87993AYIT [IDT]

PLL Based Clock Driver, 87993 Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026BBA, LQFP-32;
87993AYIT
型号: 87993AYIT
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

PLL Based Clock Driver, 87993 Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026BBA, LQFP-32

驱动 逻辑集成电路
文件: 总17页 (文件大小:293K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS87993I  
1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL  
PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH  
GENERAL DESCRIPTION  
FEATURES  
The ICS87993I is a PLL clock driver designed specifically 5 differential 3.3V LVPECL outputs  
for redundant clock tree designs. The device receives two  
differential LVPECL clock signals from which it generates  
Selectable differential clock inputs  
5 new differential LVPECL clock outputs. Two of the output  
pairs regenerate the input signal frequency and phase  
while the other three pairs generate 2x, phase aligned clock  
outputs. External PLL feedback is used to also provide zero  
delay buffer performance.  
CLKx, nCLKx pair can accept the following differential  
input levels: LVPECL, LVDS, LVHSTL, HCSL, SSTL  
Output frequency range: 50MHz to 250MHz  
VCO range: 200MHz to 500MHz  
The ICS87993I Dynamic Clock Switch (DCS) circuit  
continuously monitors both input CLK signals. Upon  
detection of a failure (CLK stuck HIGH or LOW for at least 1  
period), the INP_BAD for that CLK will be latched (H). If that  
CLK is the primary clock, the DCS will switch to the good  
secondary clock and phase/frequency alignment will  
occur with minimal output phase disturbance. The typical  
phase bump caused by a failed clock is eliminated.  
External feedback for “zero delay” clock regeneration  
with configurable frequencies  
Cycle-to-cycle jitter (RMS): 20ps (maximum)  
Output skew: 70ps (maximum), within one bank  
3.3V supply voltage  
-40°C to 85°C ambient operating temperature  
Lead-Free package available  
PIN ASSIGNMENT  
24 23 22 21 20 19 18 17  
25  
26  
27  
28  
29  
30  
31  
32  
nQA1  
16  
15  
14  
13  
12  
11  
10  
9
VCC  
QA1  
INP0BAD  
INP1BAD  
CLK_SELECTED  
VEE  
ICS87993I  
32-Lead QFP (LQFP)  
7mm x 7mm x 1.4mm  
package body  
nQA0  
QA0  
VCC  
VCCA  
nEXT_FB  
EXT_FB  
VEE  
Y Package  
Top View  
MAN_OVERRIDE  
PLL_SEL  
1
2
3
4
5
6
7
8
BLOCK DIAGRAM  
PLL_SEL  
CLK_SELECTED  
INP1BAD  
Dynamic Switch  
INP0BAD  
Logic  
MAN_OVERRIDE  
ALARM_RESET  
nQB0  
QB0  
nQB1  
QB1  
SEL_CLK  
nCLK0  
CLK0  
nCLK1  
nQB2  
QB2  
÷2  
÷4  
CLK1  
nQA0  
QA0  
PLL  
nEXT_FB  
EXT_FB  
nQA1  
QA1  
nMR  
87993AYI  
www.idt.com  
REV. C JULY 26, 2010  
1
ICS87993I  
1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL  
PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
Active LOW Master Reset. When logic LOW, the internal dividers are  
reset causing the true outputs Qx to go low and the inverted outputs  
nQx to go high. When logic HIGH, the internal dividers and the outputs  
are enabled. LVCMOS / LVTTL interface levels.  
When LOW, resets the input bad flags and aligns CLK_SELECTED  
with SEL_CLK. LVCMOS / LVTTL interface levels.  
1
nMR  
Input  
Input  
Pullup  
2
nALARM_RESET  
Pullup  
3
4
CLK0  
Input Pulldown Non-inverting differential clock input.  
nCLK0  
Input  
Pullup Inverting differential clock input.  
Clock select input. When LOW, selects CLK0, nCLK0 inputs. When  
HIGH, selects CLK1, nCLK1 inputs. LVCMOS / LVTTL interface levels.  
5
SEL_CLK  
Input Pulldown  
6
7
CLK1  
nCLK1  
VEE  
Input Pulldown Non-inverting differential clock input.  
Input  
Pullup Inverting differential clock input.  
Negative supply pins.  
8, 9, 12  
10  
Power  
EXT_FB  
nEXT_FB  
Input Pulldown Differential external feedback.  
11  
Input  
Pullup  
Differential external feedback.  
LOW, when CLK0, nCLK0 is selected, HIGH, when CLK1, nCLK1  
is selected. LVCMOS / LVTTL interface levels.  
13  
CLK_SELECTED Output  
Indicates detection of a bad input reference clock 1 with respect to the  
feedback signal. The output is active HIGH and will remain HIGH until  
the alarm reset is asserted.  
14  
INP1BAD  
Output  
Indicates detection of a bad input reference clock 0 with respect to the  
feedback signal. The output is active HIGH and will remain HIGH until  
the alarm reset is asserted.  
15  
INP0BAD  
VCC  
Output  
Power  
16, 17,  
24, 29  
Core supply pins.  
18, 19  
20, 21  
22, 23  
25, 26  
27, 28  
30  
nQB2, QB2  
nQB1, QB1  
nQB0, QB0  
nQA1, QA1  
nQA0, QA0  
VCCA  
Output  
Output  
Output  
Output  
Output  
Power  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Analog supply pin.  
Manual override. When HIGH, disables internal clock switch circuitry.  
LVCMOS / LVTTL interface levels.  
31  
MAN_OVERRIDE Input Pulldown  
Selects between the PLL and reference clock as the input to the  
dividers. When LOW, selects reference clock.When HIGH, selects PLL.  
LVCMOS / LVTTL interface levels.  
32  
PLL_SEL  
Input  
Pullup  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
Input Capacitance  
Input Pullup Resistor  
Input Pulldown Resistor  
4
pF  
KΩ  
KΩ  
RPULLUP  
RPULLDOWN  
51  
51  
87993AYI  
www.idt.com  
REV. C JULY 26, 2010  
2
ICS87993I  
1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL  
PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device. These ratings are stress specifications only. Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
CC  
Inputs, V  
-0.5V to VCC + 0.5 V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, θ  
47.9°C/W (0 lfpm)  
-65°C to 150°C  
JA  
Storage Temperature, T  
STG  
TABLE 3A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VCC  
VCCA  
IEE  
Core Supply Voltage  
3.135  
3.135  
3.3  
3.3  
80  
3.465  
3.465  
180  
V
Analog Supply Voltage  
Power Supply Current  
Analog Supply Current  
V
mA  
mA  
ICCA  
15  
20  
TABLE 3B. LVCMOS/LVTTL DC CHARACTERISTICS, VCC = VCCA = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VIH  
VIL  
Input High Voltage  
LVCMOS Inputs  
LVCMOS Inputs  
2
3.3  
0.8  
V
V
Input Low Voltage  
Input High Current  
-0.3  
SEL_CLK,  
VIN = VCC = 3.465V  
5
µA  
µA  
µA  
µA  
MAN_OVERRIDE  
nALARM_RESET,  
PLL_SEL, nMR  
SEL_CLK,  
MAN_OVERRIDE  
nALARM_RESET,  
PLL_SEL, nMR  
IIH  
V
IN = VCC = 3.465V  
IN = 0V, VCC = 3.465V  
VIN = 0V, VCC = 3.465V  
120  
V
-5  
IIL  
Input Low Current  
-120  
2.4  
VOH  
VOL  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
V
V
0.5  
NOTE 1: Outputs terminated with 50Ω to VCC/2. See Parameter Measurement Information Section,  
"3.3V Output Load AC Test Circuit diagram".  
TABLE 3C. DIFFERENTIAL DC CHARACTERISTICS, VCC = VCCA = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
CLK0, CLK1,  
EXT_FB  
nCLK0, nCLK1,  
nEXT_FB  
CLK0, CLK1,  
EXT_FB  
nCLK0, nCLK1,  
nEXT_FB  
VIN = VCC = 3.465V  
5
µA  
µA  
µA  
µA  
IIH  
Input High Current  
V
IN = VCC = 3.465V  
VIN = 0V, VCC = 3.465V  
IN = 0V, VCC = 3.465V  
120  
-5  
IIL  
Input Low Current  
V
-120  
VPP  
Peak-to-Peak Input Voltage  
0.15  
1.3  
V
V
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
VEE + 0.5  
VCC - 0.85  
NOTE 1: Common mode voltage is defined as VIH.  
NOTE 2: For single ended appliations, the maximum input voltage for CLK, nCLK is VCC + 0.3V.  
87993AYI  
www.idt.com  
REV. C JULY 26, 2010  
3
ICS87993I  
1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL  
PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH  
TABLE 3D. LVPECL DC CHARACTERISTICS, VCC = VCCA = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCC - 1.4  
VCC - 2.0  
0.6  
VCC - 1.0  
VCC - 1.7  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50Ω to VCC - 2V.  
TABLE 4. AC CHARACTERISTICS, VCC = VCCA = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol  
fVCO  
Parameter  
Test Conditions  
Minimum Typical Maximum  
Units  
MHz  
PLL VCO Lock Range  
200  
25  
500  
75  
tPWI  
CLKx to Q  
PLL_SEL = LOW  
2.8  
3.45  
0
4.1  
ns  
PLL_SEL = HIGH  
fVCO 360MHz  
PLL_SEL = HIGH  
fVCO 500MHz  
-150  
170  
200  
ps  
ps  
tPD  
Propagation Delay  
Output Rise Time  
CLKx to EXT_FB;  
NOTE 2  
-150  
200  
0
tR / tF  
20ꢀ to 80ꢀ @ 50MHz  
800  
70  
ps  
ps  
ps  
Within Bank  
All Outputs  
Output Skew;  
NOTE 3  
tsk(o)  
100  
75MHz Output;  
NOTE 1, 4  
150MHz Output;  
NOTE 1, 4  
75MHz Output;  
NOTE 1, 5  
150MHz Output;  
NOTE 1, 5  
20  
10  
50  
25  
ps/cycle  
ps/cycle  
ps/cycle  
ps/cycle  
Rate of change  
of Periods  
Tested at  
typical conditions  
ΔPER/CYCLE  
200  
100  
400  
200  
odc  
tjit(cc)  
tL  
Output Duty Cycle  
f 360MHz  
45  
55  
20  
10  
ps  
Cycle-to-Cycle Jitter (RMS); NOTE 1  
PLL Lock Time; NOTE 1  
ms  
All parameters measured at fMAX unless noted otherwise.  
NOTE 1: These parameters are guaranteed by characterization. Not tested in production.  
NOTE 2: Defined as the time difference between the input reference clock and the averaged feedback input signal,  
when the PLL is locked and the input reference frequency is stable.  
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 4: Specification holds for a clock switch between two signals no greater than 400ps out of phase.  
Delta period change per cycle is averaged over the clock switch excursion.  
NOTE 5: Specification holds for a clock switch between two signals no greater than π out of phase.  
Delta period change per cycle is averaged over the clock switch excursion.  
87993AYI  
www.idt.com  
REV. C JULY 26, 2010  
4
ICS87993I  
1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL  
PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
VCC  
VCCA  
,
Qx  
nCLK0,  
nCLK1  
LVPECL  
VEE  
VPP  
VCMR  
Cross Points  
CLK0,  
CLK1  
nQx  
VEE  
-1.3V 0.165V  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nQAx,  
nQBx  
nQx  
Qx  
nQAx,  
nQBx  
tcycle n  
tcycle n+1  
nQy  
Qy  
tjit(cc) = tcycle n –tcycle n+1  
1000 Cycles  
tsk(o)  
OUTPUT SKEW  
CYCLE-TO-CYCLE JITTER  
nQAx,  
nQBx  
nQAx,  
nQBx  
80ꢀ  
tF  
80ꢀ  
VSWING  
20ꢀ  
Pulse Width  
Clock  
20ꢀ  
tPERIOD  
Outputs  
tR  
tPW  
odc =  
tPERIOD  
OUTPUT RISE/FALL TIME  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
87993AYI  
www.idt.com  
REV. C JULY 26, 2010  
5
ICS87993I  
1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL  
PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH  
APPLICATION INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS87993I provides sepa-  
rate power supplies to isolate any high switching  
noise from the outputs to the internal PLL. VCC and VCCA should  
be individually connected to the power supply plane through  
vias, and bypass capacitors should be used for each pin. To  
achieve optimum jitter performance, power supply isolation is  
required. Figure 1 illustrates how a 10Ω resistor along with a  
10μF and a .01μF bypass capacitor should be connected to  
each VCCA pin.  
3.3V  
VCC  
.01μF  
.01μF  
10Ω  
VCCA  
10μF  
FIGURE 1. POWER SUPPLY FILTERING  
TERMINATION FOR LVPECL OUTPUTS  
drive 50Ω transmission lines. Matched impedance techniques  
should be used to maximize operating frequency and minimize  
signal distortion. Figures 2A and 2B show two different layouts  
which are recommended only as guidelines. Other suitable clock  
layouts may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs. The two different layouts mentioned  
are recommended only as guidelines.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, terminat-  
ing resistors (DC current path to ground) or current sources  
must be used for functionality. These outputs are designed to  
3.3V  
Zo = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
84Ω  
84Ω  
((VOH + VOL) / (VCC – 2)) – 2  
FIGURE 2A. LVPECL OUTPUT TERMINATION  
FIGURE 2B. LVPECL OUTPUT TERMINATION  
87993AYI  
www.idt.com  
REV. C JULY 26, 2010  
6
ICS87993I  
1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL  
PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 3 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = VCC/2 is  
generated by the bias resistors R1, R2 and C1. This bias circuit  
should be located as close as possible to the input pin. The ratio  
of R1 and R2 might need to be adjusted to position the V_REF in  
the center of the input voltage swing. For example, if the input  
clock swing is only 2.5V and VCC = 3.3V, V_REF should be 1.25V  
and R2/R1 = 0.609.  
VCC  
R1  
1K  
Single Ended Clock Input  
V_REF  
CLKx  
nCLKx  
C1  
0.1u  
R2  
1K  
FIGURE 3. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
87993AYI  
www.idt.com  
REV. C JULY 26, 2010  
7
ICS87993I  
1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL  
PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL examples only. Please consult with the vendor of the driver  
and other differential signals. Both VSWING and VOH must meet  
the VPP and VCMR input requirements. Figures 4A to 4D show  
component to confirm the driver termination requirements. For  
example in Figure 4A, the input termination applies for LVHSTL  
interface examples for the CLK/nCLK input driven by the most drivers. If you are using an LVHSTL driver from another  
common driver types. The input interfaces suggested here are vendor, use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
Input  
LVPECL  
nCLK  
HiPerClockS  
Input  
LVHSTL  
R1  
50  
R2  
50  
ICS  
HiPerClockS  
R1  
50  
R2  
50  
LVHSTL Driver  
R3  
50  
FIGURE 4A. CLK/NCLK INPUT DRIVEN BY  
LVHSTL DRIVER  
FIGURE 4B. CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
125  
R4  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiv er  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 4C. CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 4D. CLK/NCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
87993AYI  
www.idt.com  
REV. C JULY 26, 2010  
8
ICS87993I  
1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL  
PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH  
SCHEMATIC EXAMPLE  
Figure 5A shows a schematic example of the ICS87993I. In this Bank A or Bank B depending on the application. The decoupling  
example, the CLK0/nCLK0 input is selected as primary. The in- capacitors should be physically located near the power pin.  
put is driven by an LVPECL driver. Feedback can be either from For ICS87993I, the unused outputs can be left floating.  
VCC  
VCC  
VCC  
R16  
1K  
R15  
1K  
Zo = 50  
Zo = 50  
+
-
R7  
10  
VCCA  
C11  
0.01u  
VCC  
LVCMOS  
C16  
10u  
R2  
50  
R1  
50  
U1  
C5 (Option)  
R3  
50  
VCC  
0.1u  
1
2
3
4
5
6
7
8
24  
nMR  
nALM_RS  
CLK0  
nCLK0  
CLK_SEL  
CLK1  
nCLK1  
VEE  
VCC  
QB0  
nQB0  
QB1  
nQB1  
QB2  
nQB2  
VCC  
Zo = 50 Ohm  
Zo = 50 Ohm  
23  
22  
21  
20  
19  
18  
17  
CLK_SEL  
LVPECL Driv er  
R2  
1K  
R9  
50  
R10  
50  
ICS87993I  
C7 (Option)  
0.1u  
R11  
50  
VCC  
LVCMOS  
Zo = 50 Ohm  
Zo = 50 Ohm  
R5  
50  
R4  
50  
LVCMOS  
LVPECL Driv er  
C8 (Option)  
0.1u  
R6  
50  
R12  
50  
R13  
50  
LVCMOS  
C6 (Option)  
0.1u  
R14  
50  
(U1-16)  
(U1-17)  
(U1-24) (U1-29)  
VCC  
C1  
0.1uF  
C2  
0.1uF  
C3  
0.1uF  
C4  
0.1uF  
FIGURE 5A. ICS87993I LVPECL SCHEMATIC EXAMPLE  
87993AYI  
www.idt.com  
REV. C JULY 26, 2010  
9
ICS87993I  
1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL  
PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH  
The following component footprints are used in this layout  
example:  
trace delay might be restricted by the available space on the board  
and the component location. While routing the traces, the clock  
signal traces should be routed first and should be locked prior to  
routing other signal traces.  
All the resistors and capacitors are size 0603.  
POWER AND GROUNDING  
• The differential 50Ω output traces should have same  
Place the decoupling capacitors as close as possible to the power  
pins. If space allows, placement of the decoupling capacitor on  
the component side is preferred. This can reduce unwanted in-  
ductance between the decoupling capacitor and the power pin  
caused by the via.  
length.  
• Avoid sharp angles on the clock trace. Sharp angle turns  
cause the characteristic impedance to change on the  
transmission lines.  
• Keep the clock traces on the same layer. Whenever pos-  
sible, avoid placing vias on the clock traces. Placement  
of vias on the traces can affect the trace characteristic  
impedance and hence degrade signal integrity.  
Maximize the power and ground pad sizes and number of vias  
capacitors. This can reduce the inductance between the power  
and ground planes and the component power and ground pins.  
• To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow a separation of at least three trace  
widths between the differential clock trace and the other  
signal trace.  
The RC filter consisting of R7, C11, and C16 should be placed  
as close to the VDDA pin as possible.  
CLOCK TRACES AND TERMINATION  
Poor signal integrity can degrade the system performance or  
cause system failure. In synchronous high-speed digital systems,  
the clock signal is less tolerant to poor signal integrity than other  
signals. Any ringing on the rising or falling edge or excessive ring  
back can cause system failure. The shape of the trace and the  
• Make sure no other signal traces are routed between the  
clock trace pair.  
• The series termination resistors should be located as close  
to the driver pins as possible.  
GND  
VCC  
C4  
R7  
C16 C11  
U1  
C3  
Pin 1  
VCCA  
VIA  
50 Ohm  
Traces  
C2  
C1  
FIGURE 5B. PCB BOARD LAYOUT FOR ICS87993I  
www.idt.com  
87993AYI  
REV. C JULY 26, 2010  
10  
ICS87993I  
1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL  
PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS87993I.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS87993I is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 180 = 624mW  
Power (outputs)MAX = 30.2mW/Loaded Output pair  
If all outputs are loaded, the total power is 5 * 30.2mW = 151mW  
Total Power_MAX (3.465V, with all outputs switching) = 624mW + 151mW = 775mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device. The maximum recommended junction temperature for the devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W per Table 5 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.775W * 42.1°C/W = 117.6°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 5. THERMAL RESISTANCE θJA FOR 32-PIN LQFP, FORCED CONVECTION  
θJA by Velocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
55.9°C/W  
50.1°C/W  
47.9°C/W  
42.1°C/W  
39.4°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
87993AYI  
www.idt.com  
REV. C JULY 26, 2010  
11  
ICS87993I  
1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL  
PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 6.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 6. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage of V - 2V.  
CC  
For logic high, VOUT = V  
= V  
– 1.0V  
OH_MAX  
CC_MAX  
)
= 1.0V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, VOUT = V  
= V  
– 1.7V  
OL_MAX  
CC_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CC_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
L
L
[(2V - 1V)/50Ω] * 1V = 20.0mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
/R ] * (V  
- V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50Ω] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW  
87993AYI  
www.idt.com  
REV. C JULY 26, 2010  
12  
ICS87993I  
1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL  
PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH  
RELIABILITY INFORMATION  
TABLE 6. θJAVS. AIR FLOW TABLE FOR 32 LEAD LQFP  
θJA by Velocity (Linear Feet per Minute)  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS87993I is: 2745  
87993AYI  
www.idt.com  
REV. C JULY 26, 2010  
13  
ICS87993I  
1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL  
PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH  
PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP  
TABLE 7. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBA  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
--  
--  
--  
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
A2  
b
0.05  
1.35  
0.30  
0.09  
1.40  
0.37  
c
--  
D
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
0.80 BASIC  
0.60  
D1  
D2  
E
E1  
E2  
e
L
0.45  
0.75  
θ
--  
0°  
7°  
ccc  
--  
--  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
87993AYI  
www.idt.com  
REV. C JULY 26, 2010  
14  
ICS87993I  
1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL  
PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH  
TABLE 8. ORDERING INFORMATION  
Part/Order Number  
Marking  
Package  
Shipping Packaging  
Temperature  
87993AYI  
ICS87993AYI  
ICS87993AYI  
ICS87993AILF  
ICS87993AILF  
32 Lead LQFP  
tray  
-40°C to 85°C  
32 Lead LQFP on Tape and  
Reel  
87993AYIT  
87993AYILF  
87993AYILFT  
1000  
tray  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
32 Lead "Lead-Free" LQFP  
32 Lead "Lead-Free" LQFP on  
Tape and Reel  
1000  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Inc. (IDT) assumes no responsibility for either its use or for infringement of  
any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial  
applications. Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves  
the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
87993AYI  
www.idt.com  
REV. C JULY 26, 2010  
15  
ICS87993I  
1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL  
PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH  
REVISION HISTORY SHEET  
Description of Change  
Rev  
Table  
Page  
Date  
4
AC Table - deleted Note 6.  
T4  
A
1/16/03  
7
1
Added "Wiring the Differential Input to Accept Single Ended Levels".  
Features Section - changed VCO max. from 360MHz to 500MHz.  
T1  
T2  
2
2
3
Pin Descriptions Table - revised nMR description.  
Pin Characteristics Table - changed CIN from max. 4pF to typical 4pF.  
Absolute Maximum Ratings - changed VO to IO and included Continuous  
Current and Surge Current  
B
5/21/03  
AC Characteristics Table - changed fVCO from 360MHz to 500MHz.  
T4  
4
tPD - added test conditions to CLKx to EXT_FB. Added another line with  
500MHz test conditions.  
odc - added test conditions.  
Added Differential Clock Input Interface in the Application Information section.  
8
Added Schematic Example.  
9 & 10  
15  
B
C
T8  
T8  
Ordering Information Table - added Lead-Free part number.  
10/21/04  
7/26/10  
Updated datasheet's header/footer with IDT from ICS.  
Removed ICS prefix from Part/Order Number column.  
Added Contact Page.  
15  
17  
87993AYI  
www.idt.com  
REV. C JULY 26, 2010  
16  
ICS87993I  
1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL  
PLL CLOCK DRIVER W/DYNAMIC CLOCK SWITCH  
We’ve Got Your Timing Solution.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Sales  
Tech Support  
netcom@idt.com  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
Fax: 408-284-2775  
© 2010 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks of Integrated Device Technology, Inc.  
Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of  
their respective owners.  
Printed in USA  
87993AYI  
www.idt.com  
REV. C JULY 26, 2010  
17  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY