853111BYLFT [IDT]

Low Skew Clock Driver, 853111 Series, 10 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1 MM HEIGHT, ROHS COMPLIANT, MS-026BBA, TQFP-32;
853111BYLFT
型号: 853111BYLFT
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Low Skew Clock Driver, 853111 Series, 10 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1 MM HEIGHT, ROHS COMPLIANT, MS-026BBA, TQFP-32

驱动 逻辑集成电路
文件: 总20页 (文件大小:526K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LOW SKEW, 1-TO-10, DIFFERENTIAL-TO-  
2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
ICS853111B  
GENERAL DESCRIPTION  
FEATURES  
The ICS853111B is a low skew, high perfor-  
Ten differential 2.5V/3.3V LVPECL / ECL outputs  
Two selectable differential input pairs  
ICS  
HiPerClockS™  
mance 1-to-10 Differential-to-2.5V/3.3V LVPECL/  
ECL Fanout Buffer and a member of the  
HiPerClockS™ family of High Performance  
Clock Solutions from ICS. The ICS853111B  
PCLKx, nPCLKx pairs can accept the following  
differential input levels: LVPECL, LVDS, CML, SSTL  
is characterized to operate from either a 2.5V or a 3.3V  
power supply. Guaranteed output and part-to-part skew  
characteristics make the ICS853111B ideal for those clock  
distribution applications demanding well defined perfor-  
mance and repeatability.  
Maximum output frequency: >3GHz  
Translates any single ended input signal to 3.3V  
LVPECL levels with resistor bias on nPCLK input  
Output skew: 20ps (typical)  
Part-to-part skew: 85ps (typical)  
Propagation delay: 495ps (typical)  
Jitter, RMS: < 0.03ps (typical)  
LVPECL mode operating voltage supply range:  
VCC = 2.375V to 3.8V, VEE = 0V  
ECL mode operating voltage supply range:  
VCC = 0V, VEE = -3.8V to -2.375V  
-40°C to 85°C ambient operating temperature  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
Q0  
nQ0  
PCLK0  
nPCLK0  
0
1
PCLK1  
nPCLK1  
Q1  
nQ1  
24 23 22 21 20 19 18 17  
VCCO  
nQ2  
Q2  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
VCCO  
Q7  
Q2  
nQ2  
nQ7  
Q8  
CLK_SEL  
VBB  
Q3  
nQ3  
nQ1  
Q1  
ICS853111B  
nQ8  
Q9  
Q4  
nQ4  
nQ0  
Q0  
nQ9  
Q5  
nQ5  
VCCO  
VCCO  
1
2
3
4
5
6
7
8
Q6  
nQ6  
Q7  
nQ7  
32-Lead TQFP, E-PAD  
7mm x 7mm x 1.0mm package body  
Q8  
nQ8  
Y Package  
Top View  
Q9  
nQ9  
IDT/ ICS1-TO-10, LVPECL/ECL FANOUT BUFFER  
1
ICS853111BY REV. C JANUARY 13, 2009  
ICS853111B  
LOW SKEW, 1-TO-10, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
1
VCC  
Power  
Positive supply pin.  
Clock select input. When HIGH, selects PCLK1, nPCLK1 inputs.  
When LOW, selects PCLK0, nPCLK0 inputs.  
LVPECL interface levels.  
2
CLK_SEL Input  
Pulldown  
Pulldown  
3
4
PCLK0  
Input  
Non-inverting differential clock input.  
Inverting differential LVPECL clock input.  
VCC/2 default when left floating.  
nPCLK0  
Input Pullup/Pulldown  
5
6
VBB  
Output  
Bias voltage.  
PCLK1  
Input  
Pulldown  
Non-inverting differential clock input.  
Inverting differential LVPECL clock input.  
VCC/2 default when left floating.  
7
nPCLK1  
Input Pullup/Pulldown  
8
9, 16, 25, 32  
10, 11  
12, 13  
14, 15  
17, 18  
19, 20  
21, 22  
23, 24  
26, 27  
28, 29  
30, 31  
VEE  
Power  
Power  
Negative supply pin.  
VCCO  
Output supply pins.  
nQ9, Q9 Output  
nQ8, Q8 Output  
nQ7, Q7 Output  
nQ6, Q6 Output  
nQ5, Q5 Output  
nQ4, Q4 Output  
nQ3, Q3 Output  
nQ2, Q2 Output  
nQ1, Q1 Output  
nQ0, Q0 Output  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
RPULLDOWN Input Pulldown Resistor  
75  
kΩ  
Pullup/Pulldown Resistors  
50  
kΩ  
RVCC/  
2
TABLE 3A. CLOCK INPUT FUNCTION TABLE  
TABLE 3B. CONTROL INPUT  
FUNCTION TABLE  
Inputs  
Outputs  
Input to Output Mode  
Polarity  
Inputs  
PCLKx nPCLKx Q0:Q9 nQ0:Q9  
CLK_SEL Selected Source  
0
1
1
0
LOW  
HIGH  
LOW  
Differential to Differential  
Differential to Differential  
Non Inverting  
Non Inverting  
0
1
PCLK0, nPCLK0  
PCLK1, nPCLK1  
HIGH  
Biased;  
NOTE 1  
Biased;  
NOTE 1  
0
1
LOW  
HIGH  
HIGH  
LOW  
HIGH  
LOW  
LOW  
HIGH  
Single Ended to Differential Non Inverting  
Single Ended to Differential Non Inverting  
Biased;  
NOTE 1  
Biased;  
NOTE 1  
0
1
Single Ended to Differential  
Single Ended to Differential  
Inverting  
Inverting  
NOTE 1: Please refer to the Application Information, "Wiring the Differential Input to  
Accept Single Ended Levels".  
IDT/ ICS1-TO-10, LVPECL/ECL FANOUT BUFFER  
2
ICS853111BY REV. C JANUARY 13, 2009  
ICS853111B  
LOW SKEW, 1-TO-10, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, VCC  
4.6V (LVPECL mode, VEE = 0)  
-4.6V (ECL mode, VCC = 0)  
-0.5V to VCC + 0.5 V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device. These ratings are stress specifications only. Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Characteris-  
tics is not implied. Exposure to absolute maximum rating con-  
ditions for extended periods may affect product reliability.  
Negative Supply Voltage, VEE  
Inputs, VI (LVPECL mode)  
Inputs, VI (ECL mode)  
0.5V to VEE - 0.5V  
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
VBB Sink/Source, IBB  
0.5mA  
Operating Temperature Range, TA -40°C to +85°C  
Storage Temperature, TSTG -65°C to 150°C  
Package Thermal Impedance, θJA 49.5°C/W (0 lfpm)  
(Junction-to-Ambient)  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = 2.375V TO 3.8V; VEE = 0V  
Symbol Parameter Test Conditions  
Minimum Typical Maximum Units  
VCC  
IEE  
Positive Supply Voltage  
Power Supply Current  
2.375  
3.3  
3.8  
V
120  
mA  
TABLE 4B. LVPECL DC CHARACTERISTICS, VCC = 3.3V; VEE = 0V  
-40°C  
25°C  
Typ  
85°C  
Typ  
Symbol Parameter  
Units  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
VOH  
VOL  
VIH  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Input High Voltage(Single-Ended)  
Input Low Voltage(Single-Ended)  
Output Voltage Reference; NOTE 2  
Peak-to-Peak Input Voltage  
2.175 2.275 2.38 2.225 2.295 2.37  
1.405 1.545 1.68 1.425 1.52 1.615  
2.295 2.33 2.365  
1.44 1.535 1.63  
V
V
2.075  
1.43  
1.86  
150  
2.36 2.075  
1.765 1.43  
2.36  
1.765  
1.98  
2.075  
1.43  
1.86  
150  
2.36  
1.765  
1.98  
V
VIL  
V
VBB  
VPP  
1.98  
1.86  
150  
V
800  
1200  
800  
1200  
800  
1200  
mV  
Input High Voltage  
Common Mode Range; NOTE 3, 4  
VCMR  
IIH  
1.2  
3.3  
1.2  
3.3  
1.2  
3.3  
V
Input  
PCLK0, PCLK1  
200  
200  
200  
µA  
High Current nPCLK0, nPCLK1  
PCLK0, PCLK1  
-10  
-10  
-10  
µA  
µA  
Input  
Low Current  
IIL  
nPCLK0, nPCLK1  
-200  
-200  
-200  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50Ω to VCCO - 2V.  
NOTE 2: Single-ended input operation is limited. VCC 3V in LVPECL mode.  
NOTE 3: Common mode voltage is defined as VIH.  
NOTE 4: For single-ended applications, the maximum input voltage for PCLK0, nPCLK0 and PCLK1, nPCLK1  
is VCC + 0.3V.  
IDT/ ICS1-TO-10, LVPECL/ECL FANOUT BUFFER  
3
ICS853111BY REV. C JANUARY 13, 2009  
ICS853111B  
LOW SKEW, 1-TO-10, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
TABLE 4C. LVPECL DC CHARACTERISTICS, VCC = 2.5V; VEE = 0V  
-40°C  
Typ  
25°C  
Typ  
85°C  
Typ  
Symbol Parameter  
Units  
Min  
Max  
1.58  
0.88  
1.56  
0.965  
1200  
Min  
Max  
1.57  
Min  
Max  
1.565  
0.83  
VOH  
VOL  
VIH  
VIL  
Output High Voltage; NOTE 1  
1.375 1.475  
0.605 0.745  
1.275  
1.425 1.495  
1.495 1.53  
0.64 0.735  
1.275  
V
V
Output Low Voltage; NOTE 1  
Input High Voltage(Single-Ended)  
Input Low Voltage(Single-Ended)  
Peak-to-Peak Input Voltage  
0.625  
1.275  
0.63  
0.72  
0.815  
1.56  
1.56  
V
0.63  
0.965  
1200  
0.63  
0.965  
1200  
V
VPP  
150  
1.2  
800  
150  
800  
150  
1.2  
800  
mV  
Input High Voltage  
Common Mode Range; NOTE 3, 4  
VCMR  
IIH  
2.5  
1.2  
2.5  
2.5  
V
Input  
PCLK0, PCLK1  
200  
200  
200  
µA  
High Current nPCLK0, nPCLK1  
PCLK0, PCLK1  
-10  
-10  
-10  
µA  
µA  
Input  
Low Current  
IIL  
nPCLK0, nPCLK1  
-200  
-200  
-200  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50Ω to VCCO - 2V.  
NOTE 2: Single-ended input operation is limited. VCC 3V in LVPECL mode.  
NOTE 3: Common mode voltage is defined as VIH.  
NOTE 4: For single-ended applications, the maximum input voltage for PCLK0, nPCLK0 and PCLK1, nPCLK1  
is VCC + 0.3V.  
TABLE 4D. ECL DC CHARACTERISTICS, VCC = 0V; VEE = -3.8V TO -2.375V  
-40°C  
Typ  
25°C  
Typ  
85°C  
Typ  
Symbol Parameter  
Units  
Min  
-1.125  
-1.895  
-1.225  
-1.87  
-1.44  
150  
Max  
-0.92  
-1.62  
-0.94  
-1.535  
-1.32  
1200  
Min  
-1.075  
-1.875  
-1.225  
-1.87  
-1.44  
150  
Max  
-0.93  
-1.685  
-0.94  
-1.535  
-1.32  
1200  
Min  
-1.005  
-1.86  
-1.225  
-1.87  
-1.44  
150  
Max  
-0.935  
-1.67  
-0.94  
-1.535  
-1.32  
1200  
VOH  
VOL  
VIH  
Output High Voltage; NOTE 1  
-1.025  
-1.755  
-1.005  
-1.78  
-0.97  
-1.765  
V
V
Output Low Voltage; NOTE 1  
Input High Voltage (Single-Ended)  
Input Low Voltage (Single-Ended)  
Output Voltage Reference; NOTE 2  
Peak-to-Peak Input Voltage  
V
VIL  
V
VBB  
VPP  
V
800  
800  
800  
mV  
Input High Voltage  
Common Mode Range; NOTE 3, 4  
VCMR  
IIH  
VEE+1.2V  
0
VEE+1.2V  
0
VEE+1.2V  
0
V
Input  
PCLK0, PCLK1  
200  
200  
200  
µA  
High Current nPCLK0, nPCLK1  
PCLK0, PCLK1  
-10  
-10  
-10  
µA  
µA  
Input  
Low Current  
IIL  
nPCLK0, nPCLK1  
-200  
-200  
-200  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50Ω to VCCO - 2V.  
NOTE 2: Single-ended input operation is limited. VCC 3V in LVPECL mode.  
NOTE 3: Common mode voltage is defined as VIH.  
NOTE 4: For single-ended applications, the maximum input voltage for PCLK0, nPCLK0 and PCLK1, nPCLK1  
is VCC + 0.3V.  
IDT/ ICS1-TO-10, LVPECL/ECL FANOUT BUFFER  
4
ICS853111BY REV. C JANUARY 13, 2009  
ICS853111B  
LOW SKEW, 1-TO-10, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
TABLE 5. AC CHARACTERISTICS, VCC = 0V; VEE = -3.8V TO -2.375V OR VCC = 2.375 TO 3.8V; VEE = 0V  
-40°C  
Min Typ  
25°C  
Max Min Typ  
85°C  
Max Min Typ  
Symbol Parameter  
Units  
Max  
fMAX  
Output Frequency  
>3  
375 475  
20  
>3  
395 495  
20  
>3  
425 530  
20  
GHz  
ps  
tPD  
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 4  
575  
32  
595  
32  
635  
32  
tsk(o)  
tsk(pp)  
ps  
Part-to-Part Skew; NOTE 3, 4  
85  
150  
85  
150  
85  
150  
ps  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter section  
tjit  
0.03  
0.03  
0.03  
ps  
tR/tF  
Output Rise/Fall Time  
20% to 80%  
75  
150  
220  
80  
150  
215  
78  
150  
215  
ps  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established  
when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet  
specifications after thermal equilibrium has been reached under these conditons.  
NOTE: All parameters are measured 1GHz unless otherwise noted.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages  
and with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
IDT/ ICS1-TO-10, LVPECL/ECL FANOUT BUFFER  
5
ICS853111BY REV. C JANUARY 13, 2009  
ICS853111B  
LOW SKEW, 1-TO-10, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
ADDITIVE PHASE JITTER  
band to the power in the fundamental. When the required offset  
The spectral purity in a band at a specific offset from the  
fundamental compared to the power of the fundamental is called  
the dBc Phase Noise. This value is normally expressed using a  
Phase noise plot and is most often the specified plot in many  
applications.Phase noise is defined as the ratio of the noise power  
present in a 1Hz band at a specified offset from the fundamental  
frequency to the power value of the fundamental. This ratio is  
expressed in decibels (dBm) or a ratio of the power in the 1Hz  
is specified, the phase noise is called a dBc value, which simply  
means dBm at a specified offset from the fundamental. By  
investigating jitter in the frequency domain, we get a better  
understanding of its effects on the desired application over the  
entire time record of the signal. It is mathematically possible to  
calculate an expected bit error rate given a phase noise plot.  
0
-10  
-20  
-30  
-40  
Input/Output Additive  
Phase Jitter at 155.52MHz  
= 0.03ps (typical)  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
140  
-
-150  
160  
-
-170  
-180  
-190  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FROM CARRIER FREQUENCY (HZ)  
As with most timing specifications, phase noise measurements  
has issues relating to the limitations of the equipment. Often the  
noise floor of the equipment is higher than the noise floor of the  
device. This is illustrated above. The device meets the noise floor  
of what is shown, but can actually be lower. The phase noise is  
dependent on the input source and measurement equipment.  
IDT/ ICS1-TO-10, LVPECL/ECL FANOUT BUFFER  
6
ICS853111BY REV. C JANUARY 13, 2009  
ICS853111B  
LOW SKEW, 1-TO-10, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
VCC  
VCCO  
,
Qx  
nPCLK0,  
nPCLK1  
LVPECL  
VPP  
VCMR  
Cross Points  
nQx  
PCLK0,  
PCLK1  
VEE  
-1.8V to -0.375V  
VEE  
OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
PART 1  
nQx  
nQx  
Qx  
Qx  
PART 2  
nQy  
nQy  
Qy  
Qy  
tsk(o)  
tsk(o)  
OUTPUT SKEW  
PART-TO-PART SKEW  
nQ0:nQ9  
80%  
nPCLK0,  
nPCLK1  
80%  
PCLK0,  
PCLK1  
VSWING  
20%  
20%  
nQ0:nQ9  
Q0:Q9  
tF  
tR  
Q0:Q9  
tPD  
OUTPUT RISE/FALL TIME  
PROPAGATION DELAY  
IDT/ ICS1-TO-10, LVPECL/ECL FANOUT BUFFER  
7
ICS853111BY REV. C JANUARY 13, 2009  
ICS853111B  
LOW SKEW, 1-TO-10, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LVCMOS LEVELS  
of R1 and R2 might need to be adjusted to position the V_REF in  
the center of the input voltage swing. For example, if the input  
Figure 1A shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF ~ V /2 is  
generated by the bias resistors R1, R2 and C1. This bias CcCircuit  
should be located as close as possible to the input pin. The ratio  
clock swing is only 2.5V and V = 3.3V, V_REF should be 1.25V  
CC  
and R2/R1 = 0.609.  
VCC  
R1  
1K  
Single Ended Clock Input  
PCLKx  
V_REF  
nPCLKx  
C1  
0.1u  
R2  
1K  
FIGURE 1A. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LVPECL LEVELS  
Figure 1B shows an example of the differential input that can  
be wired to accept single ended LVPECL levels. The reference  
negative input. The C1 capacitor should be located as close as  
possible to the input pin.  
voltage level V generated from the device is connected to the  
BB  
V
CC  
C1  
0.1uF  
CLK_IN  
PCLK  
VBB  
nPCLK  
FIGURE 1B. SINGLE ENDED LVPECL SIGNAL DRIVING DIFFERENTIAL INPUT  
IDT/ ICS1-TO-10, LVPECL/ECL FANOUT BUFFER  
8
ICS853111BY REV. C JANUARY 13, 2009  
ICS853111B  
LOW SKEW, 1-TO-10, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
LVPECL CLOCK INPUT INTERFACE  
The PCLK /nPCLK accepts LVPECL, CML, SSTL and other  
differential signals. Both VSWING and VOH must meet the VPP and  
VCMR input requirements. Figures 2A to 2F show interface  
examples for the HiPerClockS PCLK/nPCLK input driven by  
the most common driver types. The input interfaces suggested  
here are examples only. If the driver is from another vendor,  
use their termination recommendation. Please consult with the  
vendor of the driver component to confirm the driver termination  
requirements.  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
R1  
50  
R2  
50  
CML  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
PCLK  
R1  
100  
nPCLK  
Zo = 50 Ohm  
nPCLK  
HiPerClockS  
PCLK/nPCLK  
HiPerClockS  
PCLK/nPCLK  
CML Built-In Pullup  
FIGURE 2A. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A CML DRIVER  
FIGURE 2B. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A BUILT-IN PULLUP CML DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
R4  
125  
125  
C1  
3.3V LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
VBB  
PCLK  
C2  
nPCLK  
PCLK/nPCLK  
nPCLK  
HiPerClockS  
Input  
LVPECL  
R5  
100 - 200  
R6  
100 - 200  
R1  
50  
R2  
50  
R1  
84  
R2  
84  
FIGURE 2C. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER  
FIGURE 2D. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER WITH AC COUPLE  
2.5V  
3.3V  
3.3V  
2.5V  
3.3V  
R3  
R4  
Zo = 50 Ohm  
120  
120  
C1  
LVDS  
SSTL  
Zo = 60 Ohm  
Zo = 60 Ohm  
PCLK  
PCLK  
R5  
100  
VBB  
C2  
nPCLK  
Zo = 50 Ohm  
nPCLK  
PCLK/nPCLK  
HiPerClockS  
PCLK/nPCLK  
R1  
1K  
R2  
1K  
R1  
120  
R2  
120  
FIGURE 2E. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY AN SSTL DRIVER  
FIGURE 2F. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVDS DRIVER  
IDT/ ICS1-TO-10, LVPECL/ECL FANOUT BUFFER  
9
ICS853111BY REV. C JANUARY 13, 2009  
ICS853111B  
LOW SKEW, 1-TO-10, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
INPUTS  
PCLK/nPCLK INPUTS  
OUTPUTS  
LVPECL OUTPUTS  
For applications not requiring the use of a differential input, both  
the PCLK and nPCLK pins can be left floating. Though not  
required, but for additional protection, a 1kΩ resistor can be tied  
from PCLK to ground.  
All unused LVPECL outputs can be left floating. We recommend  
that there is no trace attached. Both sides of the differential output  
pair should either be left floating or terminated.  
TERMINATION FOR 3.3V LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs. The two different layouts mentioned  
are recommended only as guidelines.  
ance techniques should be used to maximize operating fre-  
quency and minimize signal distortion. Figures 3A and 3B  
show two different layouts which are recommended only as  
guidelines. Other suitable clock layouts may exist and it  
would be recommended that the board designers simulate  
to guarantee compatibility across all printed circuit and clock  
component process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, ter-  
minating resistors (DC current path to ground) or current  
sources must be used for functionality. These outputs are  
designed to drive 50Ω transmission lines. Matched imped-  
3.3V  
Zo = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 3A. LVPECL OUTPUT TERMINATION  
FIGURE 3B. LVPECL OUTPUT TERMINATION  
IDT/ ICS1-TO-10, LVPECL/ECL FANOUT BUFFER  
10  
ICS853111BY REV. C JANUARY 13, 2009  
ICS853111B  
LOW SKEW, 1-TO-10, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
TERMINATION FOR 2.5V LVPECL OUTPUT  
50Ω to V - 2V. For V = 2.5V, the V - 2V is very close to ground  
level. The R3 in Figure 4B can be eliminated and the termination  
is shown in Figure 4C.  
CC  
CC  
CC  
Figure 4A and Figure 4B show examples of termination for 2.5V  
LVPECL driver. These terminations are equivalent to terminating  
2.5V  
2.5V  
2.5V  
VCCO=2.5V  
VCCO=2.5V  
R1  
250  
R3  
250  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
+
+
-
Zo = 50 Ohm  
-
2,5V LVPECL  
Driver  
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 4A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
FIGURE 4B. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
2.5V  
VCCO=2.5V  
Zo = 50 Ohm  
+
Zo = 50 Ohm  
-
2,5V LVPECL  
Driver  
R1  
50  
R2  
50  
FIGURE 4C. 2.5V LVPECL TERMINATION EXAMPLE  
IDT/ ICS1-TO-10, LVPECL/ECL FANOUT BUFFER  
11  
ICS853111BY REV. C JANUARY 13, 2009  
ICS853111B  
LOW SKEW, 1-TO-10, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
SCHEMATIC EXAMPLE  
This application note provides general design guide using  
ICS853111B LVPECL buffer.Figure 6 shows a schematic example  
of the ICS853111B LVPECL clock buffer. In this example, the  
input is driven by an LVPECL driver. CLK_SEL is set at logic high  
to select PCLK0/nPCLK0 input.  
Zo = 50  
+
-
Zo = 50  
R2  
50  
R1  
50  
VCC  
C6 (Option)  
0.1u  
R3  
50  
VCC  
Zo = 50 Ohm  
Zo = 50 Ohm  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
VCC  
Q3  
nQ3  
Q4  
nQ4  
Q5  
nQ5  
Q6  
nQ6  
CLK_SEL  
PCLK0  
nPCLK0  
VBB  
PCLK1  
nPCLK1  
VEE  
R4  
1K  
3.3V LVPECL  
R9  
50  
R10  
50  
U1  
C8 (Option)  
0.1u  
R11  
50  
ICS853111  
VCC  
Zo = 50  
+
-
VCC=3.3V  
Zo = 50  
(U1-9)  
(U1-16)  
(U1-25) (U1-32) (U1-1)  
VCC  
R8  
50  
R7  
50  
C1  
0.1uF  
C2  
0.1uF  
C3  
0.1uF  
C4  
0.1uF  
C5  
0.1uF  
C7 (Option)  
0.1u  
R13  
50  
FIGURE 5. EXAMPLE ICS853111B LVPECL CLOCK OUTPUT BUFFER SCHEMATIC  
IDT/ ICS1-TO-10, LVPECL/ECL FANOUT BUFFER  
12  
ICS853111BY REV. C JANUARY 13, 2009  
ICS853111B  
LOW SKEW, 1-TO-10, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
EPADTHERMAL RELEASE PATH  
In order to maximize both the removal of heat from the package  
and the electrical performance, a land pattern must be  
incorporated on the Printed Circuit Board (PCB) within the footprint  
of the package corresponding to the exposed metal pad or  
exposed heat slug on the package, as shown in Figure 6. The  
solderable area on the PCB, as defined by the solder mask, should  
be at least the same size/shape as the exposed pad/slug area on  
the package to maximize the thermal/electrical performance.  
Sufficient clearance should be designed on the PCB between the  
outer edges of the land pattern and the inner edges of pad pattern  
for the leads to avoid any shorts.  
are application specific and dependent upon the package power  
dissipation as well as electrical conductivity requirements. Thus,  
thermal and electrical analysis and/or testing are recommended  
to determine the minimum number needed. Maximum thermal  
and electrical performance is achieved when an array of vias is  
incorporated in the land pattern. It is recommended to use as  
many vias connected to ground as possible. It is also  
recommended that the via diameter should be 12 to 13mils (0.30  
to 0.33mm) with 1oz copper via barrel plating. This is desirable to  
avoid any solder wicking inside the via during the soldering process  
which may result in voids in solder between the exposed pad/  
slug and the thermal land. Precautions should be taken to  
eliminate any solder voids between the exposed heat slug and  
the land pattern. Note: These recommendations are to be used  
as a guideline only. For further information, refer to the Application  
Note on the Surface Mount Assembly of Amkor’s Thermally/  
Electrically Enhance Leadframe Base Package, Amkor  
Technology.  
While the land pattern on the PCB provides a means of heat  
transfer and electrical grounding from the package to the board  
through a solder joint, thermal vias are necessary to effectively  
conduct from the surface of the PCB to the ground plane(s). The  
land pattern must be connected to ground through these vias.  
The vias act as “heat pipes”.The number of vias (i.e. “heat pipes”)  
SOLDER  
SOLDER  
SOLDER  
EXPOSED HEAT SLUG  
PIN  
PIN  
LAND PATTERN  
(GROUND PAD)  
PIN PAD  
GROUND PLANE  
PIN PAD  
THERMAL VIA  
FIGURE 6. ASSEMBLY FOR EXPOSED PAD THERMAL RELEASE PATH –SIDE VIEW (DRAWING NOT TO SCALE)  
IDT/ ICS1-TO-10, LVPECL/ECL FANOUT BUFFER  
13  
ICS853111BY REV. C JANUARY 13, 2009  
ICS853111B  
LOW SKEW, 1-TO-10, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS853111B.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS853111B is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for V = 3.8V, which gives worst case results.  
CC  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core) = V  
* I  
= 3.8V * 120mA = 456mW  
EE_MAX  
MAX  
CC_MAX  
Power (outputs) = 30.94mW/Loaded Output pair  
MAX  
If all outputs are loaded, the total power is 10 * 30.94mW = 309.4mW  
Total Power  
(3.8V, with all outputs switching) = 456mW + 309.4mW = 765.4mW  
_MAX  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
TM  
device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θ * Pd_total + TA  
JA  
Tj = Junction Temperature  
θJA = junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 43.8°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.765W * 43.8°C/W = 118.5°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 6. THERMAL RESISTANCE θ FOR 32-PIN TQFP, E-PAD FORCED CONVECTION  
JA  
θ by Velocity (Linear Feet per Minute)  
JA  
0
200  
57.8°C/W  
43.8°C/W  
500  
52.1°C/W  
41.3°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
69.3°C/W  
49.5°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
IDT/ ICS1-TO-10, LVPECL/ECL FANOUT BUFFER  
14  
ICS853111BY REV. C JANUARY 13, 2009  
ICS853111B  
LOW SKEW, 1-TO-10, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 7.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
FIGURE 7. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage of V – 2V.  
CCO  
For logic high, V = V  
= V  
– 0.935V  
CCO_MAX  
OUT  
OH_MAX  
)
= 0.935V  
OH_MAX  
(V  
– V  
CC_MAX  
For logic low, V = V  
= V  
– 1.67V  
CCO_MAX  
OUT  
OL_MAX  
)
= 1.67V  
OL_MAX  
(V  
– V  
CCO_MAX  
))  
Pd_H = [(V  
– (V  
– 2V))/R ] * (V  
– V  
) = [(2V – (V  
– V  
– V  
/R ] * (V  
– V  
) =  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
_MAX  
OH_MAX  
CCO _MAX  
OH_MAX  
L
CCO  
L
[(2V - 0.935V)/50Ω] * 0.935V = 19.92mW  
))  
Pd_L = [(V  
– (V  
– 2V))/R ] * (V  
– V  
) = [(2V – (V  
/R ] * (V  
– V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
_MAX  
CCO  
OL_MAX  
CCO_MAX  
OL_MAX  
L
L
[(2V – 1.67V)/50Ω] * 1.67V = 11.02mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.94mW  
IDT/ ICS1-TO-10, LVPECL/ECL FANOUT BUFFER  
15  
ICS853111BY REV. C JANUARY 13, 2009  
ICS853111B  
LOW SKEW, 1-TO-10, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
RELIABILITY INFORMATION  
TABLE 7. θ VS. AIR FLOW TABLE FOR 32 LEAD TQFP, E-PAD  
JA  
θ by Velocity (Linear Feet per Minute)  
JA  
0
200  
57.8°C/W  
43.8°C/W  
500  
52.1°C/W  
41.3°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
69.3°C/W  
49.5°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS853111B is: 1340  
Pin compatible with MC100EP111 and MC100LVEP111  
IDT/ ICS1-TO-10, LVPECL/ECL FANOUT BUFFER  
16  
ICS853111BY REV. C JANUARY 13, 2009  
ICS853111B  
LOW SKEW, 1-TO-10, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD TQFP, E-PAD  
-HD VERSION  
HEAT SLUG DOWN  
TABLE 8. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBA  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
--  
--  
1.20  
0.15  
1.05  
0.40  
0.20  
A1  
0.05  
0.95  
0.30  
0.09  
--  
A2  
1.0  
b
0.35  
c
--  
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
3.5  
D, E  
D1, E1  
D2, E2  
D3, E3  
e
3.0  
4.0  
0.80 BASIC  
0.60  
L
0.45  
0.75  
θ
--  
0°  
7°  
ccc  
--  
--  
0.10  
Reference Document:JEDEC Publication 95, MS-026  
IDT/ ICS1-TO-10, LVPECL/ECL FANOUT BUFFER  
17  
ICS853111BY REV. C JANUARY 13, 2009  
ICS853111B  
LOW SKEW, 1-TO-10, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
853111BY  
Marking  
Package  
Shipping Packaging  
tray  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS853111BY  
ICS853111BY  
ICS853111BYLF  
ICS853111BYLF  
32 lead TQFP, E-PAD  
853111BYT  
32 lead TQFP, E-PAD  
1000 tape & reel  
tray  
853111BYLF  
853111BYLFT  
"Lead Free" 32 lead TQFP, E-PAD  
"Lead Free" 32 lead TQFP, E-PAD  
1000 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and  
industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT  
reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
IDT/ ICS1-TO-10, LVPECL/ECL FANOUT BUFFER  
18  
ICS853111BY REV. C JANUARY 13, 2009  
ICS853111B  
LOW SKEW, 1-TO-10, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
REVISION HISTORY SHEET  
Rev  
Table  
Page  
Description of Change  
Date  
9
Corrected Figure 3C.  
A
11/13/03  
Added "Lead Free" Part/Order Number rows.  
Features Section - added Lead-Free bullet.  
17  
1
T8  
T9  
16  
17  
Package Dimensions - corrected dimensions D2/E2 to read 3.5mm from 5.60.  
A
B
6/16/05  
9/5/07  
Ordering Information Table - corrected Lead-Free marking and added  
Lead-Free note.  
LVPECL DC Characteristics Table - corrected VIH max. (@ 85°)  
1.56V from -0.83V.  
T4C  
4
10  
16  
Added Recommendations for Unused Input and Output Pins.  
T8  
Package Dimensions - added dimensions D3/E3.  
3.3V LVPECL DC Characteristics - changed IIH max. from 150µA to 200µA.  
Changed IIL min. from -150µA to -200µA.  
2.5V LVPECL DC Characteristics - changed IIH max. from 150µA to 200µA.  
Changed IIL min. from -150µA to -200µA.  
ECL DC Characteristics - changed IIH max. from 150µA to 200µA.  
Changed IIL min. from -150µA to -200µA.  
Updated EPAD Thermal Release Path.  
T4B  
3
4
4
T4C  
T4D  
C
C
2/12/08  
13  
2
T1  
Pin Description Table - corrected interface levels from LVCMOS/LVTTL to  
LVPECL.  
1/13/09  
IDT/ ICS1-TO-10, LVPECL/ECL FANOUT BUFFER  
19  
ICS853111BY REV. C JANUARY 13, 2009  
ICS853111B  
LOW SKEW, 1-TO-10, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL/ECL FANOUT BUFFER  
Innovate with IDT and accelerate your future networks. Contact:  
www.IDT.com  
For Sales  
For Tech Support  
Corporate Headquarters  
Integrated Device Technology, Inc.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
Fax: 408-284-2775  
netcom@idt.com  
+480-763-2056  
www.IDT.com/go/contact IDT  
United States  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
© 2009 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks  
of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be  
trademarks or registered trademarks used to identify products or services of their respective owners.  
Printed in USA  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY