended levels.The reference voltage  
level VBB generated from the device is connected to the  
VCC  
C1  
0.1u  
CLK_IN  
PCLK  
VBB  
nPCLK  
FIGURE 1. SINGLE ENDED LVPECL SIGNAL DRIVING DIFFERENTIAL INPUT  
TERMINATION FOR LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs.The two different layouts mentioned  
are recommended only as guidelines.  
50Ω transmission lines. Matched impedance techniques should  
be used to maximize operating frequency and minimize signal  
distortion. Figures 2A and 2B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs.Therefore, terminating  
resistors (DC current path to ground) or current sources must  
be used for functionality. These outputs are designed to drive  
3.3V  
Zo = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 2A. LVPECL OUTPUT TERMINATION  
FIGURE 2B. LVPECL OUTPUT TERMINATION  
853111AV-01  
7
REV.A NOVEMBER 14, 2007  
ICS853111-01  
LOW SKEW, 1-TO-9  
DIFFERENTIAL-TO-3.3V LVPECL/ECL FANOUT BUFFER  
LVPECL CLOCK INPUT INTERFACE  
The PCLK /nPCLK accepts LVPECL, CML, SSTL and other here are examples only. If the driver is from another vendor,  
differential signals. Both VSWING and VOH must meet the VPP use their termination recommendation. Please consult with  
and VCMR input requirements. Figures 3A to 3F show interface the vendor of the driver component to confirm the driver ter-  
mination requirements.  
examples for the HiPerClockS PCLK/nPCLK input driven by  
the most common driver types.The input interfaces suggested  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
Zo = 50 Ohm  
R1  
50  
R2  
50  
CML  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
PCLK  
nPCLK  
R1  
100  
nPCLK  
HiPerClockS  
HiPerClockS  
PCLK/nPCLK  
PCLK/nPCLK  
CML Built-In Pullup  
FIGURE 3A. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY AN OPEN COLLECTOR CML DRIVER  
FIGURE 3B. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A BUILT-IN PULLUP CML DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
C1  
Zo = 50 Ohm  
Zo = 50 Ohm  
3.3V LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
VBB  
PCLK  
C2  
nPCLK  
nPCLK  
HiPerClockS  
Input  
PCLK/nPCLK  
LVPECL  
R5  
100 - 200  
R6  
100 - 200  
R1  
50  
R2  
50  
R1  
84  
R2  
84  
FIGURE 3C. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER  
FIGURE 3D. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER WITH AC COUPLE  
2.5V  
3.3V  
3.3V  
3.3V  
2.5V  
Zo = 50 Ohm  
R3  
R4  
120  
120  
C1  
LVDS  
SSTL  
Zo = 60 Ohm  
Zo = 60 Ohm  
PCLK  
PCLK  
R5  
100  
VBB  
C2  
nPCLK  
Zo = 50 Ohm  
nPCLK  
HiPerClockS  
PCLK/nPCLK  
PCLK/nPCLK  
R1  
1K  
R2  
1K  
R1  
120  
R2  
120  
FIGURE 3E. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY AN SSTL DRIVER  
FIGURE 3F. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVDS DRIVER  
853111AV-01  
8
REV.A NOVEMBER 14, 2007  
ICS853111-01  
LOW SKEW, 1-TO-9  
DIFFERENTIAL-TO-3.3V LVPECL/ECL FANOUT BUFFER  
SCHEMATIC EXAMPLE  
This application note provides general design guide using example of the ICS853111-01 LVPECL clock buffer. In this  
ICS853111-01 LVPECL buffer. Figure 4 shows a schematic example, the input is driven by an LVPECL driver.  
Zo = 50  
+
Zo = 50  
-
R2  
50  
R1  
50  
VCC  
C6 (Option)  
0.1u  
R3  
50  
VCC  
Zo = 50 Ohm  
Zo = 50 Ohm  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
VCC  
Q3  
nQ3  
Q4  
nQ4  
Q5  
nQ5  
Q6  
nQ6  
CLK_SEL  
PCLK0  
nPCLK0  
VBB  
PCLK1  
nPCLK1  
VEE  
R4  
1K  
3.3V LVPECL  
R9  
50  
R10  
50  
U1  
C8 (Option)  
0.1u  
R11  
50  
ICS853111  
VCC  
Zo = 50  
+
-
VCC=3.3V  
Zo = 50  
(U1-9)  
(U1-16)  
(U1-25) (U1-32) (U1-1)  
VCC  
R8  
50  
R7  
50  
C1  
0.1uF  
C2  
0.1uF  
C3  
0.1uF  
C4  
0.1uF  
C5  
0.1uF  
C7 (Option)  
0.1u  
R13  
50  
FIGURE 4. EXAMPLE ICS853111-01 LVPECL CLOCK OUTPUT BUFFER SCHEMATIC  
853111AV-01  
9
REV.A NOVEMBER 14, 2007  
ICS853111-01  
LOW SKEW, 1-TO-9  
DIFFERENTIAL-TO-3.3V LVPECL/ECL FANOUT BUFFER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS853111-01.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS853111-01 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.8V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.8V * 75mA = 285mW  
Power (outputs)MAX = 30.94mW/Loaded Output pair  
If all outputs are loaded, the total power is 9 * 30.94mW = 278.5mW  
Total Power_MAX (3.8V, with all outputs switching) = 285mW + 278.5mW = 563.5mW  
2. JunctionTemperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total =Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 31.1°C/W perTable 5 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.564W * 31.1°C/W = 102°C. This is well below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 5. THERMAL RESISTANCE θJA FOR 28-PIN PLCC, FORCED CONVECTION  
θ by Velocity (Linear Feet per Minute)  
JA  
0
200  
31.1°C/W  
500  
28.3°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
37.8°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
853111AV-01  
10  
REV.A NOVEMBER 14, 2007  
ICS853111-01  
LOW SKEW, 1-TO-9  
DIFFERENTIAL-TO-3.3V LVPECL/ECL FANOUT BUFFER  
3. Calculations and Equations.  
LVPECL output driver circuit and termination are shown in Figure 5.  
VCCO  
Q1  
VOUT  
RL  
50  
VCCO - 2V  
Figure 5. LVPECL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage of V - 2V.  
CCO  
For logic high, VOUT = V  
= V  
– 0.935V  
OH_MAX  
CCO_MAX  
)
= 0.935V  
OH_MAX  
(V  
- V  
CCO_MAX  
For logic low, VOUT = V  
= V  
– 1.67V  
OL_MAX  
CCO_MAX  
)
= 1.67V  
OL_MAX  
(V  
- V  
CCO_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V ) =  
OH_MAX  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
L
L
[(2V - 0.935V)/50Ω] * 0.935V = 19.92mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
L
L
[(2V - 1.67V)/50Ω] * 1.67V = 11.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.94mW  
853111AV-01  
11  
REV.A NOVEMBER 14, 2007  
ICS853111-01  
LOW SKEW, 1-TO-9  
DIFFERENTIAL-TO-3.3V LVPECL/ECL FANOUT BUFFER  
RELIABILITY INFORMATION  
TABLE 6. θJAVS. AIR FLOW TABLE FOR 28 LEAD PLCC  
θ byVelocity (Linear Feet per Minute)  
JA  
0
200  
31.1°C/W  
500  
28.3°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
37.8°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS853111-01 is: 265  
Pin compatible with MC100LVE111  
853111AV-01  
12  
REV.A NOVEMBER 14, 2007  
ICS853111-01  
LOW SKEW, 1-TO-9  
DIFFERENTIAL-TO-3.3V LVPECL/ECL FANOUT BUFFER  
PACKAGE OUTLINE - V SUFFIX FOR 28 LEAD PLCC  
TABLE 7. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
SYMBOL  
MINIMUM  
MAXIMUM  
N
A
28  
4.19  
2.29  
4.57  
3.05  
A1  
A2  
b
1.57  
2.11  
0.33  
0.53  
c
0.19  
0.32  
D
12.32  
11.43  
4.85  
12.57  
11.58  
5.56  
D1  
D2  
E
12.32  
11.43  
4.85  
12.57  
11.58  
5.56  
E1  
E2  
Reference Document: JEDEC Publication 95, MS-018  
853111AV-01  
13  
REV.A NOVEMBER 14, 2007  
ICS853111-01  
LOW SKEW, 1-TO-9  
DIFFERENTIAL-TO-3.3V LVPECL/ECL FANOUT BUFFER  
TABLE 8. ORDERING INFORMATION  
Part/Order Number  
Marking  
Package  
Shipping Packaging Temperature  
ICS853111AV-01  
ICS853111AV-01T  
ICS853111AV-01LF  
ICS853111AV-01LFT  
ICS853111AV-01  
ICS853111AV-01  
ICS853111AV01L  
ICS853111AV01L  
28 Lead PLCC  
Tube  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
28 Lead PLCC  
500 Tape & Reel  
Tube  
28 Lead "Lead-Free" PLCC  
28 Lead "Lead-Free" PLCC  
500 Tape & Reel  
NOTE: Parts that are ordered with an "LF" suffix to the pat number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial  
and industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by  
IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
853111AV-01  
14  
REV.A NOVEMBER 14, 2007  
ICS853111-01  
LOW SKEW, 1-TO-9  
DIFFERENTIAL-TO-3.3V LVPECL/ECL FANOUT BUFFER  
REVISION HISTORY SHEET  
Rev  
Table  
Page  
1
5
Description of Change  
Features Section - added Lead-Free bullet.  
Added Additive Phase jitter section.  
Date  
4/25/05  
11/14/07  
A
T8  
14  
Ordering Information Table - Added Lead-free marking  
853111AV-01  
15  
REV.A NOVEMBER 14, 2007  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY