8725AY-01LFT [IDT]

PLL Based Clock Driver, 8725 Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026, LQFP-32;
8725AY-01LFT
型号: 8725AY-01LFT
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

PLL Based Clock Driver, 8725 Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026, LQFP-32

文件: 总16页 (文件大小:229K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS8725-01  
1:5 DIFFERENTIAL-TO-HSTL  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
GENERAL DESCRIPTION  
FEATURES  
The ICS8725-01 is a highly versatile 1:5 Dif- Five differential HSTL outputs  
ICS  
HiPerClockS™  
ferential-to-HSTL clock generator and a  
Selectable differential CLKx, nCLKx input pairs  
member of the HiPerClockS™ family of High  
Performance Clock Solutions from ICS. The  
ICS8725-01 has a fully integrated PLL and can  
CLKx, nCLKx pairs can accept the following differential  
input levels: LVPECL, LVDS, HSTL, SSTL, HCSL  
be configured as zero delay buffer, multiplier or divider,  
and has an output frequency range of 31.25MHz to  
700MHz. The reference divider, feedback divider and out-  
put divider are each programmable, thereby allowing for  
the following output-to-input frequency ratios: 8:1, 4:1, 2:1,  
1:1, 1:2, 1:4, 1:8. The external feedback allows the device  
to achieve “zero delay” between the input clock and the  
output clocks. The PLL_SEL pin can be used to bypass the  
PLL for system test and debug purposes. In bypass mode,  
the reference clock is routed around the PLL and into the  
internal output dividers.  
Output frequency range: 31.25MHz to 700MHz  
Input frequency range: 31.25MHz to 700MHz  
VCO range: 250MHz to 700MHz  
External feedback for “zero delay” clock regeneration  
with configurable frequencies  
Programmable dividers allow for the following output-to-input  
frequency ratios: 8:1, 4:1, 2:1, 1:1, 1:2, 1:4, 1:8  
Static phase offset: 100ps  
Cycle-to-cycle jitter: 25ps  
Output skew: 25ps  
3.3V core, 1.8V output operating supply  
0°C to 70°C ambient operating temperature  
Available in both standard and lead-free RoHS-compliant  
packages  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
PLL_SEL  
Q0  
nQ0  
Q1  
nQ1  
÷1, ÷2, ÷4, ÷8,  
÷16, ÷32,÷64  
32 31 30 29 28 27 26 25  
0
1
CLK0  
nCLK0  
Q2  
nQ2  
0
1
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
SEL0  
SEL1  
VDDO  
Q3  
CLK1  
nCLK1  
Q3  
nQ3  
CLK0  
nQ3  
Q2  
PLL  
nCLK0  
CLK1  
Q4  
nQ4  
ICS8725-01  
10 11 12 13 14 15 16  
32-Lead LQFP  
CLK_SEL  
nQ2  
Q1  
8:1, 4:1, 2:1, 1:1,  
1:2, 1:4, 1:8  
nCLK1  
CLK_SEL  
FB_IN  
nFB_IN  
nQ1  
VDDO  
MR  
9
SEL0  
SEL1  
SEL2  
SEL3  
MR  
7mm x 7mm x 1.4mm package body  
Y Package  
TopView  
8725AY-01  
www.icst.com/products/hiperclocks.html  
REV.B NOVEMBER 15, 2005  
1
ICS8725-01  
1:5 DIFFERENTIAL-TO-HSTL  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
1, 2,  
12, 29  
SEL0, SEL1,  
SEL2, SEL3  
Determines output divider values in Table 3.  
LVCMOS/LVTTL interface levels.  
Input Pulldown  
3
4
5
6
CLK0  
nCLK0  
CLK1  
Input Pulldown Non-inverting differential clock input.  
Input Pullup Inverting differential clock input.  
Input Pulldown Non-inverting differential clock input.  
nCLK1  
Input  
Pullup Inverting differential clock input.  
Clock select input. When HIGH, selects CLK1, nCLK1.  
7
CLK_SEL  
MR  
Input Pulldown  
When LOW, selects CLK0, nCLK0. LVCMOS/LVTTL interface levels.  
Active HIGH Master Reset. When logic HIGH, the internal dividers are reset  
causing the true outputs Qx to go low and the inverted outputs nQx to go  
high. When logic LOW, the internal dividers and the outputs are enabled.  
LVCMOS/LVTTL interface levels.  
8
Input Pulldown  
Power  
9, 32  
10  
VDD  
Core supply pins.  
nFB_IN  
FB_IN  
GND  
Input  
Pullup  
Feedback input to phase detector for regenerating clocks with "zero delay".  
11  
Input Pulldown Feedback input to phase detector for regenerating clocks with "zero delay".  
13, 28  
14, 15  
Power  
Output  
Power supply ground.  
nQ0, Q0  
Differential output pair. HSTL interface levels.  
16, 17,  
24, 25  
VDDO  
Power  
Output supply pins.  
18, 19  
20, 21  
22, 23  
26, 27  
30  
nQ1, Q1  
nQ2, Q2  
nQ3, Q3  
nQ4, Q4  
VDDA  
Output  
Output  
Output  
Output  
Power  
Differential output pair. HSTL interface levels.  
Differential output pair. HSTL interface levels.  
Differential output pair. HSTL interface levels.  
Differential output pair. HSTL interface levels.  
Analog supply pin.  
Selects between the PLL and reference clock as the input to the dividers.  
When LOW, selects reference clock. When HIGH, selects PLL.  
LVCMOS/LVTTL interface levels.  
31  
PLL_SEL  
Input  
Pullup  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
4
RPULLUP  
51  
51  
kΩ  
RPULLDOWN Input Pulldown Resistor  
kΩ  
8725AY-01  
www.icst.com/products/hiperclocks.html  
REV.B NOVEMBER 15, 2005  
2
ICS8725-01  
1:5 DIFFERENTIAL-TO-HSTL  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
TABLE 3A. CONTROL INPUT FUNCTION TABLE  
Outputs  
Inputs  
SEL0  
PLL_SEL = 1  
PLL Enable Mode  
Q0:Q4, nQ0:nQ4  
SEL3  
SEL2  
SEL1  
Reference Frequency Range (MHz)*  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
250 - 700  
125 - 350  
62.5 - 175  
31.25 - 87.5  
250 - 700  
125 - 350  
62.5 - 175  
250 - 700  
125 - 350  
250 - 700  
125 - 350  
62.5 - 175  
31.25 - 87.5  
62.5 - 175  
31.25 - 87.5  
31.25 - 87.5  
÷ 1  
÷ 1  
÷ 1  
÷ 1  
÷ 2  
÷ 2  
÷ 2  
÷ 4  
÷ 4  
÷ 8  
x 2  
x 2  
x 2  
x 4  
x 4  
x 8  
*NOTE: VCO frequency range for all configurations above is 250MHz to 700MHz.  
TABLE 3B. PLL BYPASS FUNCTION TABLE  
Inputs  
Outputs  
PLL_SEL = 0  
PLL Bypass Mode  
SEL3  
SEL2  
SEL1  
SEL0  
Q0:Q4, nQ0:nQ4  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
÷ 4  
÷ 4  
÷ 4  
÷ 8  
÷ 8  
÷ 8  
÷ 16  
÷ 16  
÷ 32  
÷ 64  
÷ 2  
÷ 2  
÷ 4  
÷ 1  
÷ 2  
÷ 1  
8725AY-01  
www.icst.com/products/hiperclocks.html  
REV.B NOVEMBER 15, 2005  
3
ICS8725-01  
1:5 DIFFERENTIAL-TO-HSTL  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
DD  
Inputs, V  
-0.5V to VDD + 0.5 V  
-0.5V to VDDO + 0.5V  
47.9°C/W (0 lfpm)  
-65°C to 150°C  
I
Outputs, VO  
PackageThermal Impedance, θ  
JA  
StorageTemperature, T  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VDD = VDDA = 3.3V 5ꢀ, VDDO = 1.8V 0.2V, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VDD  
VDDA  
VDDO  
IDD  
Core Supply Voltage  
3.135  
3.135  
1.6  
3.3  
3.3  
1.8  
3.465  
3.465  
2.0  
V
V
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
Output Supply Current  
V
120  
15  
mA  
mA  
mA  
IDDA  
IDDO  
No Load  
0
TABLE 4B. LVCMOS/LVTTL DC CHARACTERISTICS, VDD = VDDA = 3.3V 5ꢀ, VDDO = 1.8V 0.2V, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VIH  
VIL  
Input High Voltage  
2
VDD + 0.3  
0.8  
V
V
Input Low Voltage  
-0.3  
CLK_SEL, MR, SEL0,  
SEL1, SEL2, SEL3  
VDD = VIN = 3.465V  
150  
5
µA  
µA  
µA  
µA  
V
DDO = 2V  
IIH  
Input High Current  
VDD = VIN = 3.465V  
VDDO = 2V  
PLL_SEL  
CLK_SEL, MR, SEL0,  
SEL1, SEL2, SEL3  
VDD = 3.465V,  
= 2V, VIN = 0V  
-5  
V
DDO  
IIL  
Input Low Current  
VDD = 3.465V,  
PLL_SEL  
-150  
VDDO = 2V, VIN = 0V  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VDD = VDDA = 3.3V 5ꢀ, VDDO = 1.8V 0.2V, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
VDD = VIN = 3.465V  
VDD = VIN = 3.465V  
VDD = 3.465V, VIN = 0V  
VDD = 3.465V, VIN = 0V  
Minimum Typical Maximum Units  
CLK0, CLK1, FB_IN  
nCLK0, nCLK1, nFB_IN  
CLK0, CLK1, FB_IN  
nCLK0, nCLK1, nFB_IN  
150  
5
µA  
µA  
µA  
µA  
V
Input  
IIH  
High Current  
-5  
Input  
IIL  
Low Current  
-150  
0.15  
0.5  
VPP  
Peak-to-Peak Input Voltage  
1.3  
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
VDD - 0.85  
V
NOTE 1: For single ended applications, the maximum input voltage for CLKx, nCLKx is VDD + 0.3V.  
NOTE 2: Common mode voltage is defined as VIH.  
8725AY-01  
www.icst.com/products/hiperclocks.html  
REV.B NOVEMBER 15, 2005  
4
ICS8725-01  
1:5 DIFFERENTIAL-TO-HSTL  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
TABLE 4D. HSTL DC CHARACTERISTICS, VDD = VDDA = 3.3V 5ꢀ, VDDO = 1.8V 0.2V, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VOH  
VOL  
VOX  
Output High Voltage; NOTE 1  
1
0
1.4  
0.4  
60  
V
V
Output Low Voltage; NOTE 1  
Output Crossover Voltage; NOTE 2  
Peak-to-Peak Output Voltage Swing  
40  
VSWING  
0.6  
1.1  
V
NOTE 1: Outputs terminated with 50Ω to ground.  
NOTE 2: Defined with respect to output voltage swing at a given condition.  
TABLE 5. INPUT FREQUENCY CHARACTERISTICS, VDD = VDDA = 3.3V 5ꢀ, VDDO = 1.8V 0.2V, TA = 0°C TO 70°C  
Symbol Parameter  
fIN Input Frequency  
Test Conditions  
PLL_SEL = 1  
PLL_SEL = 0  
Minimum Typical Maximum Units  
31.25  
700  
700  
MHz  
MHz  
CLK0, nCLK0,  
CLK1, nCLK1  
TABLE 6. AC CHARACTERISTICS, VDD = VDDA = 3.3V 5ꢀ, VDDO = 1.8V 0.2V, TA = 0°C TO 70°C  
Symbol Parameter  
fMAX Output Frequency  
tPD  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
700  
MHz  
PLL_SEL = 0V  
ƒ700MHz  
Propagation Delay; NOTE 1  
3.4  
3.9  
4.4  
ns  
t(Ø)  
tsk(o)  
tjit(cc)  
tjit(Ø)  
tL  
Static Phase Offset; NOTE 2, 5  
Output Skew; NOTE 3, 5  
Cycle-to-Cycle Jitter; NOTE 5, 6  
Phase Jitter; NOTE 4, 5, 6  
PLL Lock Time  
PLL_SEL = 3.3V  
-100  
100  
25  
25  
50  
1
ps  
ps  
ps  
ps  
ms  
ps  
ps  
tR / tF  
tPW  
Output Rise/Fall Time  
20ꢀ to 80ꢀ @ 50MHz  
300  
700  
Output Pulse Width  
tcycle/2 - 85 tcycle/2 tcycle/2 + 85  
All parameters measured at fMAX unless noted otherwise.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as the time difference between the input reference clock and the averaged feedback input signal  
across alll conditions, when the PLL is locked and the input reference frequency is stable.  
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at output differential cross points.  
NOTE 4: Phase jitter is dependent on the input source used.  
NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 6: Characterized at VCO frequency of 622MHz.  
8725AY-01  
www.icst.com/products/hiperclocks.html  
REV.B NOVEMBER 15, 2005  
5
ICS8725-01  
1:5 DIFFERENTIAL-TO-HSTL  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
PARAMETER MEASUREMENT INFORMATION  
3.3V 5ꢀ  
1.8V 0.2V  
VDD  
SCOPE  
,
VDD  
VDDA  
Qx  
nCLK0,  
nCLK1  
VDDO  
VPP  
VCMR  
Cross Points  
HSTL  
CLK0,  
CLK1  
GND  
nQx  
GND  
0V  
3.3V CORE/1.8V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nQ0:nQ4  
Q0:Q4  
nQx  
nQ  
tcycle n  
tcycle n+1  
nQy  
Qy  
tjit(cc) = tcycle n –tcycle n+1  
tsk(o)  
1000 Cycles  
CYCLE-TO-CYCLE JITTER  
OUTPUT SKEW  
nCLK0,  
VOH  
VOL  
nCLK1  
CLK0,  
CLK1  
80ꢀ  
tF  
80ꢀ  
tR  
VOH  
VOL  
nFB_IN  
VOD  
Clock  
Outputs  
20ꢀ  
20ꢀ  
FB_IN  
t(Ø)  
tjit(Ø) = t(Ø) — t(Ø) mean = Phase Jitter  
t(Ø) mean = Static Phase Offset  
(where t(Ø) is any random sample, and t(Ø) mean is the average  
of the sampled cycles measured on controlled edges)  
OUTPUT RISE/FALL TIME  
PHASE JITTER AND STATIC PHASE OFFSET  
nCLK0,  
nCLK1  
nQ0:nQ4  
Q0:Q4  
CLK0,  
CLK1  
tPW  
tPERIOD  
nQ0:nQ4  
Q0:Q4  
tPW  
odc =  
x 100ꢀ  
tPD  
tPERIOD  
PROPAGATION DELAY  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
8725AY-01  
www.icst.com/products/hiperclocks.html  
REV.B NOVEMBER 15, 2005  
6
ICS8725-01  
1:5 DIFFERENTIAL-TO-HSTL  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
APPLICATION INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS8725-01 provides  
separate power supplies to isolate any high switching  
noise from the outputs to the internal PLL.VDD, VDDA, and VDDO  
should be individually connected to the power supply  
plane through vias, and bypass capacitors should be  
used for each pin. To achieve optimum jitter performance,  
power supply isolation is required. Figure 1 illustrates how  
a 10Ω resistor along with a 10μF and a .01μF bypass  
capacitor should be connected to each VDDA pin.  
3.3V  
VDD  
.01μF  
.01μF  
10Ω  
VDDA  
10 μF  
FIGURE 1. POWER SUPPLY FILTERING  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 2 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = VDD/2 is  
generated by the bias resistors R1, R2 and C1.This bias circuit  
should be located as close as possible to the input pin.The ratio  
of R1 and R2 might need to be adjusted to position theV_REF in  
the center of the input voltage swing. For example, if the input  
clock swing is only 2.5V andVDD = 3.3V, V_REF should be 1.25V  
and R2/R1 = 0.609.  
VDD  
R1  
1K  
Single Ended Clock Input  
V_REF  
CLKx  
nCLKx  
C1  
0.1u  
R2  
1K  
FIGURE 2. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
8725AY-01  
www.icst.com/products/hiperclocks.html  
REV.B NOVEMBER 15, 2005  
7
ICS8725-01  
1:5 DIFFERENTIAL-TO-HSTL  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, HSTL, SSTL, HCSL here are examples only. Please consult with the vendor of the  
and other differential signals.BothVSWING and VOH must meet the driver component to confirm the driver termination requirements.  
VPP and VCMR input requirements. Figures 3A to 3D show inter- For example in Figure 3A, the input termination applies for ICS  
face examples for the HiPerClockS CLK/nCLK input driven by HiPerClockS HSTL drivers. If you are using an HSTL driver from  
the most common driver types.The input interfaces suggested another vendor, use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
Input  
LVPECL  
nCLK  
HiPerClockS  
Input  
LVHSTL  
R1  
50  
R2  
50  
ICS  
HiPerClockS  
R1  
50  
R2  
50  
LVHSTL Driver  
R3  
50  
FIGURE 3A. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
ICS HIPERCLOCKS LVHSTL DRIVER  
FIGURE 3B. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
125  
R4  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiv er  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 3C. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 3D. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
INPUTS:  
OUTPUTS:  
CLK/nCLK INPUT:  
HSTL OUTPUT  
For applications not requiring the use of the differential input, All unused HSTL outputs can be left floating. We recommend  
both CLK and nCLK can be left floating. Though not required, that there is no trace attached. Both sides of the differential  
but for additional protection, a 1kΩ resistor can be tied from output pair should either be left floating or terminated.  
CLK to ground.  
LVCMOS CONTROL PINS:  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional  
protection. A 1kΩ resistor can be used.  
8725AY-01  
www.icst.com/products/hiperclocks.html  
REV.B NOVEMBER 15, 2005  
8
ICS8725-01  
1:5 DIFFERENTIAL-TO-HSTL  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
LAYOUT GUIDELINE  
The schematic of the ICS8725-01 layout example is shown in depend on the selected component types, the density of the  
Figure 4A. The ICS8725-01 recommended PCB board layout components, the density of the traces, and the stacking of the  
for this example is shown in Figure 4B. This layout example is P.C.board.  
used as a general guideline.The layout in the actual system will  
VDD  
SP = Space (i.e. not intstalled)  
R7  
VDD  
VDDA  
RU2  
SP  
RU3  
1K  
RU4  
1K  
RU5  
SP  
RU6  
1K  
RU7  
SP  
10  
C11  
0.01u  
CLK_SEL  
PLL_SEL  
SEL0  
C16  
10u  
SEL1  
SEL2  
SEL3  
Zo = 50 Ohm  
Zo = 50 Ohm  
(155.5 MHz)  
+
-
RD2  
1K  
RD3  
SP  
RD4  
SP  
RD5  
1K  
RD6  
SP  
RD7  
1K  
VDD  
VDDO  
LVHSTL_input  
U1  
3.3V  
R4A  
50  
R4B  
50  
(155.5 MHz)  
SEL0  
SEL1  
Zo = 50 Ohm  
1
24  
23  
22  
21  
20  
19  
18  
17  
SEL0  
SEL1  
VDDO  
2
3
4
5
6
7
8
Q3  
nQ3  
Q2  
nQ2  
Q1  
nQ1  
VDDO  
CLK0  
nCLK0  
CLK1  
nCLK1  
CLK_SEL  
MR  
Zo = 50 Ohm  
CLK_SEL  
3.3V PECL Driver  
VDD=3.3V  
R8  
50  
R9  
50  
VDDO=1.8V  
8725_01  
SEL[3:0] = 0101,  
Divide by 2  
R10  
50  
SEL2  
R2B  
50  
R2A  
50  
Bypass capacitors located near the power pins  
VDD  
VDDO  
(U1-9)  
(U1-32)  
(U1-16)  
(U1-17)  
(U1-24)  
(U1-25)  
C1  
0.1uF  
C6  
0.1uF  
C2  
0.1uF  
C4  
0.1uF  
C5  
0.1uF  
C7  
0.1uF  
FIGURE 4A. ICS8725-01 HSTL ZERO DELAY BUFFER SCHEMATIC EXAMPLE  
8725AY-01  
www.icst.com/products/hiperclocks.html  
REV.B NOVEMBER 15, 2005  
9
ICS8725-01  
1:5 DIFFERENTIAL-TO-HSTL  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
The following component footprints are used in this layout  
example:  
trace delay might be restricted by the available space on the board  
and the component location.While routing the traces, the clock  
signal traces should be routed first and should be locked prior to  
routing other signal traces.  
All the resistors and capacitors are size 0603.  
POWER AND GROUNDING  
• The differential 50Ω output traces should have same  
Place the decoupling capacitors C1, C6, C2, C4, and C5, as  
close as possible to the power pins. If space allows, placement  
of the decoupling capacitor on the component side is preferred.  
This can reduce unwanted inductance between the decoupling  
capacitor and the power pin caused by the via.  
length.  
• Avoid sharp angles on the clock trace.Sharp angle  
turns cause the characteristic impedance to change on  
the transmission lines.  
• Keep the clock traces on the same layer.Whenever pos-  
sible, avoid placing vias on the clock traces. Placement  
of vias on the traces can affect the trace characteristic  
impedance and hence degrade signal integrity.  
Maximize the power and ground pad sizes and number of vias  
capacitors.This can reduce the inductance between the power  
and ground planes and the component power and ground pins.  
To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow a separation of at least three trace  
widths between the differential clock trace and the other  
signal trace.  
The RC filter consisting of R7, C11, and C16 should be placed  
as close to the VDDA pin as possible.  
CLOCK TRACES AND TERMINATION  
Poor signal integrity can degrade the system performance or  
cause system failure. In synchronous high-speed digital systems,  
the clock signal is less tolerant to poor signal integrity than other  
signals. Any ringing on the rising or falling edge or excessive ring  
back can cause system failure. The shape of the trace and the  
• Make sure no other signal traces are routed between the  
clock trace pair.  
• The matching termination resistors should be located as  
close to the receiver input pins as possible.  
GND  
R7  
C16  
C11  
C7  
VDDO  
C6  
C5  
VDD  
U1  
Pin 1  
VDDA  
VIA  
50 Ohm  
Traces  
C4  
C1  
C2  
FIGURE 4B. PCB BOARD LAYOUT FOR ICS8725-01  
8725AY-01  
www.icst.com/products/hiperclocks.html  
REV.B NOVEMBER 15, 2005  
10  
ICS8725-01  
1:5 DIFFERENTIAL-TO-HSTL  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS8725-01.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8725-01 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VDD = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VDD_MAX * (IDD_MAX + IDDA_MAX) = 3.465V * (120mA + 15mA) = 468mW  
Power (outputs)MAX = 32.8mW/Loaded Output pair  
If all outputs are loaded, the total power is 5 * 32.8mW = 164mW  
Total Power_MAX (3.465V, with all outputs switching) = 468mW + 164mW = 632mW  
2. JunctionTemperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W per Table 7 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.632W * 42.1°C/W = 96.6°C. This is well below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
Table 7. Thermal Resistance θJA for 32-pin LQFP, Forced Convection  
θJA byVelocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
55.9°C/W  
50.1°C/W  
47.9°C/W  
42.1°C/W  
39.4°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
8725AY-01  
www.icst.com/products/hiperclocks.html  
REV.B NOVEMBER 15, 2005  
11  
ICS8725-01  
1:5 DIFFERENTIAL-TO-HSTL  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
HSTL output driver circuit and termination are shown in Figure 5.  
VDDO  
Q1  
VOUT  
RL  
50Ω  
FIGURE 5. HSTL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load.  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = (V  
Pd_L = (V  
/R ) * (V  
- V  
)
OH_MIN  
L
DDO_MAX  
DDO_MAX  
OH_MIN  
/R ) * (V  
- V  
)
OL_MAX  
L
OL_MAX  
Pd_H = (1V/50Ω) * (2V - 1V) = 20mW  
Pd_L = (0.4V/50Ω) * (2V - 0.4V) = 12.8mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 32.8mW  
8725AY-01  
www.icst.com/products/hiperclocks.html  
REV.B NOVEMBER 15, 2005  
12  
ICS8725-01  
1:5 DIFFERENTIAL-TO-HSTL  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
RELIABILITY INFORMATION  
TABLE 8. θJAVS. AIR FLOW TABLE FOR 32 LEAD LQFP  
θJA byVelocity (Linear Feet per Minute)  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS8725-01 is: 2969  
8725AY-01  
www.icst.com/products/hiperclocks.html  
REV.B NOVEMBER 15, 2005  
13  
ICS8725-01  
1:5 DIFFERENTIAL-TO-HSTL  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP  
TABLE 9. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBA  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
--  
--  
--  
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
A2  
b
0.05  
1.35  
0.30  
0.09  
1.40  
0.37  
c
--  
D
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
0.80 BASIC  
0.60  
D1  
D2  
E
E1  
E2  
e
L
0.45  
0.75  
θ
--  
0°  
7°  
ccc  
--  
--  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
8725AY-01  
www.icst.com/products/hiperclocks.html  
REV.B NOVEMBER 15, 2005  
14  
ICS8725-01  
1:5 DIFFERENTIAL-TO-HSTL  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
TABLE 10. ORDERING INFORMATION  
Part/Order Number  
ICS8725AY-01  
Marking  
Package  
Shipping Packaging  
tray  
Temperature  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
ICS8725AY-01  
ICS8725AY-01  
ICS8725AY01L  
ICS8725AY01L  
32 Lead LQFP  
ICS8725AY-01T  
ICS8725AY-01LF  
ICS8725AY-01LFT  
32 Lead LQFP  
1000 tape & reel  
tray  
32 Lead "Lead-Free" LQFP  
32 Lead "Lead-Free" LQFP  
1000 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
The aforementioned trademark, HiPerClockS™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or  
for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal  
commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for  
use in life support devices or critical medical instruments.  
8725AY-01  
www.icst.com/products/hiperclocks.html  
REV.B NOVEMBER 15, 2005  
15  
ICS8725-01  
1:5 DIFFERENTIAL-TO-HSTL  
ZERO DELAY CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
REVISION HISTORY SHEET  
Description of Change  
Rev  
Table  
Page  
Date  
1
5
3
5
2
Updated Block Diagram.  
Changed PLL Reference Zero Delay to Static Phase Offset.  
Added note at bottom of the table.  
Added Note 6.  
A
11/2/01  
6
3A  
6
A
A
11/20/01  
8/22/02  
1
Pin Description Table - revised MR description.  
8
Updated Output Rise/Fall Time Diagram.  
Format changes.  
Changed LVHSTL to HSTL throughout data sheet to conform with JEDEC  
terminology.  
Pin Description table - revised MR and VDD descriptions.  
Pin Characteristics table - changed CIN 4pF max. to 4pF typical.  
Absolute Maximum Ratings - updated Inputs ratings.  
Added Power Supply Filtering Techniques section.  
Added Differential Input Interface section.  
2
2
4
7
8
T1  
T2  
A
9/26/03  
Updated format throughout data sheet.  
5
HSTL table - changed VOX minimum to 40ꢀ and maximum to 60ꢀ; added  
NOTE 2.  
Features Section - add Lead-Free bullet.  
Ordering Information Table - added Lead-Free package and note.  
Added Recommendations for Unused Input and Output Pins.  
B
B
B
T4D  
T10  
11/11/04  
6/9/05  
1
15  
8
11/15/05  
11-12  
Corrected Power Considerations, Power Dissipation calculation.  
8725AY-01  
www.icst.com/products/hiperclocks.html  
REV.B NOVEMBER 15, 2005  
16  

相关型号:

8725AY-01T

Clock Driver, PQFP32
IDT

8725AYI-01LF

PLL Based Clock Driver, 8725 Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026BBA, LQFP-32
IDT

8725AYI-01LFT

PLL Based Clock Driver, 8725 Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026BBA, LQFP-32
IDT

8725AYI-01T

PLL Based Clock Driver, 8725 Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026BBA, LQFP-32
IDT

8725BY-01

PLL Based Clock Driver, 5V Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026BBA, LQFP-32
IDT

87263-0400

Board Connector, 4 Contact(s), 2 Row(s), Female, Straight, Surface Mount Terminal, Receptacle
MOLEX

87263-0403

2.00mm (.079) Pitch Milli-Grid™ Receptacle, Surface Mount, Bottom Entry, 0.38μm (15μ) Gold (Au) Selective, 4 Circuits, with Pick-and-Place Cap, Tube, Leadfree
MOLEX

87263-0404

Board Connector, 4 Contact(s), 2 Row(s), Female, Straight, Surface Mount Terminal, Receptacle
MOLEX

87263-0406

Board Connector, 4 Contact(s), 2 Row(s), Female, Straight, 0.079 inch Pitch, Surface Mount Terminal, Locking, Receptacle
MOLEX

87263-0409

Board Connector, 4 Contact(s), 2 Row(s), Female, Straight, Surface Mount Terminal, Receptacle
MOLEX

87263-0423

2.00mm (.079") Pitch Milli-Grid Receptacle, Surface Mount, Bottom Entry, 0.38um (15u") Gold (Au) Selective
MOLEX

87263-0424

Board Connector, 4 Contact(s), 2 Row(s), Female, Straight, Surface Mount Terminal, Receptacle
MOLEX