853111AY-02LFT [IDT]

Low Skew Clock Driver, 853111 Series, 10 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1 MM HEIGHT, ROHS COMPLIANT, MS-026, TQFP-32;
853111AY-02LFT
型号: 853111AY-02LFT
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Low Skew Clock Driver, 853111 Series, 10 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1 MM HEIGHT, ROHS COMPLIANT, MS-026, TQFP-32

驱动 逻辑集成电路
文件: 总18页 (文件大小:287K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS853111-02  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
GENERAL DESCRIPTION  
FEATURES  
The ICS853111-02 is a low skew, high per- Ten differential 2.5V/3.3V LVPECL / ECL outputs  
ICS  
HiPerClockS™  
formance 1-to-10 Differential-to-2.5V/3.3V  
Two selectable differential input pairs  
LVPECL/ECL Fanout Buffer and a member  
of the HiPerClockS™ family of High Perfor-  
mance Clock Solutions from ICS. The  
PCLKx, nPCLKx pairs can accept the following  
differential input levels: LVPECL, LVDS, CML, SSTL  
ICS853111-02 is characterized to operate from either  
a 2.5V or a 3.3V power supply. Guaranteed output and  
part-to-part skew characteristics make the ICS853111-  
02 ideal for those clock distribution applications de-  
manding well defined performance and repeatability.  
Maximum output frequency: 3.2GHz  
Translates any single ended input signal to 3.3V  
LVPECL levels with resistor bias on nPCLK input  
Output skew: 25ps (typical)  
Part-to-part skew: 85ps (typical)  
Propagation delay: 680ps (typical)  
Jitter, RMS: < 0.03ps (typical)  
LVPECL mode operating voltage supply range:  
VCC = 2.375V to 3.8V, VEE = 0V  
ECL mode operating voltage supply range:  
VCC = 0V, VEE = -3.8V to -2.375V  
-40°C to 85°C ambient operating temperature  
Available in both standard and lead-free RoHS-compliant  
packages  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
Q0  
nQ0  
PCLK0  
nPCLK0  
0
1
PCLK1  
nPCLK1  
Q1  
nQ1  
24 23 22 21 20 19 18 17  
VCCO  
nQ2  
Q2  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
VCCO  
Q7  
Q2  
nQ2  
nQ7  
Q8  
CLK_SEL  
VBB  
Q3  
nQ3  
nQ1  
Q1  
ICS853111-02  
nQ8  
Q9  
Q4  
nQ4  
nQ0  
Q0  
nQ9  
Q5  
nQ5  
VCCO  
VCCO  
1
2
3
4
5
6
7
8
Q6  
nQ6  
Q7  
nQ7  
Q8  
nQ8  
32-LeadTQFP  
7mm x 7mm x 1.0mm package body  
Y Package  
TopView  
Q9  
nQ9  
The Preliminary Information presented herein represents a product in prototyping or pre-production.The noted characteristics are based on initial  
product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice.  
853111AY-02  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 10, 2006  
1
ICS853111-02  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
1
VCC  
Power  
Core supply pin.  
Clock select input. When HIGH, selects PCLK1, nPCLK1 inputs.  
When LOW, selects PCLK0, nPCLK0 inputs.  
LVCMOS / LVTTL interface levels.  
2
CLK_SEL Input  
Pulldown  
Pulldown  
3
4
PCLK0  
Input  
Non-inverting differential clock input.  
Inverting differential LVPECL clock input.  
VCC/2 default when left floating.  
nPCLK0  
Input Pullup/Pulldown  
5
6
VBB  
Output  
Bias voltage.  
PCLK1  
Input  
Pulldown  
Non-inverting differential clock input.  
Inverting differential LVPECL clock input.  
VCC/2 default when left floating.  
7
nPCLK1  
Input Pullup/Pulldown  
8
9, 16, 25, 32  
10, 11  
12, 13  
14, 15  
17, 18  
19, 20  
21, 22  
23, 24  
26, 27  
28, 29  
30, 31  
VEE  
Power  
Power  
Negative supply pin.  
VCCO  
Output supply pins.  
nQ9, Q9 Output  
nQ8, Q8 Output  
nQ7, Q7 Output  
nQ6, Q6 Output  
nQ5, Q5 Output  
nQ4, Q4 Output  
nQ3, Q3 Output  
nQ2, Q2 Output  
nQ1, Q1 Output  
nQ0, Q0 Output  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
RPULLDOWN Input Pulldown Resistor  
75  
kΩ  
Pullup/Pulldown Resistors  
50  
kΩ  
RVCC/  
2
TABLE 3A. CLOCK INPUT FUNCTION TABLE  
TABLE 3B. CONTROL INPUT  
FUNCTION TABLE  
Inputs  
Outputs  
Input to Output Mode  
Polarity  
Inputs  
PCLKx nPCLKx Q0:Q9 nQ0:Q9  
CLK_SEL Selected Source  
0
1
1
0
LOW  
HIGH  
LOW  
Differential to Differential  
Differential to Differential  
Non Inverting  
Non Inverting  
0
1
PCLK0, nPCLK0  
PCLK1, nPCLK1  
HIGH  
Biased;  
NOTE 1  
Biased;  
NOTE 1  
0
1
LOW  
HIGH  
HIGH  
LOW  
HIGH  
LOW  
LOW  
HIGH  
Single Ended to Differential Non Inverting  
Single Ended to Differential Non Inverting  
Biased;  
NOTE 1  
Biased;  
NOTE 1  
0
1
Single Ended to Differential  
Single Ended to Differential  
Inverting  
Inverting  
NOTE 1: Please refer to the Application Information, "Wiring the Differential Input to  
Accept Single Ended Levels".  
853111AY-02  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 10, 2006  
2
ICS853111-02  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, VCC  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage  
to the device. These ratings are stress specifi-  
cations only. Functional operation of product at  
these conditions or any conditions beyond those  
listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maxi-  
mum rating conditions for extended periods may  
affect product reliability.  
4.6V (LVPECL mode, VEE = 0)  
-4.6V (ECL mode, VCC = 0)  
-0.5V to VCC + 0.5 V  
Negative Supply Voltage, VEE  
Inputs, VI (LVPECL mode)  
Inputs, VI (ECL mode)  
0.5V to VEE - 0.5V  
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
VBB Sink/Source, IBB  
0.5mA  
OperatingTemperature Range, TA -40°C to +85°C  
StorageTemperature,TSTG -65°C to 150°C  
PackageThermal Impedance, θJA 49.5°C/W (0 lfpm)  
(Junction-to-Ambient)  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = 2.375 TO 3.8V; VEE = 0V  
Symbol Parameter Test Conditions  
Minimum Typical Maximum Units  
VCC  
IEE  
Positive Supply Voltage  
Power Supply Current  
2.375  
3.3  
3.8  
85  
V
mA  
TABLE 4B. LVPECL DC CHARACTERISTICS, VCC = 3.3V; VEE = 0V  
-40°C  
25°C  
Typ Max Min  
85°C  
Typ  
Symbol Parameter  
Units  
Min Typ Max  
Min  
2.225  
1.425  
2.075  
1.43  
Max  
VOH  
VOL  
VIH  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Input High Voltage(Single-Ended)  
Input Low Voltage(Single-Ended)  
Output Voltage Reference; NOTE 2  
Peak-to-Peak Input Voltage  
2.175 2.275  
1.405 1.545  
2.075  
2.38  
1.68  
2.36  
1.765  
1.98  
1200  
2.295  
1.52  
2.37  
1.615  
2.36  
2.295  
1.44  
2.075  
1.43  
1.86  
150  
2.33  
2.365  
1.63  
V
V
V
V
V
V
1.535  
2.36  
VIL  
1.43  
1.765  
1.98  
1.765  
1.98  
VBB  
VPP  
1.86  
1.86  
150  
1.2  
800  
150  
800  
1200  
800  
1200  
Input High Voltage  
Common Mode Range; NOTE 3, 4  
VCMR  
IIH  
3.3  
1.2  
3.3  
1.2  
3.3  
V
PCLK0, PCLK1  
Input High Current  
150  
150  
150  
µA  
nPCLK0, nPCLK1  
PCLK0, PCLK1  
Input Low Current  
IIL  
-150  
-150  
-150  
µA  
nPCLK0, nPCLK1  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50Ω to VCCO - 2V.  
NOTE 2: Single-ended input operation is limited VCC 3V in LVPECL mode.  
NOTE 3: Common mode voltage is defined as VIH.  
NOTE 4: For single-ended applications, the maximum input voltage for PCLK0, nPCLK0 and PCLK1, nPCLK1  
is VCC + 0.3V.  
853111AY-02  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 10, 2006  
3
ICS853111-02  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 4C. LVPECL DC CHARACTERISTICS, VCC = 2.5V; VEE = 0V  
-40°C  
25°C  
85°C  
Typ  
Symbol Parameter  
Units  
Min Typ Max  
Min Typ Max Min  
Max  
1.565  
0.83  
VOH  
VOL  
VIH  
VIL  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Input High Voltage(Single-Ended)  
Input Low Voltage(Single-Ended)  
Peak-to-Peak Input Voltage  
1.375 1.475  
0.605 0.745  
1.275  
1.58  
0.88  
1.425 1.495  
1.57  
0.815  
1.56  
1.495  
0.64  
1.275  
0.63  
150  
1.53  
V
V
V
V
V
0.625  
1.275  
0.63  
0.72  
800  
0.735  
1.56  
-0.8  
0.63  
0.965  
1200  
0.965  
1200  
0.965  
1200  
VPP  
150  
1.2  
800  
150  
800  
Input High Voltage  
Common Mode Range; NOTE 2, 3  
VCMR  
IIH  
2.5  
1.2  
2.5  
1.2  
2.5  
V
PCLK0, PCLK1  
Input High Current  
150  
150  
150  
µA  
nPCLK0, nPCLK1  
PCLK0, PCLK1  
Input Low Current  
IIL  
-150  
-150  
-150  
µA  
nPCLK0, nPCLK1  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.125V to -1.3V.  
NOTE 1: Outputs terminated with 50Ω to VCCO - 2V.  
NOTE 2: Common mode voltage is defined as VIH.  
NOTE 3: For single-ended applications, the maximum input voltage for PCLK0, nPCLK0 and PCLK1, nPCLK1  
is VCC + 0.3V.  
TABLE 4D. ECL DC CHARACTERISTICS, VCC = 0V; VEE = -3.8V TO -2.375V  
-40°C  
Typ Max  
25°C  
Typ Max  
85°C  
Typ Max  
Symbol Parameter  
Units  
Min  
-1.125  
-1.895  
-1.225  
-1.87  
Min  
-1.075  
-1.875  
-1.225  
-1.87  
Min  
-1.005  
-1.86  
-1.025  
-1.755  
-0.92  
-1.62  
-0.94  
-1.535  
-1.005  
-1.78  
-0.93  
-1.685  
-0.94  
-0.97  
-0.935  
-1.67  
V
V
V
V
VOH  
VOL  
VIH  
VIL  
Output High Voltage; NOTE 1  
-1.765  
Output Low Voltage; NOTE 1  
Input High Voltage(Single-Ended)  
Input Low Voltage(Single-Ended)  
-1.225  
-1.87  
-0.94  
-1.535  
-1.535  
Output Voltage Reference;  
NOTE 2  
-1.486  
150  
-1.386  
1200  
-1.486  
150  
-1.386  
1200  
-1.486  
150  
-1.386  
1200  
V
V
VBB  
VPP  
800  
800  
800  
Peak-to-Peak Input Voltage  
Input High Voltage  
Common Mode Range;  
NOTE 3, 4  
VEE+1.2V  
0
VEE+1.2V  
0
VEE+1.2V  
0
V
VCMR  
Input  
PCLK0, PCLK1  
150  
150  
150  
µA  
µA  
IIH  
IIL  
High Current nPCLK0, nPCLK1  
Input PCLK0, PCLK1  
Low Current nPCLK0, nPCLK1  
-150  
-150  
-150  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50Ω to VCCO - 2V.  
NOTE 2: Single-ended input operation is limited VCC 3V in LVPECL mode.  
NOTE 3: Common mode voltage is defined as VIH.  
NOTE 4: For single-ended applications, the maximum input voltage for PCLK0, nPCLK0 and PCLK1, nPCLK1  
is VCC + 0.3V.  
853111AY-02  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 10, 2006  
4
ICS853111-02  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 5. AC CHARACTERISTICS, VCC = 0V; VEE = -3.8V TO -2.375V OR VCC = 2.375 TO 3.8V; VEE = 0V  
-40°C 25°C  
Min Typ Max Min Typ  
85°C  
Max Min Typ  
Symbol Parameter  
Units  
Max  
3.2  
fMAX  
Output Frequency  
3.2  
750  
37  
3.2  
790  
37  
GHz  
ps  
tPD  
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 4  
600 680  
650 725  
690 790  
890  
37  
tsk(o)  
tsk(pp)  
25  
85  
25  
85  
25  
85  
ps  
Part-to-Part Skew; NOTE 3, 4  
225  
225  
225  
ps  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter section  
tjit  
0.03  
0.03  
0.03  
ps  
ps  
tR/tF  
Output Rise/Fall Time  
20% to 80%  
60  
200  
325  
100 200  
280  
130 200  
270  
All parameters are measured 1GHz unless otherwise noted.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages  
and with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
853111AY-02  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 10, 2006  
5
ICS853111-02  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
ADDITIVE PHASE JITTER  
the 1Hz band to the power in the fundamental. When the re-  
quired offset is specified, the phase noise is called a dBc value,  
which simply means dBm at a specified offset from the funda-  
mental. By investigating jitter in the frequency domain, we get a  
better understanding of its effects on the desired application over  
the entire time record of the signal. It is mathematically possible  
to calculate an expected bit error rate given a phase noise plot.  
The spectral purity in a band at a specific offset from the funda-  
mental compared to the power of the fundamental is called the  
dBc Phase Noise. This value is normally expressed using a  
Phase noise plot and is most often the specified plot in many  
applications. Phase noise is defined as the ratio of the noise  
power present in a 1Hz band at a specified offset from the fun-  
damental frequency to the power value of the fundamental.This  
ratio is expressed in decibels (dBm) or a ratio of the power in  
0
-10  
-20  
-30  
-40  
Additive Phase Jitter at  
155.52MHz = 0.03ps (typical)  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
140  
-
-150  
160  
-
-170  
-180  
-190  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FROM CARRIER FREQUENCY (HZ)  
As with most timing specifications, phase noise measurements vice meets the noise floor of what is shown, but can actually be  
have issues.The primary issue relates to the limitations of the lower. The phase noise is dependant on the input source and  
equipment. Often the noise floor of the equipment is higher than measurement equipment.  
the noise floor of the device. This is illustrated above. The de-  
853111AY-02  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 10, 2006  
6
ICS853111-02  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
VCC  
,
Qx  
VCCO  
nCLK0, nCLK1  
VPP  
LVPECL  
VEE  
VCMR  
Cross Points  
CLK0, CLK1  
nQx  
VEE  
-0.375V to -1.8V  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nQx  
PART 1  
Qx  
nQx  
Qx  
nQy  
nQy  
PART 2  
Qy  
Qy  
tsk(pp)  
tsk(o)  
PART-TO-PART SKEW  
OUTPUT SKEW  
nCLK0,  
nCLK1  
80%  
tF  
80%  
CLK0,  
CLK1  
VSWING  
20%  
nQ0:nQ9  
Clock  
20%  
Outputs  
tR  
Q0:Q9  
tPD  
OUTPUT RISE/FALL TIME  
PROPAGATION DELAY  
853111AY-02  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 10, 2006  
7
ICS853111-02  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LVCMOS LEVELS  
Figure 2A shows an example of the differential input that  
can be wired to accept single ended LVCMOS levels. The  
reference voltage level VBB generated from the device is  
connected to the negative input. The C1 capacitor should  
be located as close as possible to the input pin.  
VCC  
R1  
1K  
Single Ended Clock Input  
V_REF  
PCLK  
nPCLK  
C1  
0.1u  
R2  
1K  
FIGURE 2A. SINGLE ENDED LVCMOS SIGNAL DRIVING DIFFERENTIAL INPUT  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LVPECL LEVELS  
Figure 2B shows an example of the differential input that  
can be wired to accept single ended LVPECL levels. The  
reference voltage level VBB generated from the device is  
connected to the negative input. The C1 capacitor should  
be located as close as possible to the input pin.  
VDD(or VCC)  
CLK_IN  
+
VBB  
-
C1  
0.1uF  
FIGURE 2B. SINGLE ENDED LVPECL SIGNAL DRIVING DIFFERENTIAL INPUT  
www.icst.com/products/hiperclocks.html  
853111AY-02  
REV.A JANUARY 10, 2006  
8
ICS853111-02  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
LVPECL CLOCK INPUT INTERFACE  
The PCLK /nPCLK accepts LVPECL, CML, SSTL and other gested here are examples only. If the driver is from another  
differential signals. Both VSWING and VOH must meet the VPP vendor, use their termination recommendation. Please con-  
and VCMR input requirements. Figures 3A to 3E show inter- sult with the vendor of the driver component to confirm the  
face examples for the HiPerClockS PCLK/nPCLK input driven driver termination requirements.  
by the most common driver types. The input interfaces sug-  
2.5V  
3.3V  
3.3V  
3.3V  
2.5V  
3.3V  
R3  
120  
R4  
120  
R1  
50  
R2  
50  
SSTL  
Zo = 60 Ohm  
Zo = 60 Ohm  
CML  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
PCLK  
nPCLK  
HiPerClockS  
nPCLK  
PCLK/nPCLK  
HiPerClockS  
PCLK/nPCLK  
R1  
120  
R2  
120  
FIGURE 3A. HIPERCLOCKS PCLK/NPCLK INPUT DRIVEN  
BY A CML DRIVER  
FIGURE 3B. HIPERCLOCKS PCLK/NPCLK INPUT DRIVEN  
BY AN SSTL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
Zo = 50 Ohm  
R3  
1K  
R4  
1K  
C1  
C2  
Zo = 50 Ohm  
Zo = 50 Ohm  
LVDS  
PCLK  
CLK  
R5  
100  
nPCLK  
Zo = 50 Ohm  
HiPerClockS  
PCLK/nPCLK  
nCLK  
HiPerClockS  
Input  
LVPECL  
R1  
1K  
R2  
1K  
R1  
84  
R2  
84  
FIGURE 3C. HIPERCLOCKS PCLK/NPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER  
FIGURE 3D. HIPERCLOCKS PCLK/NPCLK INPUT DRIVEN  
BY A 3.3V LVDS DRIVER  
3.3V  
3.3V  
3.3V  
R3  
84  
R4  
84  
C1  
C2  
3.3V LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
nPCLK  
HiPerClockS  
PCLK/nPCLK  
R5  
100 - 200  
R6  
100 - 200  
R1  
125  
R2  
125  
FIGURE 3E. HIPERCLOCKS PCLK/NPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER WITH AC COUPLE  
853111AY-02  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 10, 2006  
9
ICS853111-02  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
OUTPUTS:  
INPUTS:  
LVPECL OUTPUT  
PCLK/nPCLK INPUT:  
All unused LVPECL outputs can be left floating. We  
For applications not requiring the use of a differential input,  
both the PCLK and nPCLK pins can be left floating. Though recommend that there is no trace attached. Both sides of the  
differential output pair should either be left floating or  
terminated.  
not required, but for additional protection, a 1kΩ resistor can  
be tied from PCLK to ground.  
TERMINATION FOR 3.3V LVPECL OUTPUTS  
The clock layout topology shown below is a typical termi- ance techniques should be used to maximize operating  
nation for LVPECL outputs. The two different layouts men- frequency and minimize signal distortion. Figures 4A and  
tioned are recommended only as guidelines.  
4B show two different layouts which are recommended only  
as guidelines. Other suitable clock layouts may exist and it  
would be recommended that the board designers simulate  
to guarantee compatibility across all printed circuit and  
clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, ter-  
minating resistors (DC current path to ground) or current  
sources must be used for functionality. These outputs are  
designed to drive 50Ω transmission lines. Matched imped-  
3.3V  
Z
o = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 4A. LVPECL OUTPUTT ERMINATION  
FIGURE 4B. LVPECL OUTPUTTERMINATION  
853111AY-02  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 10, 2006  
10  
ICS853111-02  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TERMINATION FOR 2.5V LVPECL OUTPUT  
Figure 5A and Figure 5B show examples of termination for close to ground level. The R3 in Figure 5B can be eliminated  
2.5V LVPECL driver.These terminations are equivalent to ter- and the termination is shown in Figure 5C.  
minating 50Ω to VCC - 2V. For VCC = 2.5V, the VCC - 2V is very  
2.5V  
2.5V  
2.5V  
VCCO=2.5V  
VCCO=2.5V  
R1  
250  
R3  
250  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
+
-
2,5V LVPECL  
Driver  
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 5A. 2.5V LVPECL DRIVERT ERMINATION EXAMPLE  
FIGURE 5B. 2.5V LVPECL DRIVERT ERMINATION EXAMPLE  
2.5V  
VCCO=2.5V  
Zo = 50 Ohm  
+
Zo = 50 Ohm  
-
2,5V LVPECL  
Driver  
R1  
50  
R2  
50  
FIGURE 5C. 2.5V LVPECLTERMINATION EXAMPLE  
853111AY-02  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 10, 2006  
11  
ICS853111-02  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
SCHEMATIC EXAMPLE  
This application note provides general design guide using ample, the input is driven by an LVPECL driver.CLK_SEL is set  
ICS853111-02 LVPECL buffer. Figure 6 shows a schematic ex- at logic high to select PCLK0/nPCLK0 input.  
ample of the ICS853111-02 LVPECL clock buffer. In this ex-  
Zo = 50  
+
Zo = 50  
-
R2  
50  
R1  
50  
VCC  
C6 (Option)  
0.1u  
R3  
50  
VCC  
Zo = 50 Ohm  
Zo = 50 Ohm  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
VCC  
Q3  
nQ3  
Q4  
nQ4  
Q5  
nQ5  
Q6  
nQ6  
CLK_SEL  
PCLK0  
nPCLK0  
VBB  
PCLK1  
nPCLK1  
VEE  
R4  
1K  
3.3V LVPECL  
R9  
50  
R10  
50  
U1  
C8 (Option)  
0.1u  
R11  
50  
ICS853111  
VCC  
Zo = 50  
+
-
VCC=3.3V  
Zo = 50  
(U1-9)  
(U1-16)  
(U1-25) (U1-32) (U1-1)  
VCC  
R8  
50  
R7  
50  
C1  
0.1uF  
C2  
0.1uF  
C3  
0.1uF  
C4  
0.1uF  
C5  
0.1uF  
C7 (Option)  
0.1u  
R13  
50  
FIGURE 6. EXAMPLE ICS853111-02 LVPECL CLOCK OUTPUT BUFFER SCHEMATIC  
THERMAL RELEASE PATH  
The expose metal pad provides heat transfer from the device to solder as shown in Figure 7.For further information, please re-  
the P.C. board.The expose metal pad is ground pad connected fer to the Application Note on Surface Mount Assembly of  
to ground plane through thermal via. The exposed pad on the Amkor’sThermally /Electrically Enhance Leadframe Base Pack-  
device to the exposed metal pad on the PCB is contacted through age, AmkorTechnology.  
EXPOSED PAD  
SOLDER  
SOLDER MASK  
SIGNAL  
TRACE  
SIGNAL  
TRACE  
GROUND PLANE  
Expose Metal Pad  
(GROUND PAD)  
THERMAL VIA  
FIGURE 7. P.C. BOARD FOR EXPOSED PAD THERMAL RELEASE PATH EXAMPLE  
853111AY-02  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 10, 2006  
12  
ICS853111-02  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS853111-02.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS853111-02 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.8V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.8V * 85mA = 323mW  
Power (outputs)MAX = 30.94mW/Loaded Output pair  
If all outputs are loaded, the total power is 10 * 30.94mW = 309.4mW  
Total Power_MAX (3.8V, with all outputs switching) = 323mW + 309.4mW = 632.4mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total =Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 43.8°C/W perTable 6 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.632W * 43.8°C/W = 112.7°C. This is below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 6. THERMAL RESISTANCE θJA FOR 32-PIN TQFP, E-PAD, FORCED CONVECTION  
θJA byVelocity (Linear Feet per Minute)  
0
200  
57.8°C/W  
43.8°C/W  
500  
52.1°C/W  
41.3°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
69.3°C/W  
49.5°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
853111AY-02  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 10, 2006  
13  
ICS853111-02  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
3. Calculations and Equations.  
LVPECL output driver circuit and termination are shown in Figure 8.  
VCCO  
Q1  
VOUT  
RL  
50  
VCCO - 2V  
Figure 8. LVPECL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage ofV - 2V.  
CCO  
For logic high, VOUT = V  
= V  
– 0.935V  
OH_MAX  
CCO_MAX  
)
= 0.935V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, VOUT = V  
= V  
– 1.67V  
CCO_MAX  
OL_MAX  
)
= 1.67V  
OL_MAX  
(V  
- V  
CCO_MAX  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
_MAX  
CCO  
OH_MAX  
CCO _MAX  
OH_MAX  
L
L
[(2V - 0.935V)/50Ω] * 0.935V = 19.92mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
L
CCO  
L
[(2V - 1.67V)/50Ω] * 1.67V = 11.02mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.94mW  
853111AY-02  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 10, 2006  
14  
ICS853111-02  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
RELIABILITY INFORMATION  
TABLE 7. θJAVS. AIR FLOW TABLE FOR 32 LEAD TQFP, E-PAD  
θ byVelocity (Linear Feet per Minute)  
JA  
0
200  
57.8°C/W  
43.8°C/W  
500  
52.1°C/W  
41.3°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
69.3°C/W  
49.5°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS853111-02 is: 1340  
Pin compatible with MC100EP111 and MC100LVEP111  
853111AY-02  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 10, 2006  
15  
ICS853111-02  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TQFP PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD TQFP, E-PAD  
-HD VERSION  
HEAT SLUG DOWN  
TABLE 8. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
ABA-HD  
SYMBOL  
MINIMUM  
NOMINAL  
32  
MAXIMUM  
N
A
--  
--  
1.20  
0.15  
1.05  
0.40  
0.20  
A1  
A2  
b
0.05  
0.95  
0.30  
0.09  
0.10  
1.0  
0.35  
c
--  
D
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
4.00 BASIC  
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
4.00 BASIC  
0.80 BASIC  
0.60  
D1  
D2  
D3  
E
E1  
E2  
E3  
e
L
0.45  
0.75  
θ
--  
0°  
7°  
ccc  
--  
--  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
853111AY-02  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 10, 2006  
16  
ICS853111-02  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
ICS853111AY-02  
Marking  
Package  
Shipping Packaging Temperature  
ICS853111A02  
ICS853111A02  
ICS853111A02L  
ICS853111A02L  
32 lead, E-Pad TQFP  
tray  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS853111AY-02T  
ICS853111AY-02LF  
ICS853111AY-02LFT  
32 lead, E-Pad TQFP  
1000 tape & reel  
tray  
32 lead "Lead-Free," E-Pad TQFP  
32 lead "Lead-Free," E-Pad TQFP  
1000 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
The aforementioned trademark, HiPerClockS is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product  
for use in life support devices or critical medical instruments.  
853111AY-02  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 10, 2006  
17  
ICS853111-02  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
REVISION HISTORY SHEET  
Rev  
Table  
T9  
Page  
10  
17  
Description of Change  
Added Recommendations for Unused Input and Output Pins.  
Ordering Information Table - added Lead-Free marking.  
Date  
A
1/10/06  
853111AY-02  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 10, 2006  
18  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY