85401AKLFT [IDT]

Multiplexer, 85401 Series, 1-Func, 2 Line Input, 1 Line Output, Complementary Output, 3 X 3 MM, 0.95 MM HEIGHT, LEAD FREE, MO-220, VQFN-16;
85401AKLFT
型号: 85401AKLFT
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Multiplexer, 85401 Series, 1-Func, 2 Line Input, 1 Line Output, Complementary Output, 3 X 3 MM, 0.95 MM HEIGHT, LEAD FREE, MO-220, VQFN-16

逻辑集成电路
文件: 总16页 (文件大小:701K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2:1 DIFFERENTIAL-TO-LVDS MULTIPLEXER  
ICS85401  
Description  
Features  
The ICS85401 is a high performance 2:1  
2:1 LVDS MUX  
S
IC  
Differential-to-LVDS Multiplexer and a member of  
the HiPerClockS™family of High Performance Clock  
Solutions from ICS. The ICS85401 can also perform  
differential translation because the differ-ential  
One LVDS output pair  
HiPerClockS™  
Two differential clock inputs can accept: LVPECL, LVDS, CML  
Maximum input/output frequency: 2.5GHz  
inputs accept LVPECL, CML as well as LVDS levels.  
The ICS85401 is packaged in a small 3mm x 3mm  
16 VFQFN package, making it ideal for use on space constrained  
boards.  
Translates LVCMOS/LVTTL input signals to LVDS levels by  
using a resistor bias network on nCLK0, nCLK1  
Propagation delay: 460ps (maximum)  
Part-to-part skew: 100ps (maximum)  
Full 3.3V supply mode  
-40°C to 85°C ambient operating temperature  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
Block Diagram  
Pin Assignment  
Pulldown  
CLK0  
0
Pullup/Pulldown  
CLK0  
Q
Q
16 15 14 13  
1
2
3
CLK0  
CLK0  
CLK1  
CLK1  
12  
11  
10  
GND  
Q
Pulldown  
CLK1  
Pullup/Pulldown  
1
CLK1  
Q
4
GND  
9
5
6
7
8
Pulldown  
CLK_SEL  
ICS85401  
16-Lead VFQFN  
3mm x 3mm x 0.95mm  
package body  
K Package  
Top View  
IDT™ / ICS™ LVDS MULTIPLEXER  
1
ICS85401AK REV. A MARCH 6, 2007  
ICS85401  
2:1 DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Table 1. Pin Descriptions  
Number  
Name  
Type  
Description  
1
CLK0  
Input  
Input  
Pulldown Non-inverting differential clock input.  
Pullup/  
2
CLK0  
CLK1  
CLK1  
nc  
Inverting differential clock input. VDD/2 default when left floating.  
Pulldown  
3
4
Input  
Pulldown Non-inverting differential clock input.  
Pullup/  
Input  
Inverting differential clock input. VDD/2 default when left floating.  
Pulldown  
5, 7, 16  
Unused  
No connect.  
Clock select input. When HIGH, selects CLK1, CLK1 inputs.  
Pulldown When LOW, selects CLK0, CLK0 inputs.  
LVCMOS / LVTTL interface levels.  
6
CLK_SEL  
Input  
8, 13  
9, 12, 14, 15  
10, 11  
VDD  
GND  
Q, Q  
Power  
Power  
Output  
Power supply pins.  
Power supply ground.  
Differential output pair. LVDS interface levels.  
NOTE: Pullup and Pulldown refer to intenal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
1
RPULLUP  
37  
37  
k  
RPULLDOWN Input Pulldown Resistor  
kΩ  
Function Tables  
Table 3. Control Input Function Table  
Input  
CLK_OUT  
CLK  
CLK_SEL  
0
1
CLK0, CLK0  
CLK1, CLK1  
IDT™ / ICS™ LVDS MULTIPLEXER  
2
ICS85401AK REV. A MARCH 6, 2007  
ICS85401  
2:1 DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characterisitcs is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VDD  
Inputs, VI  
4.6V  
-0.5V to VDD + 0.5V  
Outputs, IO  
Continous Current  
Surge Current  
10mA  
15mA  
Package Thermal Impedance, θJA  
51.5°C/W (0 lfpm)  
-65°C to 150°C  
Storage Temperature, TSTG  
DC Electrical Characteristics  
Table 4A. Power Supply DC Characteristics, VDD = 3.3V 5%, TA = -40°C to 85°C  
Symbol Parameter  
VDD Positive Supply Voltage  
IDD Power Supply Current  
Test Conditions  
Minimum  
Typical  
Maximum  
3.465  
40  
Units  
V
3.135  
3.3  
mA  
Table 4B. LVCMOS/LVTTL DC Characteristics, VDD = 3.3V 5%, TA = -40°C to 85°C  
Symbol  
VIH  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
VDD + 0.3  
0.8  
Units  
V
Input High Voltage  
Input Low Voltage  
Input High Current  
Input Low Current  
2
VIL  
-0.3  
V
IIH  
CLK_SEL  
CLK_SEL  
VDD = VIN = 3.465V  
150  
µA  
µA  
IIL  
VDD = 3.465V, VIN = 0V  
-150  
Table 4C. Differential DC Characteristics, VDD = 3.3V 5%, TA = -40°C to 85°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
150  
Units  
µA  
CLK0, CLK1  
CLK0, CLK  
VDD = VIN = 3.465V  
IIH  
Input High Current  
VDD = VIN = 3.465V  
150  
µA  
V
DD = 3.465V,  
CLK0, CLK1  
CLK0, CLK  
-150  
-150  
µA  
µA  
VIN = 0V  
IIL  
Input Low Current  
VDD = 3.465V,  
VIN = 0V  
VPP  
Peak-to-Peak Voltage  
0.15  
1.2  
0.8  
1.2  
V
V
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
VDD  
NOTE 1: Common mode input voltage is defined as VIH.  
NOTE 2: For single-ended applications, the maximum input voltage for CLKx, CLKx is VDD + 0.3V.  
IDT™ / ICS™ LVDS MULTIPLEXER  
3
ICS85401AK REV. A MARCH 6, 2007  
ICS85401  
2:1 DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Table 4D. LVDS DC Characteristics, VDD = 3.3V 5%, TA = -40°C to 85°C  
Symbol  
VOD  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
500  
Units  
mV  
mV  
V
Differential Output Voltage  
VOD Magnitude Change  
Offset Voltage  
200  
350  
VOD  
VOS  
50  
1.05  
1.15  
1.25  
50  
VOS  
VOS Magnitude Change  
mV  
AC Electrical Characteristics  
Table 5. AC Characteristics, VDD = 3.3V 5%, TA = -40°C to 85°C  
Parameter  
fMAX  
Symbol  
Test Conditions  
Minimum Typical Maximum  
Units  
Output Frequency  
>2.5  
GHz  
ps  
tPD  
Propagation Delay; NOTE 1  
Part-to-Part Skew; NOTE 2, 3  
Output Rise/Fall Time  
Output Duty Cycle  
260  
360  
160  
-55  
460  
100  
200  
51  
tsk(pp)  
tR / tF  
odc  
ps  
20% to 80%  
125  
49  
ps  
%
MUX_ISOLATION MUX Isolation  
All parameters measured at £ 1GHz unless otherwise noted.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltages and  
with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.Typical Phase Noise at 156.25MHz  
IDT™ / ICS™ LVDS MULTIPLEXER  
4
ICS85401AK REV. A MARCH 6, 2007  
ICS85401  
2:1 DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Parameter Measurement Information  
V
DD  
,
SCOPE  
CLK0,  
CLK1  
Qx  
V
DD  
3.3V 5%  
POWER SUPPLY  
VPP  
VCMR  
Cross Points  
+
Float GND –  
LVDS  
CLK0,  
CLK1  
nQx  
GND  
3.3V LVDS Output Load AC Test Circuit  
Differential Input Level  
CLK0,  
CLK1  
Qx  
Part 1  
Qx  
CLK0,  
CLK1  
Q
Qy  
Part 1  
Q
Qy  
tPD  
tsk(pp)  
Part-to-Part Skew  
Propagation Delay  
Q
Q
tPW  
80%  
tF  
80%  
tPERIOD  
VOD  
Clock  
20%  
20%  
tPW  
Outputs  
odc =  
x 100%  
tR  
tPERIOD  
Output Duty Cycle/Pulse Width/Period  
Output Rise/Fall Time  
IDT™ / ICS™ LVDS MULTIPLEXER  
5
ICS85401AK REV. A MARCH 6, 2007  
ICS85401  
2:1 DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Parameter Measurement Information, continued  
VDD  
VDD  
out  
out  
out  
out  
DC Input  
LVDS  
LVDS  
DC Input  
100  
V
OD/VOD  
VOS/VOS  
Offset Voltage Setup  
Differential Output Voltage Setup  
Application Information  
Wiring the Differential Input to Accept Single Ended Levels  
Figure 1 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = VDD/2 is  
generated by the bias resistors R1, R2 and C1. This bias circuit  
should be located as close as possible to the input pin. The ratio of  
R1 and R2 might need to be adjusted to position the V_REF in the  
center of the input voltage swing. For example, if the input clock  
swing is only 2.5V and VDD = 3.3V, V_REF should be 1.25V and  
VDD  
R1  
1K  
Single Ended Clock Input  
R2/R1 = 0.609.  
CLKx  
V_REF  
nCLKx  
C1  
0.1u  
R2  
1K  
Figure 1. Single-Ended Signal Driving Differential Input  
IDT™ / ICS™ LVDS MULTIPLEXER  
6
ICS85401AK REV. A MARCH 6, 2007  
ICS85401  
2:1 DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Differential Clock Input Interface  
The CLKx /CLKx accepts LVPECL, LVDS, CML and other  
differential signals. The signal must meet the VPP and VCMR input  
requirements. Figures 2A to 2E show interface examples for the  
HiPerClockS CLKx/CLKx input driven by the most common driver  
types. The input interfaces suggested here are examples only. If  
the driver is from another vendor, use their termination  
recommendation. Please consult with the vendor of the driver  
component to confirm the driver termination requirements.  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50  
R1  
50  
R2  
50  
Zo = 50Ω  
Zo = 50Ω  
CLK  
CLK  
R1  
100  
nCLK  
Zo = 50Ω  
nCLK  
HiPerClockS  
CML Built-In Pullup  
HiPerClockS  
CML  
Figure 2A. HiPerClockS CLK/CLK Input Driven by an  
IDT Open Collector CML Driver  
Figure 2B. HiPerClockS CLK/CLK Input  
Driven by a Built-In Pullup CML Driver  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
R4  
125  
125  
Zo = 50Ω  
Zo = 50Ω  
C1  
C2  
Zo = 50Ω  
Zo = 50Ω  
3.3V LVPECL  
CLK  
CLK  
nCLK  
nCLK  
HiPerClockS  
HiPerClockS  
LVPECL  
R5  
100 - 200  
R6  
100 - 200  
R1  
125  
R2  
125  
R1  
84  
R2  
84  
Figure 2C. HiPerClockS CLK/CLK Input  
Figure 2D. HiPerClockS CLK/CLK Input Driven by  
a 3.3V LVPECL Driver with AC Couple  
Driven by a 3.3V LVPECL Driver  
3.3V  
3.3V  
Zo = 50Ω  
CLK  
R1  
100  
nCLK  
Zo = 50Ω  
HiPerClockS  
LVDS  
Figure 2E. HiPerClockS CLK/CLK Input Driven by  
a 3.3V LVDS Drive  
IDT™ / ICS™ LVDS MULTIPLEXER  
7
ICS85401AK REV. A MARCH 6, 2007  
ICS85401  
2:1 DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Recommendations for Unused Input Pins  
Inputs:  
CLK/CLK Inputs:  
For applications not requiring the use of the differential input, both  
CLK and CLK can be left floating. Though not required, but for  
additional protection, a 1kW resistor can be tied from CLK to  
ground.  
Application Schematic Example  
Figure 3 shows an example of ICS85401 application schematic.  
This device can accept different types of input signal. In this  
example, the input is driven by a LVDS driver. The decoupling  
capacitor should be located as close as possible to the power pin.  
3.3V  
C1  
0.1u  
3.3V  
Zo = 50  
R2  
100  
Zo = 50  
1
2
3
4
12  
11  
10  
9
Zo = 50  
CLK0  
GND  
Q
nCLK0  
CLK1  
+
LVDS  
nQ  
R1  
nCLK1  
GND  
Zo = 50  
100  
-
3.3V  
U1  
ICS85401  
Zo = 50  
3.3V  
R3  
100  
R4  
1K  
C2  
Zo = 50  
0.1u  
LVDS  
Figure 3. ICS85401 Application Schematic Example  
IDT™ / ICS™ LVDS MULTIPLEXER  
8
ICS85401AK REV. A MARCH 6, 2007  
ICS85401  
2:1 DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Thermal Release Path  
The expose metal pad provides heat transfer from the device to the  
P.C. board. The expose metal pad is ground pad connected to  
ground plane through thermal via. The exposed pad on the device  
to the exposed metal pad on the PCB is contacted through solder  
as shown in Figure 4. For further information, please refer to the  
Application Note on Surface Mount Assembly of Amkor’s  
Thermally /Electrically Enhance Leadframe Base Package, Amkor  
Technology.  
EXPOSED PAD  
SOLDER  
SOLDER MASK  
SIGNAL  
TRACE  
SIGNAL  
TRACE  
GROUND PLANE  
Expose Metal Pad  
(GROUND PAD)  
THERMAL VIA  
Figure 4. P.C. Board for Exposed Pad Thermal Release Path Example  
3.3V LVDS Driver Termination  
A general LVDS interface is shown in Figure 5 In a 100differential  
transmission line environment, LVDS drivers require a matched  
load termination of 100across near the receiver input. For a  
multiple LVDS outputs buffer, if only partial outputs are used, it is  
recommended to terminate the unused outputs.  
3.3V  
50Ω  
3.3V  
LVDS Driver  
+
R1  
100Ω  
50Ω  
100Differential Transmission Line  
Figure 5. Tyical LVDS Driver Termination  
IDT™ / ICS™ LVDS MULTIPLEXER  
9
ICS85401AK REV. A MARCH 6, 2007  
ICS85401  
2:1 DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Power Considerations  
This section provides information on power dissipation and junction temperature for the ICS85401.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS85401 is the sum of the core power plus the analog power plus the power dissipated in the load(s).  
The following is the power dissipation for VDD = 3.3V + 5% = 3.465V, which gives worst case results.  
Power_MAX = VDD_MAX * IDD_MAX = 3.465V * 40mA = 138.6mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device.  
The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming no air flow  
and a multi-layer board, the appropriate value is 51.5°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.139W * 51.5°C/W = 92.2°C. This iswell below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type  
of board (single layer or multi-layer).  
Table 6. Thermal Resitance θJA for 16 Lead VFQFN, Forced Convection  
θJA by Velocity  
Linear Feet per Minute  
0
Multi-Layer PCB, JEDEC Standard Test Boards  
51.5°C/W  
IDT™ / ICS™ LVDS MULTIPLEXER  
10  
ICS85401AK REV. A MARCH 6, 2007  
ICS85401  
2:1 DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Reliability Information  
Table 7. θJA vs. Air Flow Table for a 16 Lead VFQFN  
θJA by Velocity  
Linear Feet per Minute  
0
Multi-Layer PCB, JEDEC Standard Test Boards  
51.5°C/W  
Transistor Count  
The transistor count for ICS85401 is: 132  
IDT™ / ICS™ LVDS MULTIPLEXER  
11  
ICS85401AK REV. A MARCH 6, 2007  
ICS85401  
2:1 DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Package Outline and Package Dimension  
Package Outline - K Suffix for 16 Lead VFQFN  
(Ref.)  
Seating Plane  
N & N  
(N -1)x e  
(Ref.)  
Even  
A1  
IndexArea  
L
A3  
E2  
e
2
N
N
(Ty p.)  
If N & N  
are Even  
Anvil  
Singulation  
1
2
(N -1)x e  
OR  
(Ref.)  
E2  
2
TopView  
D
b
(Ref.)e  
N & N  
Odd  
Thermal  
Base  
A
D2  
2
0. 08  
C
Chamfer 4x  
0.6 x 0.6 max  
OPTIONAL  
D2  
C
Table 8. Package Dimensions  
JEDEC Variation: VEED-2/-4  
All Dimensions in Millimeters  
Symbol  
Minimum  
Maximum  
N
16  
A
0.80  
0
1.00  
0.05  
A1  
A3  
0.25 Ref.  
b
ND & NE  
D & E  
D2 & E2  
e
0.18  
0.30  
4
3.00 Basic  
1.00  
0.30  
1.80  
0.50 Basic  
L
0.50  
Reference Document: JEDEC Publication 95, MO-220  
IDT™ / ICS™ LVDS MULTIPLEXER  
12  
ICS85401AK REV. A MARCH 6, 2007  
ICS85401  
2:1 DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Ordering Information  
Table 9. Ordering Information  
Part/Order Number  
85401AK  
85401AKT  
85401AKLF  
85401AKLFT  
Marking  
401A  
401A  
01AL  
01AL  
Package  
16 Lead VFQFN  
16 Lead VFQFN  
Shipping Packaging  
Tube  
2500 Tape & Reel  
Tube  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
“Lead-Free” 16 Lead VFQFN  
“Lead-Free” 16 Lead VFQFN  
2500 Tape & Reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for  
the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications, such as those requiring high reliability or other extraordinary environmental requirements are not  
recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT  
product for use in life support devices or critical medical instruments.  
IDT™ / ICS™ LVDS MULTIPLEXER  
13  
ICS85401AK REV. A MARCH 6, 2007  
ICS85401  
2:1 DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Revision History Sheet  
Rev  
A
Table  
Page  
8
Description of Change  
Date  
Add Schematic Layout.  
8/23/04  
11/17/04  
2/22/05  
A
T8  
10  
1
Corrected count in Ordering Information Table.  
Pin Assignment - corrected label on pin 2.  
A
T8  
1
Features section - added Lead-Free bullet.  
A
A
11  
Ordering Information Table - corrected Shipping Packaging from Tray to  
Tube, and added Lead-Free part number and note.  
3/14/06  
3/6/07  
7
10  
13  
Corrected Differential Clock Input Interface.  
Added Power Considerations Section.  
Ordering Information Table - added Lead-Free marking.  
Updated format throughout the datasheet.  
T9  
IDT™ / ICS™ LVDS MULTIPLEXER  
14  
ICS85401AK REV. A MARCH 6, 2007  
ICS85401  
2:1 DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Innovate with IDT and accelerate your future networks. Contact:  
www.IDT.com  
For Sales  
800-345-7015  
408-284-8200  
Fax: 408-284-2775  
For Tech Support  
netcom@idt.com  
480-763-2056  
Corporate Headquarters  
Integrated Device Technology, Inc.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Asia Pacific and Japan  
Integrated Device Technology  
Singapore (1997) Pte. Ltd.  
Reg. No. 199707558G  
435 Orchard Road  
Europe  
IDT Europe, Limited  
321 Kingston Road  
Leatherhead, Surrey  
KT22 7TU  
United States  
800 345 7015  
+408 284 8200 (outside U.S.)  
#20-03 Wisma Atria  
Singapore 238877  
+65 6 887 5505  
England  
+44 (0) 1372 363 339  
Fax: +44 (0) 1372 378851  
© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device  
Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered  
trademarks used to identify products or services of their respective owners.  
Printed in USA  
www.IDT.com  
ICS85401  
2:1 DIFFERENTIAL-TO-LVDS MULTIPLEXER  
IDT™ / ICS™ LVDS MULTIPLEXER  
16  
ICS85401AK REV. A MARCH 6, 2007  

相关型号:

85401AKT

Multiplexer And Demux/Decoder, PQCC16
IDT

8540200000

Mini Coupler / Mini Conditioner
WEIDMULLER

8540210000

Mini Coupler / Mini Conditioner
WEIDMULLER

8540230000

Mini Coupler / Mini Conditioner
WEIDMULLER

8540240000

Mini Coupler / Mini Conditioner
WEIDMULLER

8540250000

Mini Coupler / Mini Conditioner
WEIDMULLER

8540260000

Mini Coupler / Mini Conditioner
WEIDMULLER

8540270000

Mini Coupler / Mini Conditioner
WEIDMULLER

8540280000

Mini Coupler / Mini Conditioner
WEIDMULLER

8540290000

Mini Coupler / Mini Conditioner
WEIDMULLER

85403-72

Strip Terminal Block
MOLEX

8540300000

Mini Coupler / Mini Conditioner
WEIDMULLER