853S6111AYILF [IDT]

PTQFP-32, Tray;
853S6111AYILF
型号: 853S6111AYILF
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

PTQFP-32, Tray

驱动 逻辑集成电路
文件: 总24页 (文件大小:431K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Voltage, 1-to-10, Differential-to- 2.5V,  
3.3V LVPECL/ECL Fanout Buffer  
ICS853S6111I  
DATA SHEET  
Product Discontinuance Notice – Last Time Buy Expires on (1/31/2014)  
General Description  
Features  
The ICS853S6111I is a low skew 1-to-10 Differential Fanout Buffer,  
designed with clock distribution in mind, accepting two clock sources  
into an input MUX. The MUX is controlled by a CLK_SEL pin. This  
makes the ICS853S6111I very versatile, in that, it can operate as  
both a differential clock buffer as well as a signal-level translator and  
fanout buffer.  
Ten differential LVPECL/ECL outputs  
Two selectable differential input pairs  
PCLK, nPCLK pair can accept the following  
differential input levels: LVPECL, LVDS, SSTL, CML  
CLK, nCLK pair can accept the following  
differential input levels: HSTL, LVPECL, LVDS, SSTL, HCSL  
The device is designed on a SiGe process and can operate up to  
frequencies of 2.7GHz. This ensures negligible jitter introduction to  
the timing budget which makes it an ideal choice for distributing high  
frequency, high precision clocks across back planes and boards in  
communication systems. Internal temperature compensation  
guarantees consistent performance across various platforms.  
Maximum input frequency: 2.7GHz  
Output skew: 35ps (maximum)  
Part-to-part skew: 250ps (maximum), fo > 1.5GHz  
Additive phase jitter, RMS: 0.123ps (typical)  
LVPECL and HSTL mode operating voltage supply range:  
VCC = 2.5V 5ꢀ or 3.3V 5ꢀ, VEE = 0V  
ECL mode operating voltage supply range:  
VEE = -3.3V 5ꢀ or -2.5V 5ꢀ, VCC = 0V  
-40°C to 85°C ambient operating temperature  
Available in lead-free (RoHS 6) package  
Block Diagram  
Pin Assignment  
Pulldown  
PCLK  
0
1
Pullup/Pulldown  
Q0  
nPCLK  
24 23 22 21 20 19 18 17  
nQ0  
Pulldown  
CLK  
25  
26  
27  
28  
29  
30  
31  
32  
VCC  
VCC  
16  
15  
14  
13  
12  
Pullup/Pulldown  
nCLK  
Q1  
nQ2  
Q2  
Q7  
nQ1  
Pulldown  
nQ7  
Q8  
CLK_SEL  
VBB  
Q2  
nQ1  
Q1  
nQ2  
nQ8  
nQ3  
nQ3  
nQ0  
Q0  
Q9  
11  
10  
9
nQ9  
VCC  
Q4  
VCC  
1
2
3
4
5
6
7
8
nQ4  
Q5  
nQ5  
Q6  
ICS853S6111I  
32-Lead TQFP, E-Pad  
nQ6  
Q7  
7mm x 7mm x 1mm package body  
Y Package  
nQ7  
nQ8  
nQ8  
Top View  
Q9  
nQ9  
ICS853S6111AYI REVISION A FEBRUARY 6, 2013  
1
©2013 Integrated Device Technology, Inc.  
ICS853S6111I Data Sheet  
LOW VOLTAGE, 1-TO-10 DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
Table 1. Pin Descriptions  
Number  
Name  
Type  
Description  
1, 9, 16,  
25, 32  
VCC  
Power  
Positive supply pins.  
Clock select input. When HIGH, selects CLK, nCLK inputs. When LOW, selects  
PCLK, nPCLK inputs. Single-ended LVPECL interface levels.  
2
3
4
CLK_SEL  
PCLK  
Input  
Input  
Input  
Pulldown  
Pulldown Non-inverting differential LVPECL and other differential clock inputs.  
Pullup/  
nPCLK  
Inverting differential LVPECL and other differential clock inputs.  
Pulldown  
5
6
VBB  
Output  
Input  
Bias voltage to be connected for single-ended applications.  
CLK  
Pulldown Non-inverting differential HSTL and other differential clock inputs..  
Pullup/  
7
nCLK  
Input  
Inverting differential HSTL and other differential clock inputs.  
Pulldown  
8
VEE  
Power  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Negative supply pin.  
10, 11  
12, 13  
14, 15  
17, 18  
19, 20  
21, 22  
23, 24  
26, 27  
28, 29  
30, 31  
Differential output pair. LVPECL/ECL interface levels.  
Differential output pair. LVPECL/ECL interface levels.  
Differential output pair. LVPECL/ECL interface levels.  
Differential output pair. LVPECL/ECL interface levels.  
Differential output pair. LVPECL/ECL interface levels.  
Differential output pair. LVPECL/ECL interface levels.  
Differential output pair. LVPECL/ECL interface levels.  
Differential output pair. LVPECL/ECL interface levels.  
Differential output pair. LVPECL/ECL interface levels.  
Differential output pair. LVPECL/ECL interface levels.  
nQ9, Q9  
nQ8, Q8  
nQ7, Q7  
nQ6, Q6  
nQ5, Q5  
nQ4, Q4  
nQ3, Q3  
nQ2, Q2  
nQ1, Q1  
nQ0, Q0  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
RPULLDOWN Input Pulldown Resistor  
RVCC/2 Pullup/Pulldown Resistors  
Parameter  
Test Conditions  
Minimum  
Typical  
75  
Maximum  
Units  
k  
50  
k  
ICS853S6111AYI REVISION A FEBRUARY 6, 2013  
2
©2013 Integrated Device Technology, Inc.  
ICS853S6111I Data Sheet  
LOW VOLTAGE, 1-TO-10 DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
Function Tables  
Table 3A. Clock Input Function Table  
Inputs  
Outputs  
nQ0:nQ9  
PCLK or CLK  
nPCLK or nCLK  
Q0:Q9  
LOW  
HIGH  
LOW  
HIGH  
HIGH  
LOW  
Input to Output Mode  
Differential to Differential  
Differential to Differential  
Single-Ended to Differential  
Single-Ended to Differential  
Single-Ended to Differential  
Single-Ended to Differential  
Polarity  
Non-Inverting  
Non-Inverting  
Non-Inverting  
Non-Inverting  
Inverting  
0
1
HIGH  
LOW  
HIGH  
LOW  
LOW  
HIGH  
1
0
0
Biased; NOTE 1  
1
Biased; NOTE 1  
Biased; NOTE 1  
Biased; NOTE 1  
0
1
Inverting  
NOTE 1: Please refer to the Applications Information section, Wiring the Differential Input to Accept Single-ended Levels.  
Table 3B. Control Input Function Table  
Inputs  
CLK_SEL  
0 (default)  
1
Selected Source  
PCLK, nPCLK is active.  
CLK, nCLK is active.  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VCC  
Inputs, VI  
3.6V  
-0.3V to VCC + 0.3V  
-0.3V to VCC + 0.3V  
20mA  
Outputs, VO  
Input Current, IIN  
Outputs, IO  
Continuos Current  
50mA  
Operating Temperature Range, TA  
Package Thermal Impedance, JA  
Storage Temperature, TSTG  
-40C to +85C  
40.2C/W (0 mps)  
-65C to 125C  
ICS853S6111AYI REVISION A FEBRUARY 6, 2013  
3
©2013 Integrated Device Technology, Inc.  
ICS853S6111I Data Sheet  
LOW VOLTAGE, 1-TO-10 DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
DC Electrical Characteristics  
Table 5A. LVPECL (PCLK, nPCLK), HSTL (CLK, nCLK) DC Characteristics, VCC = 3.3V 5ꢀ or 2.5V 5ꢀ; VEE = 0V,  
TA = -40°C to 85°C  
Symbol  
Parameter  
Test Conditions  
VIN = VIL or VIN = VIH  
VIN = VIL or VIN = VIH  
Minimum  
Typical  
Maximum  
Units  
Control Input CLK_SEL  
VIL  
VIH  
IIN  
Input Low Voltage  
VCC - 1.810  
VCC - 1.165  
VCC - 1.475  
VCC - 0.880  
100  
V
V
Input High Voltage  
Input Current; NOTE 1  
µA  
Clock Input Pair PCLK, nPCLK  
VPP  
VCMR  
IIN  
Differential Input Voltage; NOTE 2  
0.1  
1.0  
1.3  
VCC - 0.3  
100  
V
V
Differential Cross Point Voltage; NOTE 3  
Input Current; NOTE 1  
µA  
Clock Input Pair CLK, nCLK  
VDIF  
VX  
Differential Input Voltage; NOTE 4, 7  
0.4  
0
1.0  
VCC - 1.1  
200  
V
V
Differential Crosspoint Voltage; NOTE 5  
Input Current  
0.68 - 0.9  
IIN  
VIN = Vx 0.2V  
IOH = -30mA  
µA  
PECL Clock Outputs  
VOH Output High Voltage; NOTE 6  
VCC - 1.2  
VCC - 1.9  
VCC - 1.005  
VCC - 1.705  
VCC - 0.7  
VCC - 1.5  
V
V
VCC = 3.3V 5ꢀ,  
IOL = -5mA  
VOL  
Output Low Voltage; NOTE 6  
VCC = 2.5V 5ꢀ,  
OL = -5mA  
VCC - 1.9  
VCC - 1.705  
VCC - 1.3  
V
I
Supply Current and VBB  
Maximum Quiescent Supply Current  
without Output Termination Current  
IEE  
V
EE pin  
100  
mA  
V
VBB  
Output Reference Voltage  
IBB = 200µA  
VCC - 1.4  
VCC - 1.2  
NOTE 1: Inputs have internal pullup/pulldown resistors which affect the input current.  
NOTE 2: VPP (DC) is the minimum differential input voltage swing required to maintain device functionality.  
NOTE 3: VCMR (DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the VCMR  
(DC) range and the input swing lies within the VPP (DC) specification.  
NOTE 4: VDIF (DC) is the minimum differential HSTL input voltage swing required for device functionality.  
NOTE 5: VX (DC) is the crosspoint of the differential HSTL input signal. Functional operation is obtained when the crosspoint is within the VX  
(DC) range and the input swing lies within the VPP (DC) specification.  
NOTE 6: Equivalent to a termination of 50to VTT equal to VCC/2.  
NOTE 7: For single-ended applications, the maximum input voltage for PCLK, nPCLK and CLK, nCLK is VCC + 0.3V.  
ICS853S6111AYI REVISION A FEBRUARY 6, 2013  
4
©2013 Integrated Device Technology, Inc.  
ICS853S6111I Data Sheet  
LOW VOLTAGE, 1-TO-10 DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
Table 5B. ECL (PCLK, nPCLK), HSTL (CLK, nCLK) DC Characteristics, VEE = -2.5V 5ꢀ or -3.3V 5ꢀ; VCC = 0V,  
TA = -40°C to 85°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
Control Input CLK_SEL  
VIL  
VIH  
IIN  
Input Low Voltage  
-1.810  
-1.165  
-1.475  
-0.880  
100  
V
V
Input High Voltage  
Input Current; NOTE 1  
VIN = VIL or VIN = VIH  
µA  
Clock Input Pair PCLK, nPCLK; CLK, nCLK  
VPP  
VCMR  
IIN  
Peak-to-Peak Input Voltage; NOTE 2  
Common Mode Input Voltage; NOTE 3  
Input Current; NOTE 1  
0.1  
1.3  
-0.3  
100  
V
V
VEE + 1.0  
VIN = VIL or VIN = VIH  
IOH = -30mA  
µA  
ECL Clock Outputs  
VOH Output High Voltage; NOTE 4  
-1.2  
-1.9  
-1.005  
-1.705  
-0.7  
-1.5  
V
V
V
CC = 3.3V 5ꢀ,  
OL = -5mA  
I
VOL  
Output Low Voltage; NOTE 4  
VCC = 2.5V 5ꢀ,  
OL = -5mA  
-1.9  
-1.705  
-1.3  
V
I
Supply Current and VBB  
Maximum Quiescent Supply Current  
without Output Termination Current  
IEE  
V
EE pin  
100  
mA  
V
VBB  
Output Reference Voltage  
IBB = 200µA  
VCC - 1.4  
VCC - 1.2  
NOTE 1: Inputs have internal pullup/pulldown resistors which affect the input current.  
NOTE 2: VPP (DC) is the minimum differential input voltage swing required to maintain device functionality.  
NOTE 3: VCMR (DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the VCMR  
(DC) range and the input swing lies within the VPP (DC) specification.  
NOTE 4: Equivalent to a termination of 50to VTT equal to VCC/2.  
ICS853S6111AYI REVISION A FEBRUARY 6, 2013  
5
©2013 Integrated Device Technology, Inc.  
ICS853S6111I Data Sheet  
LOW VOLTAGE, 1-TO-10 DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
AC Electrical Characteristics  
Table 6. AC Characteristics, (HSTL, LVPECL): VCC = 3.3V 5ꢀ or 2.5V 5ꢀ; VEE = 0V; or  
(ECL): VEE = -3.3V 5ꢀ or -2.5V 5ꢀ; VCC = 0V; TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
VPP  
Differential Input Voltage; NOTE 1  
PCLK, nPCLK  
0.15  
1.3  
V
Differential Input Crosspoint  
Voltage; NOTE 2  
VCMR  
PCLK, nPCLK  
VEE + 1.0  
VCC - 0.3  
V
fCLK  
tPD  
Input Frequency; NOTE 3  
2.7  
530  
1.0  
GHz  
ps  
Propagation Delay; NOTE 4  
Differential Input Voltage; NOTE 5  
280  
0.4  
400  
VDIF  
CLK, nCLK  
CLK, nCLK  
V
Differential Input Crosspoint  
Voltage; NOTE 6  
VEE + 0.68  
EE + 0.9  
VX  
V
EE + 0.1  
VEE + 2.1  
V
V
fo < 300MHz  
fo < 1.5GHz  
fo < 2.7GHz  
0.45  
0.3  
0.72  
0.95  
0.95  
0.95  
35  
V
Differential Output Voltage  
(peak-to-peak)  
VO(pp)  
0.55  
V
0.18  
0.37  
V
tsk(o)  
tsk(pp)  
tsk(p)  
Output Skew; NOTE 7, 8  
ps  
ps  
ps  
ps  
fo < 1.5GHz  
fo > 1.5GHz  
150  
250  
75  
Part-to-Part Skew; NOTE 7, 9  
Output Pulse Skew; NOTE 10  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter  
Section  
PCLK, nPCLK, 155.52MHz @3.3V,  
Integration Range: (12kHz - 20MHz)  
tjit  
0.123  
ps  
ns  
tR / tF  
Output Rise/Fall Time  
20ꢀ to 80ꢀ  
0.05  
0.3  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions.  
NOTE: AC characteristics apply for parallel output termination of 50to VTT equal to VCC/2.  
NOTE 1: VPP (AC) is the minimum differential ECL/LVPECL input voltage swing required to maintain AC characteristics including tPD and  
device-to-device skew.  
NOTE 2: VCMR (AC) is the crosspoint of the differential ECL/LVPECL input signal. Normal AC operation is obtained when the crosspoint is  
within the VCMR range and the input swing lies within the VPP (AC) specification. Violation of VCMR (AC) or VPP (AC) impacts the device  
propagation delay, device and part-to-part skew.  
NOTE 3: The ICS853S6111I is fully operational up to 3GHz and is characterized up to 2.7GHz.  
NOTE 4: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 5: VDIF (AC) is the minimum differential HSTL input voltage swing required to maintain AC characteristics including tPD and  
device-to-device skew.  
NOTE 6: VX is the crosspoint of the differential HSTL input signal. Normal AC operation is obtained when the crosspoint is within the VX range  
and the input swing lies within the VDIF specification. Violation of VX or VDIF impacts the device propgation delay, device and part-to-part skew.  
NOTE 7: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 8: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the output differential  
cross points.  
NOTE 9: Defined as skew between outputs on different devices operating at the same supply voltage, same temperature, same frequency and  
with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.  
NOTE 10: Output pulse skew is the absolute value of the difference of the propagation delay times: tPLH - tPHL .  
ICS853S6111AYI REVISION A FEBRUARY 6, 2013  
6
©2013 Integrated Device Technology, Inc.  
ICS853S6111I Data Sheet  
LOW VOLTAGE, 1-TO-10 DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
Additive Phase Jitter  
The spectral purity in a band at a specific offset from the fundamental  
compared to the power of the fundamental is called the dBc Phase  
Noise. This value is normally expressed using a Phase noise plot  
and is most often the specified plot in many applications. Phase noise  
is defined as the ratio of the noise power present in a 1Hz band at a  
specified offset from the fundamental frequency to the power value of  
the fundamental. This ratio is expressed in decibels (dBm) or a ratio  
of the power in the 1Hz band to the power in the fundamental. When  
the required offset is specified, the phase noise is called a dBc value,  
which simply means dBm at a specified offset from the fundamental.  
By investigating jitter in the frequency domain, we get a better  
understanding of its effects on the desired application over the entire  
time record of the signal. It is mathematically possible to calculate an  
expected bit error rate given a phase noise plot.  
Additive Phase Jitter @ 155.52MHz  
12kHz to 20MHz = 0.123ps (typical)  
Offset from Carrier Frequency (Hz)  
As with most timing specifications, phase noise measurements has  
issues relating to the limitations of the equipment. Often the noise  
floor of the equipment is higher than the noise floor of the device. This  
is illustrated above. The device meets the noise floor of what is  
shown, but can actually be lower. The phase noise is dependent on  
the input source and measurement equipment.  
The source generator "IFR2042 10kHz – 56.4GHz Low Noise Signal  
Generator as external input to an Agilent 8133A 3GHz Pulse  
Generator".  
ICS853S6111AYI REVISION A FEBRUARY 6, 2013  
7
©2013 Integrated Device Technology, Inc.  
ICS853S6111I Data Sheet  
LOW VOLTAGE, 1-TO-10 DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
Parameter Measurement Information  
2V  
2V  
SCOPE  
SCOPE  
VCC  
Qx  
VCC  
Qx  
nQx  
nQx  
VEE  
VEE  
-1.3V 0.165V  
-0.5V 0.125V  
3.3V LVPECL Output Load AC Test Circuit  
2.5V LVPECL Output Load AC Test Circuit  
V
V
CC  
CC  
nPCLK  
nCLK  
VIN  
VIN  
Cross Points  
Cross Points  
PCLK  
CLK  
VCMR  
VDIF  
V
V
EE  
EE  
PCLK, nPCLK Differential Input Level  
CLK, nCLK Differential Input Level  
Part 1  
nQx  
nQx  
Qx  
Qx  
Part 2  
nQy  
nQy  
Qy  
Qy  
tsk(o)  
tsk(pp)  
Part-to-Part Skew  
Output Skew  
ICS853S6111AYI REVISION A FEBRUARY 6, 2013  
8
©2013 Integrated Device Technology, Inc.  
ICS853S6111I Data Sheet  
LOW VOLTAGE, 1-TO-10 DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
Parameter Measurement Information, continued  
nCLK,  
nPCLK  
nQ[0:9]  
Q[0:9]  
80ꢀ  
tF  
80ꢀ  
tR  
VO(PP)  
20ꢀ  
CLK, PCLK  
20ꢀ  
nQ[0:9]  
Q[0:9]  
tPD  
Propagation Delay  
Output Rise/Fall Time  
Applications Information  
Recommendations for Unused Output Pins  
Inputs:  
Outputs:  
PCLK/nPCLK Inputs  
LVPECL Outputs  
For applications not requiring the use of a differential input, both the  
PCLK and nPCLK pins can be left floating. Though not required, but  
for additional protection, a 1kresistor can be tied from PCLK to  
ground.  
All unused LVPECL outputs can be left floating. We recommend that  
there is no trace attached. Both sides of the differential output pair  
should either be left floating or terminated.  
CLK/nCLK Intputs  
For applications not requiring the use of a differential input, both the  
CLK and nCLK pins can be left floating. Though not required, but for  
additional protection, a 1kresistor can be tied from CLK to ground.  
ICS853S6111AYI REVISION A FEBRUARY 6, 2013  
9
©2013 Integrated Device Technology, Inc.  
ICS853S6111I Data Sheet  
LOW VOLTAGE, 1-TO-10 DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
Wiring the Differential Input to Accept Single-Ended Levels  
Figure 1 shows how a differential input can be wired to accept single  
ended levels. The reference voltage VREF = VCC/2 is generated by  
the bias resistors R1 and R2. The bypass capacitor (C1) is used to  
help filter noise on the DC bias. This bias circuit should be located as  
close to the input pin as possible. The ratio of R1 and R2 might need  
to be adjusted to position the VREF in the center of the input voltage  
swing. For example, if the input clock swing is 2.5V and VCC = 3.3V,  
R1 and R2 value should be adjusted to set VREF at 1.25V. The values  
below are for when both the single ended swing and VCC are at the  
same voltage. This configuration requires that the sum of the output  
impedance of the driver (Ro) and the series resistance (Rs) equals  
the transmission line impedance. In addition, matched termination at  
the input will attenuate the signal in half. This can be done in one of  
two ways. First, R3 and R4 in parallel should equal the transmission  
line impedance. For most 50applications, R3 and R4 can be 100.  
The values of the resistors can be increased to reduce the loading for  
slower and weaker LVCMOS driver. When using single-ended  
signaling, the noise rejection benefits of differential signaling are  
reduced. Even though the differential input can handle full rail  
LVCMOS signaling, it is recommended that the amplitude be  
reduced. The datasheet specifies a lower differential amplitude,  
however this only applies to differential signals. For single-ended  
applications, the swing can be larger, however VIL cannot be less  
than -0.3V and VIH cannot be more than VCC + 0.3V. Though some  
of the recommended components might not be used, the pads  
should be placed in the layout. They can be utilized for debugging  
purposes. The datasheet specifications are characterized and  
guaranteed by using a differential signal.  
Figure 1. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels  
Wiring the Differential Input to Accept Single-ended LVPECL Levels  
Figure 2 shows an example of the differential input that can be wired  
to accept single-ended LVPECL levels. The reference voltage level  
V
CC  
VBB generated from the device is connected to the negative input.  
The C1 capacitor should be located as close as possible to the input  
pin.  
C1  
0.1uF  
CLK_IN  
PCLK  
VBB  
nPCLK  
Figure 2. Single-Ended LVPECL Signal Driving  
Differential Input  
ICS853S6111AYI REVISION A FEBRUARY 6, 2013  
10  
©2013 Integrated Device Technology, Inc.  
ICS853S6111I Data Sheet  
LOW VOLTAGE, 1-TO-10 DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
3.3V LVPECL Clock Input Interface  
The PCLK /nPCLK accepts LVPECL, LVDS, CML, SSTL and other  
differential signals. Both signals must meet the VPP and VCMR input  
requirements. Figures 3A to 3F show interface examples for the  
PCLK/ nPCLK input driven by the most common driver types. The  
input interfaces suggested here are examples only. If the driver is  
from another vendor, use their termination recommendation. Please  
consult with the vendor of the driver component to confirm the driver  
termination requirements.  
3.3V  
3.3V  
3.3V  
o
o
= 50Ω  
= 50Ω  
3.3V  
3.3V  
PCLK  
PCLK  
R1  
100Ω  
nPCLK  
nPCLK  
LVPECL  
Input  
CML Built-In Pullup  
LVPECL  
Input  
CML  
Figure 3B. PCLK/nPCLK Input Driven by a  
Built-In Pullup CML Driver  
Figure 3A. PCLK/nPCLK Input Driven by a CML Driver  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
R4  
125Ω  
125Ω  
C1  
C2  
o
o
= 50Ω  
= 50Ω  
3.3V LVPECL  
o = 50Ω  
o = 50Ω  
PCLK  
PCLK  
VBB  
nPCLK  
LVPECL  
nPCLK  
Input  
LVPECL  
Input  
R5  
R6  
R1  
50Ω  
R2  
50Ω  
LVPECL  
100Ω - 200Ω 100Ω - 200Ω  
R1  
R2  
84Ω  
84Ω  
Figure 3D. PCLK/nPCLK Input Driven by a  
3.3V LVPECL Driver with AC Couple  
Figure 3C. PCLK/nPCLK Input Driven by a  
3.3V LVPECL Driver  
2.5V  
3.3V  
3.3V  
2.5V  
3.3V  
o
o
= 50Ω  
= 50Ω  
PCLK  
PCLK  
R1  
100Ω  
nPCLK  
nPCLK  
LVPECL  
Input  
SSTL  
LVPECL  
Input  
LVDS  
Figure 3E.PCLK/nPCLK Input Driven by an SSTL Driver  
Figure 3F. PCLK/nPCLK Input Driven by a  
3.3V LVDS Driver  
ICS853S6111AYI REVISION A FEBRUARY 6, 2013  
11  
©2013 Integrated Device Technology, Inc.  
ICS853S6111I Data Sheet  
LOW VOLTAGE, 1-TO-10 DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
2.5V LVPECL Clock Input Interface  
The PCLK /nPCLK accepts LVPECL, LVDS, CML, SSTL and other  
differential signals. Both signals must meet the VPP and VCMR input  
requirements. Figures 4A to 4F show interface examples for the  
PCLK/ nPCLK input driven by the most common driver types. The  
input interfaces suggested here are examples only. If the driver is  
from another vendor, use their termination recommendation. Please  
consult with the vendor of the driver component to confirm the driver  
termination requirements.  
3.3V  
2.5V  
2.5V  
3.3V  
o
o
= 50Ω  
= 50Ω  
3.3V  
PCLK  
PCLK  
R1  
100Ω  
nPCLK  
LVPECL  
Input  
nPCLK  
CML Built-In Pullup  
LVPECL  
CML  
Input  
Figure 4B. PCLK/nPCLK Input Driven by a  
Built-In Pullup CML Driver  
Figure 4A. PCLK/nPCLK Input Driven by a CML Driver  
2.5V  
2.5V  
2.5V  
2.5V  
2.5V  
R3  
R4  
250Ω  
250Ω  
C1  
C2  
o
o
= 50Ω  
= 50Ω  
2.5V LVPECL  
o = 50Ω  
o = 50Ω  
PCLK  
PCLK  
VBB  
nPCLK  
nPCLK  
LVPECL  
LVPECL  
Input  
Input  
R5  
R6  
R1  
50Ω  
R2  
50Ω  
LVPECL  
100Ω - 200Ω 100Ω - 200Ω  
R1  
R2  
62.5Ω  
62.5Ω  
Figure 4D. PCLK/nPCLK Input Driven by a  
Figure 4C. PCLK/nPCLK Input Driven by a  
2.5V LVPECL Driver  
2.5V LVPECL Driver with AC Couple  
2.5V  
2.5V  
2.5V  
2.5V  
2.5V  
R3  
R4  
o
o
= 50Ω  
= 50Ω  
120Ω  
120Ω  
o
o
= 60Ω  
= 60Ω  
PCLK  
PCLK  
R1  
100Ω  
nPCLK  
nPCLK  
LVPECL  
Input  
SSTL  
LVPECL  
Input  
LVDS  
R1  
R2  
120Ω  
120Ω  
Figure 4E.PCLK/nPCLK Input Driven by an SSTL Driver  
Figure 4F. PCLK/nPCLK Input Driven by a  
2.5V LVDS Driver  
ICS853S6111AYI REVISION A FEBRUARY 6, 2013  
12  
©2013 Integrated Device Technology, Inc.  
ICS853S6111I Data Sheet  
LOW VOLTAGE, 1-TO-10 DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
3.3V Differential Clock Input Interface  
The CLK /nCLK accepts LVDS, LVPECL, HSTL, SSTL, HCSL and  
other differential signals. Both differential signals must meet the VPP  
and VCMR input requirements. Figures 5A to 5F show interface  
examples for the CLK/nCLK input driven by the most common driver  
types. The input interfaces suggested here are examples only.  
Please consult with the vendor of the driver component to confirm the  
driver termination requirements. For example, in Figure 5A, the input  
termination applies for IDT open emitter HSTL drivers. If you are  
using an HSTL driver from another vendor, use their termination  
recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
o
o
= 50Ω  
= 50Ω  
CLK  
o = 50Ω  
CLK  
nCLK  
o = 50Ω  
Differential  
Input  
LVPECL  
nCLK  
R1  
50Ω  
R2  
50Ω  
Differential  
Input  
HSTL  
R1  
50Ω  
R2  
50Ω  
IDT  
HSTL Driver  
R2  
50Ω  
Figure 5A. CLK/nCLK Input Driven by an IDT Open  
Emitter HSTL Driver  
Figure 5B. CLK/nCLK Input Driven by a  
3.3V LVPECL Driver  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
R4  
3.3V  
125Ω  
125Ω  
o = 5 0Ω  
o = 50Ω  
o = 50Ω  
CLK  
CLK  
R1  
100Ω  
nCLK  
nCLK  
Differential  
Input  
o = 5 0Ω  
LVPECL  
Receiver  
LVDS  
R1  
84Ω  
R2  
84Ω  
Figure 5C. CLK/nCLK Input Driven by a  
3.3V LVPECL Driver  
Figure 5D. CLK/nCLK Input Driven by a 3.3V LVDS Driver  
2.5V  
3.3V  
3.3V  
3.3V  
2.5V  
R3  
R4  
120Ω  
120Ω  
o = 50 Ω  
*R3  
*R4  
33Ω  
33Ω  
o
o
= 60Ω  
= 60Ω  
CLK  
CLK  
o = 50 Ω  
nCLK  
nCLK  
Differential  
Input  
Differential  
Input  
SSTL  
HCSL  
R1  
50Ω  
R2  
50Ω  
R1  
120Ω  
R2  
120Ω  
*Optional – R3 and R4 can be 0Ω  
Figure 5E. CLK/nCLK Input Driven by a  
3.3V HCSL Driver  
Figure 5F. CLK/nCLK Input Driven by a SSTL Driver  
ICS853S6111AYI REVISION A FEBRUARY 6, 2013  
13  
©2013 Integrated Device Technology, Inc.  
ICS853S6111I Data Sheet  
LOW VOLTAGE, 1-TO-10 DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
2.5V Differential Clock Input Interface  
The CLK /nCLK accepts LVDS, LVPECL, HSTL, SSTL, HCSL and  
other differential signals. Both differential signals must meet the VPP  
and VCMR input requirements. Figures 6A to 6F show interface  
examples for the CLK/nCLK input driven by the most common driver  
types. The input interfaces suggested here are examples only.  
Please consult with the vendor of the driver component to confirm the  
driver termination requirements. For example, in Figure 6A, the input  
termination applies for IDT open emitter HSTL drivers. If you are  
using an HSTL driver from another vendor, use their termination  
recommendation.  
2.5V  
2.5V  
2.5V  
1.8V  
o
o
= 50  
= 50  
CLK  
o = 50Ω  
CLK  
nCLK  
o = 50Ω  
Differential  
Input  
LVPECL  
nCLK  
R1  
50  
R2  
50  
Differential  
Input  
HSTL  
R1  
50Ω  
R2  
50Ω  
IDT Open Emitter  
HSTL Driver  
R3  
18  
Figure 6A. CLK/nCLK Input Driven by an IDT Open  
Emitter HSTL Driver  
Figure 6B. CLK/nCLK Input Driven by a  
2.5V LVPECL Driver  
2.5V  
2.5V  
2.5V  
2.5V  
R3  
R4  
2.5V  
250  
250  
o
o
= 50  
= 50  
o = 50  
o = 50  
CLK  
CLK  
R1  
100  
nCLK  
nCLK  
Differential  
Input  
LVPECL  
Differential  
Input  
R1  
62.5  
R2  
62.5  
LVDS  
Figure 6C. CLK/nCLK Input Driven by a  
2.5V LVPECL Driver  
Figure 6D. CLK/nCLK Input Driven by a 2.5V LVDS Driver  
2.5V  
2.5V  
2.5V  
2.5V  
2.5V  
R5  
R7  
120Ω  
120Ω  
o = 50  
*R3  
*R4  
33  
33  
o
o
= 60Ω  
= 60Ω  
CLK  
CLK  
o = 50  
nCLK  
nCLK  
Differential  
Input  
Differential  
Input  
SSTL  
HCSL  
R1  
50  
R2  
50  
R6  
120Ω  
R8  
120Ω  
*Optional – R3 and R4 can be 0  
Figure 6E. CLK/nCLK Input Driven by a  
2.5V HCSL Driver  
Figure 6F. CLK/nCLK Input Driven by a SSTL Driver  
ICS853S6111AYI REVISION A FEBRUARY 6, 2013  
14  
©2013 Integrated Device Technology, Inc.  
ICS853S6111I Data Sheet  
LOW VOLTAGE, 1-TO-10 DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
Termination for 3.3V LVPECL Outputs  
The clock layout topology shown below is a typical termination for  
LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
transmission lines. Matched impedance techniques should be used  
to maximize operating frequency and minimize signal distortion.  
Figures 7A and 7B show two different layouts which are  
recommended only as guidelines. Other suitable clock layouts may  
exist and it would be recommended that the board designers  
simulate to guarantee compatibility across all printed circuit and clock  
component process variations.  
The differential outputs are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must be  
used for functionality. These outputs are designed to drive 50  
3.3V  
R3  
125Ω  
R4  
125Ω  
3.3V  
3.3V  
o = 50Ω  
+
3.3V  
3.3V  
o = 50Ω  
+
_
_
Input  
LVPECL  
o = 50Ω  
LVPECL  
Input  
o = 50Ω  
R1  
R2  
50Ω  
50Ω  
R1  
84Ω  
R2  
84Ω  
VCC - 2V  
1
RTT =  
*
RTT  
o
((VOH + VOL) / (VCC – 2)) – 2  
Figure 7A. 3.3V LVPECL Output Termination  
Figure 7B. 3.3V LVPECL Output Termination  
ICS853S6111AYI REVISION A FEBRUARY 6, 2013  
15  
©2013 Integrated Device Technology, Inc.  
ICS853S6111I Data Sheet  
LOW VOLTAGE, 1-TO-10 DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
Termination for 2.5V LVPECL Outputs  
Figure 8A and Figure 8B show examples of termination for 2.5V  
LVPECL driver.These terminations are equivalent to terminating 50  
to VCC – 2V. For VCC = 2.5V, the VCC – 2V is very close to ground  
level. The R3 in Figure 9B can be eliminated and the termination is  
shown in Figure 9C.  
2.5V  
VCC = 2.5V  
2.5V  
2.5V  
VCC = 2.5V  
50Ω  
R1  
R3  
250Ω  
250Ω  
+
50Ω  
50Ω  
50Ω  
+
2.5V LVPECL Driver  
R1  
R2  
50Ω  
50Ω  
2.5V LVPECL Driver  
R2  
R4  
62.5Ω  
62.5Ω  
R3  
18Ω  
Figure 8A. 2.5V LVPECL Driver Termination Example  
Figure 8B. 2.5V LVPECL Driver Termination Example  
2.5V  
VCC = 2.5V  
50Ω  
+
50Ω  
2.5V LVPECL Driver  
R1  
R2  
50Ω  
50Ω  
Figure 8C. 2.5V LVPECL Driver Termination Example  
ICS853S6111AYI REVISION A FEBRUARY 6, 2013  
16  
©2013 Integrated Device Technology, Inc.  
ICS853S6111I Data Sheet  
LOW VOLTAGE, 1-TO-10 DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
EPAD Thermal Release Path  
In order to maximize both the removal of heat from the package and  
the electrical performance, a land pattern must be incorporated on  
the Printed Circuit Board (PCB) within the footprint of the package  
corresponding to the exposed metal pad or exposed heat slug on the  
package, as shown in Figure 9. The solderable area on the PCB, as  
defined by the solder mask, should be at least the same size/shape  
as the exposed pad/slug area on the package to maximize the  
thermal/electrical performance. Sufficient clearance should be  
designed on the PCB between the outer edges of the land pattern  
and the inner edges of pad pattern for the leads to avoid any shorts.  
and dependent upon the package power dissipation as well as  
electrical conductivity requirements. Thus, thermal and electrical  
analysis and/or testing are recommended to determine the minimum  
number needed. Maximum thermal and electrical performance is  
achieved when an array of vias is incorporated in the land pattern. It  
is recommended to use as many vias connected to ground as  
possible. It is also recommended that the via diameter should be 12  
to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is  
desirable to avoid any solder wicking inside the via during the  
soldering process which may result in voids in solder between the  
exposed pad/slug and the thermal land. Precautions should be taken  
to eliminate any solder voids between the exposed heat slug and the  
land pattern. Note: These recommendations are to be used as a  
guideline only. For further information, refer to the Application Note  
on the Surface Mount Assembly of Amkor’s Thermally/Electrically  
Enhance Leadframe Base Package, Amkor Technology.  
While the land pattern on the PCB provides a means of heat transfer  
and electrical grounding from the package to the board through a  
solder joint, thermal vias are necessary to effectively conduct from  
the surface of the PCB to the ground plane(s). The land pattern must  
be connected to ground through these vias. The vias act as “heat  
pipes”. The number of vias (i.e. “heat pipes”) are application specific  
SOLDER  
SOLDER  
SOLDER  
EXPOSED HEAT SLUG  
PIN  
PIN  
LAND PATTERN  
(GROUND PAD)  
PIN PAD  
GROUND PLANE  
PIN PAD  
THERMAL VIA  
Figure 9. Assembly for Exposed Pad Thermal Release Path - Side View (drawing not to scale)  
ICS853S6111AYI REVISION A FEBRUARY 6, 2013  
17  
©2013 Integrated Device Technology, Inc.  
ICS853S6111I Data Sheet  
LOW VOLTAGE, 1-TO-10 DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
Power Considerations  
This section provides information on power dissipation and junction temperature for the ICS853S6111I.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS853S6111I is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 100mA = 346.5mW  
Power (outputs)MAX = 33.2mW/Loaded Output pair  
If all outputs are loaded, the total power is 10 * 33.2mW = 332mW  
Total Power_MAX (3.465V, with all outputs switching) = 346.5W + 332mW = 678.5W  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The  
maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond  
wire and bond pad temperature remains below 125°C.  
The equation for Tj is as follows: Tj = JA * Pd_total + TA  
Tj = Junction Temperature  
JA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance JA must be used. Assuming no air flow and  
a multi-layer board, the appropriate value is 40.2°C/W per Table 7 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.679 W * 40.2°C/W = 112.3°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of  
board (multi-layer).  
Table 7. Thermal Resistance JA for 32 Lead TQFP, EPad, Forced Convection  
JA by Velocity  
0
Meters per Second  
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
40.2°C/W  
35.1°C/W  
33.9°C/W  
ICS853S6111AYI REVISION A FEBRUARY 6, 2013  
18  
©2013 Integrated Device Technology, Inc.  
ICS853S6111I Data Sheet  
LOW VOLTAGE, 1-TO-10 DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
3. Calculations and Equations.  
The purpose of this section is to calculate the power dissipation for the LVPECL output pair.  
LVPECL output driver circuit and termination are shown in Figure 10.  
VCC  
Q1  
VOUT  
RL  
VCC - 2V  
Figure 10. LVPECL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination voltage of  
VCC – 2V.  
For logic high, VOUT = VOH_MAX = VCC_MAX – 0.7V  
(VCC_MAX – VOH_MAX) = 0.7V  
For logic low, VOUT = VOL_MAX = VCC_MAX – 1.5V  
(VCC_MAX – VOL_MAX) = 1.5V  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = [(VOH_MAX – (VCC_MAX – 2V))/RL] * (VCC_MAX – VOH_MAX) = [(2V – (VCC_MAX – VOH_MAX))/RL] * (VCC_MAX– VOH_MAX) =  
[(2V – 0.7V)/50] * 0.7V = 18.2mW  
Pd_L = [(VOL_MAX – (VCC_MAX– 2V))/RL] * (VCC_MAX – VOL_MAX) = [(2V – (VCC_MAX – VOL_MAX))/RL] * (VCC_MAX– VOL_MAX) =  
[(2V – 1.5V)/50] * 1.5V = 15mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 33.2mW  
ICS853S6111AYI REVISION A FEBRUARY 6, 2013  
19  
©2013 Integrated Device Technology, Inc.  
ICS853S6111I Data Sheet  
LOW VOLTAGE, 1-TO-10 DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
Reliability Information  
Table 8. JA vs. Air Flow Table for a 32 Lead TQFP, E-Pad  
JA vs. Air Flow  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
40.2°C/W  
35.1°C/W  
33.9°C/W  
Transistor Count  
The transistor count for ICS853S6111I is: 450  
ICS853S6111AYI REVISION A FEBRUARY 6, 2013  
20  
©2013 Integrated Device Technology, Inc.  
ICS853S6111I Data Sheet  
LOW VOLTAGE, 1-TO-10 DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
Package Outline and Package Dimensions  
Package Outline - G Suffix for 32 Lead TQFP, E-Pad  
-HD VERSION  
EXPOSED PAD DOWN  
0.20  
TAB  
-TAB, EXPOSED PART OF CONNECTION BAR OR TIE BAR  
Table 9. Package Dimensions 32 Lead TQFP, E-Pad  
JEDEC Variation: ABC - HD  
All Dimensions in Millimeters  
Symbol  
Minimum  
Nominal  
Maximum  
N
32  
A
1.20  
0.15  
1.05  
0.40  
0.20  
A1  
0.05  
0.95  
0.30  
0.09  
0.10  
1.00  
0.35  
A2  
b
c
D & E  
D1 & E1  
D2 & E2  
D3 & E3  
e
9.00 Basic  
7.00 Basic  
5.60 Ref.  
3.0  
4.0  
0.80 Basic  
0.60  
L
0.45  
0°  
0.75  
7°  
ccc  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
ICS853S6111AYI REVISION A FEBRUARY 6, 2013  
21  
©2013 Integrated Device Technology, Inc.  
ICS853S6111I Data Sheet  
LOW VOLTAGE, 1-TO-10 DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
Ordering Information  
Table 10. Ordering Information  
Part/Order Number  
853S6111AYILF  
853S6111AYILFT  
Marking  
ICS3S6111AIL  
ICS3S6111AIL  
Package  
“Lead-Free” 32 Lead TQFP, E-Pad  
“Lead-Free” 32 Lead TQFP, E-Pad  
Shipping Packaging  
Tube  
Temperature  
-40C to 85C  
-40C to 85C  
Tape & Reel  
ICS853S6111AYI REVISION A FEBRUARY 6, 2013  
22  
©2013 Integrated Device Technology, Inc.  
ICS853S6111I Data Sheet  
LOW VOLTAGE, 1-TO-10 DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
Revision History Sheet  
Rev  
Table  
Page  
Description of Change  
Product Discontinuance Notice – Last Time Buy Expires on (1/31/2014)  
Date  
5
1
2/6/2013  
ICS853S6111AYI REVISION A FEBRUARY 6, 2013  
23  
©2013 Integrated Device Technology, Inc.  
ICS853S6111I Data Sheet  
LOW VOLTAGE, 1-TO-10 DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
We’ve Got Your Timing Solution  
6024 Silver Creek Valley Road Sales  
Technical Support  
netcom@idt.com  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA) +480-763-2056  
Fax: 408-284-2775  
San Jose, California 95138  
www.IDT.com/go/contactIDT  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in this document,  
including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not  
guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the  
suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any  
license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to signifi-  
cantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third  
party owners.  
Copyright 2013. All rights reserved.  

相关型号:

853S6111AYILFT

PTQFP-32, Reel
IDT

853S9252BKILF

2.5V, 3.3V ECL/LVPECL Clock/Data Fanout Buffer
IDT

853S9252BKILF/W

2.5V, 3.3V ECL/LVPECL Clock/Data Fanout Buffer
IDT

853S9252BKILFT

2.5V, 3.3V ECL/LVPECL Clock/Data Fanout Buffer
IDT

853X10

SCHRAUBE LINSE SCHLITZ M3 10MM Inhalt pro Packung: 100 Stk.
ETC

853X12

SCHRAUBE LINSE SCHLITZ M3 12MM Inhalt pro Packung: 100 Stk.
ETC

853X16

SCHRAUBE LINSE SCHLITZ M3 16MM Inhalt pro Packung: 100 Stk.
ETC

853X20

SCHRAUBE LINSE SCHLITZ M3 20MM Inhalt pro Packung: 100 Stk.
ETC

853X25

SCHRAUBE LINSE SCHLITZ M3 25MM Inhalt pro Packung: 100 Stk.
ETC

853X30

SCHRAUBE LINSE SCHLITZ M3 30MM Inhalt pro Packung: 100 Stk.
ETC

853X6

SCHRAUBE LINSE SCHLITZ M3 6MM Inhalt pro Packung: 100 Stk.
ETC

854-001-01

Crimp Quadrax Pin and Socket Contacts
GLENAIR