8V79S680NLGI [IDT]

JESD204B Compliant Fanout Buffer and Divider;
8V79S680NLGI
型号: 8V79S680NLGI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

JESD204B Compliant Fanout Buffer and Divider

文件: 总52页 (文件大小:736K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
JESD204B Compliant Fanout Buffer  
and Divider  
8V79S680  
Datasheet  
Description  
Features  
Supports high-speed, low phase noise converter clocks  
The 8V79S680 is a fully integrated, clock and SYSREF signal fanout  
buffer for JESD204B applications. It is designed as a high-performance  
clock and converter synchronization solution for wireless base station  
radio equipment boards with JESD204B subclass 0, 1 and 2  
Distribution, fanout, phase-delay of clock and SYSREF signals  
Very low output noise floor: -158.8dBc/Hz noise floor  
(245.76MHz)  
compliance. The main function of the device is the distribution and  
fanout of high-frequency clocks and low-frequency system reference  
signals generated by a JESB204B clock generator such as the IDT  
8V19N480, extending its fanout capabilities and providing additional  
phase-delay. The 8V79S680 is optimized to deliver very low phase noise  
clocks and precise, phase-adjustable SYSREF synchronization signals  
as required in GSM, WCDMA, LTE, LTE-A radio board implementations.  
Low-skew outputs, low device-to-device skew characteristics and fast  
output rise/fall times help the system design to achieve deterministic  
clock and SYSREF phase relationship across devices.  
Supports clock frequencies up to 3GHz, including clock output  
frequencies of 983.04MHz, 491.52MHz, 245.76MHz and  
122.88MHz  
4 output channels with a total of 16 differential outputs, organized  
in:  
— 8 dedicated clock outputs  
— 8 outputs configurable as SYSREF outputs with individual  
phase delay stages, or configurable as additional clock outputs  
Each channel contains:  
The device distributes the input clock (CLK) and JESD204B SYSREF  
signals (REF) to four fanout channels. In each channel, both input clock  
and SYSREF signals are fanned-out to multiple clock (QCLK) and  
SYSREF (QREF) outputs. Clock signals can be frequency-divided in  
each channel. Configurable phase-delay circuits are available for both  
clock and SYSREF signals. The propagation delays in all signal paths  
are fully deterministic to support fixed phase relationships between clock  
and SYSREF signals within one device. Clock divider can be bypassed  
for low-latency clock paths. The device facilitates synchronization  
between frequency dividers within the device and across multiple  
devices, removing phase ambiguity introduced in dividers between  
power and configuration cycles.  
— frequency dividers: ÷1, ÷2, ÷4, ÷6, ÷8, ÷12, ÷16  
— clock phase delay circuits  
Clock phase delay circuits  
— Clock: delay unit is the clock period; 256 steps  
— SYSREF: Configurable precision phase delay circuits: 8 steps  
of 131ps, 262ps, 393ps or 524ps  
Flexible differential outputs:  
— LVDS/LVPECL configurable  
— Amplitude configurable  
— Power-down modes for unused outputs  
— Supports DC and AC coupling  
Each channel supports clock frequencies up to 3GHz. In an alternative  
configuration, for instance JESD204B subclass 0 and 2, the SYSREF  
(QREF) outputs can be configured as regular clock outputs adding  
additional clock fanout to the device.  
— QREF (SYSREF) output pre-bias feature to prevent glitches  
when turning output on or off  
Supply voltage:  
All outputs are very flexible in amplitude configuration, output signal  
termination and allow both DC and AC coupling. Outputs can be  
disabled and powered-down when not used. The SYSREF output  
pre-bias feature supports prevention of power-on glitches and enables  
AC-coupling of the system synchronization signals.  
— 3.3V core and signal I/O  
— 1.8V Digital control SPI I/O (3.3V-tolerant inputs)  
64 VFQFN-P package (9mm x 9mm x 0.85mm)  
Ambient temperature range: -40°C to +85°C  
The device is configured through a 3-wire SPI serial interface. The  
device is packaged in a lead-free (RoHS 6) 64-lead VFQFN package.  
The extended temperature range supports wireless infrastructure,  
telecommunication and networking end equipment requirements. The  
device is a member of the high-performance clock family from IDT.  
Typical Applications  
JESD204B low phase noise clock and SYSREF signal distribution  
Supports JESD204 subclass 0, 1 and 2  
Clock distribution device for jitter-sensitive ADC and DAC circuits  
Wireless infrastructure  
Radar and imaging  
Instrumentation and medical  
©2016 Integrated Device Technology, Inc.  
1
August 4, 2016  
8V79S680 Datasheet  
Block Diagram  
Figure 1: Block Diagram  
QCLK_A0  
nQCLK_A0  
Clock  
fIN  
QCLK_A1  
nQCLK_A1  
CLK  
nCLK  
÷NA  
CLK_A  
REF_A0  
REF_A1  
REF_A2  
2x  
50  
QCLK_A2  
nQCLK_A2  
VTC  
0
1
QREF_A0  
nQREF_A0  
MUX_A0  
MUX_A1  
MUX_A2  
0
1
QREF_A1  
nQREF_A1  
0
1
QREF_A2  
nQREF_A2  
Channel A  
QCLK_B0  
nQCLK_B0  
÷NB  
SYSREF fREF  
CLK_B  
REF_B0  
REF_B1  
REF  
nREF  
QCLK_B1  
nQCLK_B1  
2x  
50  
0
1
QREF_B0  
nQREF_B0  
MUX_B0  
MUX_B1  
VTR  
0
1
QREF_B1  
nQREF_B1  
Channel B  
fIN  
REF_r  
Delay Calibration  
Block  
QCLK_C0  
nQCLK_C0  
÷NC  
CLK_C  
REF_C0  
REF_C1  
QCLK_C1  
nQCLK_C1  
0
1
QREF_C0  
nQREF_C0  
VDD  
MUX_C0  
MUX_C1  
50k  
0
1
QREF_C1  
nQREF_C1  
nCS  
SDAT  
SCLK  
SPI  
Channel C  
Register  
File  
QCLK_D  
nQCLK_D  
÷ND  
`
CLK_D  
50k  
0
1
QREF_D  
nQREF_D  
MUX_D  
REF_D  
Channel D  
©2016 Integrated Device Technology, Inc  
2
August 4, 2016  
8V79S680 Datasheet  
Pin Assignments  
Figure 2: Pin Assignments 9mmx9mmx0.85mm 64 VFQFN-P Package (Top View)  
64  
63 62  
61 60 59 58 57 56 55 54 53 52 51 50 49  
1
2
QREF_B0  
nQREF_B0  
QREF_B1  
nQREF_B1  
VDD_QREFB  
48 QREF_A2  
47 nQREFA2  
46 VDD_QREFA2  
45 VDD_QCLKA  
44 QCLK_A2  
43 nQCLK_A2  
42 QCLK_A1  
41 nQCLK_A1  
40 QCLK_A0  
39 nCLK_A0  
38 VDD_QCLKA  
37 VDD_QREFA01  
36 QREF_A1  
35 nQREF_A1  
34 QREF_A0  
33 nQREF_A0  
3
4
5
VDD_QCLKB  
6
QCLK_B0  
nQCLK_B0  
QCLK_B1  
nQCLK_B1  
VDD_QCLKB  
7
8
Exposed Pad  
(GND)  
9
10  
11  
12  
13  
14  
15  
16  
VDD_QREFC  
QREF_C0  
nQREF_C0  
QREF_C1  
nQREF_C1  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31  
32  
©2016 Integrated Device Technology, Inc  
3
August 4, 2016  
8V79S680 Datasheet  
Pin Descriptions  
Table 1: Pin Descriptions  
Number  
Name  
Typea  
Description  
1,  
2
QREF_B0,  
nQREF_B0  
Differential SYSREF/clock output QREF_B0. LVDS style for SYSREF operation,  
configurable LVPECL/LVDS style and amplitude for clock operation.  
Output  
3,  
4
QREF_B1,  
nQREF_B1  
Differential SYSREF/clock output QREF_B1. LVDS style for SYSREF operation,  
configurable LVPECL/LVDS style and amplitude for clock operation.  
Output  
5
6
VDD_QREFB  
VDD_QCLKB  
Power  
Power  
Positive supply voltage (3.3V) for the QREF_B[1:0] outputs.  
Positive supply voltage (3.3V) for the QCLK_B[1:0] outputs.  
7,  
8
QCLK_B0,  
nQCLK_B0  
Output  
Output  
Differential clock output QCLK_B0. Configurable LVPECL/LVDS style and amplitude.  
Differential clock output QCLK_B1. Configurable LVPECL/LVDS style and amplitude.  
9,  
10  
QCLK_B1,  
nQCLK_B1  
11  
12  
VDD_QCLKB  
VDD_QREFC  
Power  
Power  
Positive supply voltage (3.3V) for the QCLK_B[1:0] outputs.  
Positive supply voltage (3.3V) for the QREF_C[1:0] outputs.  
13,  
14  
QREF_C0,  
nQREF_C0  
Differential SYSREF/clock output QREF_C0. LVDS style for SYSREF operation,  
configurable LVPECL/LVDS style and amplitude for clock operation.  
Output  
Output  
15,  
16  
QREF_C1,  
nQREF_C1  
Differential SYSREF/clock output QREF_C1. LVDS style for SYSREF operation,  
configurable LVPECL/LVDS style and amplitude for clock operation.  
17  
18  
VDD_QREFC  
VDD_QCLKC  
Power  
Power  
Positive supply voltage (3.3V) for the QREF_C[1:0] outputs.  
Positive supply voltage (3.3V) for the QCLK_C[1:0] outputs.  
19,  
20  
QCLK_C0,  
nQCLK_C0  
Output  
Output  
Differential clock output QCLK_C0. Configurable LVPECL/LVDS style and amplitude.  
Differential clock output QCLK_C1. Configurable LVPECL/LVDS style and amplitude.  
21,  
22  
QCLK_C1,  
nQCLK_C1  
23  
24  
VDD_QCLKC  
VDD_QREFD  
Power  
Power  
Positive supply voltage (3.3V) for the QCLK_C[1:0] outputs.  
Positive supply voltage (3.3V) for the QREF_D outputs.  
25,  
26  
QREF_D,  
nQREF_D  
Differential SYSREF/clock output QREF_D. LVDS style for SYSREF operation,  
configurable LVPECL/LVDS style and amplitude for clock operation.  
Output  
27  
28  
VDD_QREFD  
VDD_QCLKD  
Power  
Power  
Positive supply voltage (3.3V) for the QREF_D outputs.  
Positive supply voltage (3.3V) for the QCLK_D outputs.  
29,  
30  
QCLK_D,  
nQCLK_D  
Output  
Differential clock output QCLK_D. Configurable LVPECL/LVDS style and amplitude.  
31  
32  
VDD_QCLKD  
Power  
Power  
Positive supply voltage (3.3V) for the QCLK_D outputs.  
Positive supply voltage (3.3V) for the QREF_A[1:0] outputs.  
VDD_QREFA01  
33,  
34  
nQREF_A0,  
QREF_A0  
Differential SYSREF/clock output QREF_A0. LVDS style for SYSREF operation,  
configurable LVPECL/LVDS style and amplitude for clock operation.  
Output  
Output  
35,  
36  
nQREF_A1,  
QREF_A1  
Differential SYSREF/clock output QREF_A1. LVDS style for SYSREF operation,  
configurable LVPECL/LVDS style and amplitude for clock operation.  
©2016 Integrated Device Technology, Inc  
4
August 4, 2016  
8V79S680 Datasheet  
Table 1: Pin Descriptions (Continued)  
Number  
Name  
Typea  
Power  
Description  
37  
38  
VDD_QREFA01  
VDD_QCLKA  
Positive supply voltage (3.3V) for the QREF_A[1:0] outputs.  
Positive supply voltage (3.3V) for the QCLK_A[2:0] outputs.  
Power  
Output  
39,  
40  
nQCLK_A0,  
QCLK_A0  
Differential clock output QCLK_A0. Configurable LVPECL/LVDS style and amplitude.  
Differential clock output QCLK_A1. Configurable LVPECL/LVDS style and amplitude.  
Differential clock output QCLK_A2. Configurable LVPECL/LVDS style and amplitude.  
41,  
42  
nQCLK_A1,  
QCLK_A1  
Output  
Output  
43,  
44  
nQCLK_A2,  
QCLK_A2  
45  
46  
VDD_QCLKA  
VDD_QREFA2  
Power  
Power  
Positive supply voltage (3.3V) for the QCLK_A[2:0] outputs.  
Positive supply voltage (3.3V) for the QREF_A2 output.  
47,  
48  
nQREF_A2,  
QREF_A2  
Differential SYSREF/clock output QREF_A2. LVDS style for SYSREF operation,  
configurable LVPECL/LVDS style and amplitude for clock operation.  
Output  
49  
50  
VDD_QREFA2  
VDD_REF  
Power  
Power  
Positive supply voltage (3.3V) for the QREF_A2 output.  
Positive supply voltage (3.3V) for the differential SYSREF input REF, nREF  
SYSREF inverting and non-inverting differential input. Compatible with LVPECL and LVDS  
signals. REF and nREF are internally 50terminated to the VTR pin  
51, 52  
53  
REF, nREF  
Input  
Internal termination for the differential clock input REF, nREF. Both REF and nREF inputs  
are internally terminated 50to this pin. See input termination information in Section  
“Application Information”.  
VTR  
54  
55  
56  
VDD_REF  
RES_CAL  
VDD_CLK  
Power  
Analog  
Power  
Positive supply voltage (3.3V) for the differential SYSREF input REF, nREF  
Connect a 2.8 k(1%) resistor to GND for output current calibration.  
Positive supply voltage (3.3V) for the differential device clock input CLK, nCLK.  
Internal termination for the differential clock input CLK, nCLK. Both CLK and nCLK inputs  
are internally 50terminated to the VTR pin. See input termination information in Section  
“Application Information”.  
57  
VTC  
Device clock inverting and non-inverting differential clock input. Compatible with LVPECL  
and LVDS signals. CLK and nCLK are internally terminated to VTC through 50.  
58, 59  
60  
nCLK, CLK  
VDD_CLK  
SDAT  
Input  
Power  
Positive supply voltage (3.3V) for the differential device clock input CLK, nCLK.  
Input/  
Output  
Serial Control Port SPI Mode Data Input and Output. 1.8V LVCMOS/LVTTL interface  
levels. 3.3V tolerant when input.  
61  
Serial Control Port SPI Mode Clock Input. 1.8V LVCMOS/LVTTL interface levels.  
3.3V-tolerant when input.  
62  
SCLK  
Input  
PD  
PU  
Serial Control Port SPI Chip Select Input. 1.8V LVCMOS/LVTTL interface levels and 3.3V  
tolerant.  
63  
64  
nCS  
VDD_SPI  
GND  
Input  
Power  
Power  
Positive supply voltage (3.3V) for the SPI interface.  
Exposed  
Pad (EP)  
Ground supply voltage (GND) and ground return path. Connect to board GND (0V).  
a. Internal pull-up (PU) and pull-down (PD) resistors are indicated in parentheses. See Table 22 for values.  
©2016 Integrated Device Technology, Inc  
5
August 4, 2016  
8V79S680 Datasheet  
Principles of Operation  
Overview  
The 8V79S680 is a JESD204B Fanout Buffer with Configurable Phase Delay. The device supports the division, phase-delay and distribution of  
high-frequency clocks (input: CLK, nCLK) and the fanout and phase-delay of low-frequency synchronization (SYSREF) signals (input: REF/nREF).  
Clock and SYSREF signal paths are independent and are organized in channels, with each channel consisting of several clock and SYSREF outputs.  
Outputs are configurable with support for LVPECL, LVDS and four amplitude settings. Individual channels and unused circuit blocks support a  
powered-down state for reduced power consumption operation. The register map, accessible through a SPI interface with read-back capability  
controls the main device settings.  
Signal Flow  
The device offers four channels with the names A, B, C and D. Each channel supports individual frequency-division, phase-delay and fan-out functions  
of the input clock to a total of eight QCLK_y clock outputs; each channel also distributes the SYSREF input signal to multiple QREF_r outputs with  
individual per-output phase delay capability.  
The central clock distribution ensures low skew clock outputs within each channel; outputs are synchronous across channels (independent on the  
divider setting) on the incident rising clock edge for all outputs with equal phase delay settings.  
SYSREF output are synchronous with each other for equal phase-delay settings. QCLK_y and QREF_r outputs will be phase-locked to each other if  
the CLK and REF inputs are phase-locked. The phase-delay capability in each signal path can be used to establish repeatable and deterministic clock  
to SYSREF phase relationships at the outputs.  
The CLK and QREF signal paths are optimized for channel isolation. allowing high-speed clocks of 983.04MHz, 1474.56MHz or 1966.08MHz (up to  
3GHz) and lower-speed SYSREF signals at e.g. 7.68MHz or 9.6MHz with a minimum of signal crosstalk and spurious signals.  
Clock Channel Divider  
Each of the four independent frequency dividers NA-ND can be individually set to the divider values ÷1, ÷2, ÷4, ÷6, ÷8, ÷12, ÷16. The dividers are  
synchronous and have an equal propagation delay on the incident edge. See Table 2 for the supported frequency divider settings.  
Table 2: NA-D Frequency Divider Settings  
NA-D  
Clock Divider  
÷1  
000  
Divider bypass and powered down  
001  
010  
011  
100  
101  
110  
111  
÷2  
÷4  
÷6  
÷8  
÷12  
÷16  
Not defined  
©2016 Integrated Device Technology, Inc  
6
August 4, 2016  
8V79S680 Datasheet  
Phase Delay  
Output phase delay is independently supported on each clock channel and each SYSREF output. The delay unit of the clock channel phase-delay  
circuits CLK_x is a function of the frequency fIN applied to CLK input: 1 ÷ fIN.  
The delay unit of the SYSREF phase-delay circuits REF_r is a function of an internal oscillator frequency fDCO and the DLC multiplier setting. The  
oscillator is fully self-contained and located in delay calibration block (DCB). At startup, this oscillator is calibrated with the input frequency fIN as  
reference. After the calibration, the oscillator is turned-off to save power and to eliminate noise. See Table 3 for details on the delay unit, number of  
available steps and the delay range.  
Table 3: Delay Circuit Characteristics  
Delay Circuit  
Unit  
Steps  
Range  
a
1 ÷ fIN  
256 ÷ fIN  
Clock channel CLK_x  
256  
1.017ns at fIN = 983.04MHz  
0 to 259.3ns at fIN = 983.04MHz  
b
c
TDCB  
0…7 * TDCB  
DLC = 0: 131ps  
DLC = 1: 262ps  
DLC = 2: 393ps  
DLC = 3: 524ps  
DLC = 0: 0 to 0.917ns  
DLC = 1: 0 to 1.834ns  
DLC = 2: 0 to 2.751ns  
DLC = 3: 0 to 3.668ns  
SYSREF REF_r  
8
a. At fIN = 983.04MHz, the clock channel delay range is equal to 260.416ns and encompasses 32 periods of a 122.88MHz clock signal.  
b. TDCB ~ DLC ÷ (8·fDCO). fDCO = 983.04MHz. DLC = 1, 2, 3 or 4.  
c. SYSREF phase delay supports 8 delay stops within one input reference period for fIN = 254.76MHz to fIN = 983.04MHz.  
Delay Calibration Block (DCB)  
The DCB sets the SYSREF delay unit by providing a reference signal to the QREF_r delay circuits. Figure 3 shows the functional diagram. The DCB  
requires configuration and calibration. Verification of the calibration is optional.  
Description. The DCB consists of an internal DCO running at fDCO = 983.04±20MHz, three frequency dividers PDCB, MDCB and NDCB and a digital  
hold circuit. The DCB input frequency is the device input frequency fIN at the differential CLK, nCLK input. The input frequency acts as a reference to  
lock the oscillator to a stable and known frequency.  
The output of the DCB is the effective delay unit TDCB which is approx. one eighth of the oscillator period multiplied by the DLC multiplier. The DLC  
multiplier extends the delay unit by a factor of 1, 2, 3 or 4. For instance, at a DCO frequency of 983.04MHz, DLC = 1 sets the SYSREF delay unit to  
131ps; DLC = 2 sets the delay unit to 262ps, etc.  
Configuration. Select a desired delay unit and corresponding DLC multiplier from Table 4. DLC[1:0] also sets the NDCB divider. Then, find a PDCB  
and MDCB divider configuration to locate the oscillator frequency into the range of fDCO = 983.04MHz according to the formula in Figure 3. The DCO  
lock condition is f1 = f2 while both f1 and f2 must be lower than 200MHz. For instance, if fIN = 245.76MHz and the smallest possible SYSREF delay  
unit is desired, set DLC = 1 (DLC[1:0] = 00; also sets NDCB = ÷1). Then, set PDCB = ÷24 and MDCB = ÷96. As a result, f1 = f2 = 10.24MHz, fDCO  
983.04MHz. This example configuration results in a delay unit of measured: 131ps. Figure 5 shows more configuration examples.  
=
Calibration. Calibration requires a valid DCB configuration with the DCO locking to an input frequency. Setting DCB_CAL = 1 starts an automatic  
calibration. At the end, the DCB_CAL bit will clear, the delay unit value is stored digitally and the DCO, PDCB, MDCB and NDCB frequency dividers turn  
off. The QREF_r delay circuits now use the stored constant delay unit. The delay unit remains digitally stored until the next power cycle. The DCB  
calibration must run once as part of the device startup procedure and must be re-run after each input frequency or DCB configuration change.  
Verification. Verify a successful calibration by reading the DAC_CODE value. 0 < DAC_CODE< 32767 indicates a successful calibration. If  
DAC_CODE = 0 or DAC_CODE = 32767, the DCB calibration should be re-run with an alternative PDCB, MDCB setting while maintaining the desired  
MDCB · NDCB/PDCB ratio for locking the DCO to the input frequency.  
©2016 Integrated Device Technology, Inc  
7
August 4, 2016  
8V79S680 Datasheet  
Figure 3: DCB Functional Diagram  
DCB_CAL  
f
f
IN  
DCO  
----------------------------------------  
----------------  
=
P
M
N  
fIN  
f1  
f2  
DCB  
DCB  
DCB  
÷PDCB  
÷MDCB  
DCO  
983.04±20MHz  
Digital  
Hold  
Delay Unit TDCB  
131ps · (1+DLC[1:0])  
÷NDCB  
f
= 983MHz 20MHz  
DCO  
DLC[1:0]  
Table 4: DCB Delay Unit at fDCO = 983.04MHz  
DLC  
TDCB  
Delay Unit (ps)  
NDCB  
DLC[1:0] Setting  
Numeric Value  
131  
262  
393  
524  
00  
01  
10  
11  
1
2
3
4
1
2
3
4
Table 5: DCB Divider Configuration Examplesa  
TDCB  
Delay Unit in ps  
fIN (MHz)  
DLC  
PDCB  
MDCB  
131  
1
2
3
4
1
2
3
4
1
2
3
4
24  
24  
24  
24  
48  
48  
48  
48  
96  
96  
96  
96  
96  
48  
32  
24  
96  
48  
32  
24  
96  
48  
32  
24  
262  
245.76  
393  
524  
131  
262  
491.52  
393  
524  
131  
262  
983.04  
393  
524  
a. fDCO = 983.04MHz.  
©2016 Integrated Device Technology, Inc  
8
August 4, 2016  
8V79S680 Datasheet  
QCLK to SYSREF Phase Alignment  
To achieve an output phase alignment between the QCLK_y clock and the QREF_r SYSREF outputs, the CLK and REF input signals must be phase  
aligned or have a known, deterministic phase relationship. Figure 4 shows an example output phase alignment for aligned clock and SYREF inputs.  
The closest (smallest phase error) output alignment is achieved by setting the clock phase delay register QCLK_Y to 0x00 (clock) and the SYSREF  
phase delay register QCLK_Y to 0x04. With a SYSREF phase delay setting of 0x03 or less, the QREF_r output phase is in advance of the QCLK_y  
phase, which is applicable in JESD204B application. Phase delay settings and propagation delays are independent on the clock and SYSREF  
frequencies. Table 6 shows recommended phase delay setting several device configurations.  
Figure 4: QCLK to QREF Phase Alignment  
Input Phase  
Alignment  
1017 ps  
CLK  
983.04MHz  
REF  
7.68MHz  
Output Phase  
Alignment  
tPD ~ 550ps  
QCLK_y  
QCLK_y = 0x00  
tPD ~ 900ps + (4·131)ps  
QREF_r  
REF_r = 0x04  
QREF_r in advance of QCLK_y  
QCLK_y  
QCLK_y = 0x00  
131ps  
262ps  
QREF_r  
REF_r = 0x03  
QREF_r  
REF_r = 0x02  
Table 6: Recommended Delay Settings for Closest Clock-SYSREF Output Phase Alignmenta  
Divider Configuration  
CLK_y  
REF_r  
N = ÷1  
0x00  
0x04  
a. QCLK and QREF outputs are aligned on the incident edge.  
©2016 Integrated Device Technology, Inc  
9
August 4, 2016  
8V79S680 Datasheet  
Differential Outputs  
Table 7: Output Features  
Output  
Style  
Ampl.a  
Disable  
Power Down  
DC Bias  
Termination  
d
QCLK_yb, QREF_rc  
250-1000mV  
4 steps  
LVPECL  
LVDS  
50to VT  
Yes  
Yes  
100differentiale f  
(Clock)  
d
LVPECL  
LVDS  
Yesg  
50to VT  
QREF_r  
250-1000mV  
4 steps  
Yes  
Yes  
100differentiale f  
(SYSREF)  
a. Amplitudes are measured single-ended. Differential amplitudes supported are 500mV, 1000mV, 1500mV and 2000mV.  
b. y = A0, A1, A2, B0, B1, C0, C1 and D.  
c. r = A0, A1, A2, B0, B1, C0, C1 and D.  
d. VT = VDD_V – 1.5V (250mV amplitude setting), VDD_V – 1.75V (500mV amplitude setting), VDD_V – 2.0V (750mV amplitude setting),  
VDD_V – 2.25V (1000mV amplitude setting).  
e. AC coupling and DC coupling supported.  
f. See Section “Application Information” on page 42 for output termination information.  
g. In JESD204B applications, it is recommended to use QREF_r (SYSREF) outputs configured to LVDS and 500mV amplitude. AC-coupling  
and DC-coupling is supported. See?? for more information.  
©2016 Integrated Device Technology, Inc  
10  
August 4, 2016  
8V79S680 Datasheet  
Table 8: Individual Clock Output (QCLK_y) Settingsa  
PD STYLE EN  
A[1:0]  
Output Power  
Terminationb  
State  
Amplitude (mV)  
1
X
X
0
X
Off  
100differential (LVDS) or no termination  
Off  
Disablec  
X
X
XX  
00  
01  
10  
11  
XX  
00  
01  
10  
11  
250  
500  
750  
1000  
X
0
100differential (LVDS)  
1
0
1
Enable  
Disable  
Enable  
0
On  
250  
500  
750  
1000  
1
50to VT (LVPECL)  
a. Applicable to clock outputs: QCLK_y and QREF_r outputs in clock mode (MUX_r = 0).  
b. See Section “Application Information” on page 42 for output termination information.  
c. Differential output is disabled in static low state: QCLK_y = L, nQCLK_y = H.  
Table 9: Individual SYSREF Output (QREF_r) Settingsa  
Output  
Power  
PD  
STYLE Enable A[1:0]  
nBIAS  
Terminationb  
State  
Amplitude (mV)  
100differential or no  
1
X
0
X
0
X
X
Off  
Off  
X
termination  
XX  
00  
0
0
0
1
0
0
Disablec  
Enabled  
X
250  
See Table 10  
01  
100differential (LVDS)  
500  
1
10  
11  
XX  
00  
01  
10  
11  
Enabled  
Disable  
750  
1000  
X
0
On  
0
1
250  
500  
750  
1000  
1
0
50to VT (LVPECL)  
Enable  
a. Applicable QREF_r outputs when configured as SYSREF output (MUX_r = 1).  
b. See Section “Application Information” on page 42 for output termination information.  
c. Differential output is disabled in static low state: QCLK_y = L, nQCLK_y = H.  
©2016 Integrated Device Technology, Inc  
11  
August 4, 2016  
8V79S680 Datasheet  
Table 10: QREF_r Setting for JESD204B Applications  
QREF_r Outputs (LVDS, 500mV amplitude)  
BIAS_TYPE nBIAS_r  
Application  
Active Rising Edge on the  
REF Input  
Initial  
SYSREF Completed  
0
Static Low (QREF = L, nQREF_r = H)  
Start switching for the  
number of received  
0
QREF_r DC coupled  
Static Low  
(QREF = L, nQREF_r = H)  
Released to static low  
(QREF = L, nQREF_r = H)  
1
SYSREF pulses  
0
Static LVDS crosspoint level (QREF = nQREF_r = VOS)  
Start switching for the  
number of received  
SYSREF pulses  
Released to static LVDS  
crosspoint level  
(QREF = nQREF_r = VOS)  
1
QREF_r AC coupled  
Static LVDS crosspoint level  
(QREF = nQREF_r = VOS)  
1
©2016 Integrated Device Technology, Inc  
12  
August 4, 2016  
8V79S680 Datasheet  
Device Startup, Reset and Synchronization  
At startup, an internal POR (power-on reset) resets the device and sets all register bits to its default value. In the default configuration the QCLK_y  
and QREF_r outputs are disabled at startup.  
Recommended configuration sequence (in order):  
1. (Optional) set the value of the CPOL register bit to define the SPI read mode, so that SPI settings can be validated by subsequent SPI read  
accesses.  
2. Configure the channel circuits and the outputs to the desired values and configure the DCB:  
Output source MUX_r, output divider NA-D, clock delay A-D; MUX-output style, amplitude and power down mode for QCLK_y and  
QREF_r outputs  
For synchronization between multiple devices: Set NA-D = ÷1 and set BYP_INIT = 1)  
(Optional) the global BIAS_TYPE bit and nBIAS_r for each QREF_r in preparation for JESD204B/SYSREF operation  
Phase delay for REF_r values for the QREF_r outputs  
Setup the DCB settings DLC, PDCB and MDCB as described in the paragraph Configuration, see Delay Calibration Block (DCB)  
3. If not already applied: apply a valid input frequency to CLK. Set the PB_CAL bit and the DCB_CAL bit to start the calibration of the precision  
bias current circuit and the DCB calibration. Both bits will auto-clear. See paragraph Configuration in section Delay Calibration Block (DCB).  
(Optional): verify the success of the DCB calibration by reading the DAC_CODE value. See paragraph Verification in section Delay  
Calibration Block (DCB)  
4. Set the initialization bit INIT_CLK. This will initiate the N_x divider and CLK_x delay circuits and synchronize them to each other. The  
INIT_CLK bit will self-clear.  
5. At this point, the configuration of the registers 0x00 to 0x73 should be completed and the SPI transfer ended. Set nCS to high level.  
6. In a separate SPI write access, enable the outputs as desired by accessing the output-enable registers 0x74 and 0x76.  
Registers in the address range 0x78 to 0xFF should not be used. Do not write into any registers in the 0x78 to 0xFF range.  
Changing Frequency Dividers and Phase Delay Values  
Clock Frequency Divider and Delay  
Following procedure has to be applied for a change of a clock divider and phase delay value NA-D, and CLKA-D:  
1. (Optional) set the value of the CPOL register to define the SPI read mode, so that SPI settings can be validated by subsequent SPI read  
accesses.  
2. (Optional) disable the outputs whose frequency divider or delay value is changed.  
3. Configure the NA-D dividers and the delay circuits CLKA-D to the desired new values.  
For synchronization between multiple devices: Set NA-D = ÷1 and set BYP_INIT = 1)  
4. Set the initialization bit INIT_CLK. This will initiate all divider and delay circuits and synchronize them to each other. The INIT_CLK bit will  
self-clear. During this initialization step, all QCLK_y and QREF_r outputs are reset to the logic low state.  
5. (Optional) Enable the outputs whose frequency divider was changed.  
SYSREF Delay  
Following procedure has to be applied for a change of any SYSREF phase delay value REF_r:  
1. (Optional) set the value of the CPOL register to define the SPI read mode, so that SPI settings can be validated by subsequent SPI read  
accesses.  
2. Configure any delay circuits REF_r to their desired new values. During configuration of REF_r outputs are not stopped or interrupted.  
©2016 Integrated Device Technology, Inc  
13  
August 4, 2016  
8V79S680 Datasheet  
SPI Interface  
The 8V79S680 has a 3-wire serial control port capable of responding as a slave in an SPI configuration to allow read and write access to any of the  
internal registers for device programming or read back. The SPI interface consists of the SCLK (clock), SDAT (serial data input and output), and nCS  
(chip select) pins. A data transfer consists of any integer multiple of 8 bits and is always initiated by the SPI master on the bus. Internal register data  
is organized in SPI bytes of 8 bits each. If nCS is at logic high, the SDAT data I/O is in high-impedance state and the SPI interface of the 8V79S680  
is disabled. In a write operation, data on SDAT will be clocked in on the rising edge of SCLK. In a read operation, data on SDAT will be clocked out  
on the falling or rising edge of SCLK depending on the CPOL setting (CPOL = 0: output data changes on the falling edge, CPOL = 1: output data  
changes on the rising edge).  
Starting a data transfer requires nCS to set and hold at logic low level during the entire transfer. Setting nCS = 0 will enable the SPI interface with  
SDAT in data input mode. The master must initiate the first 8-bit transfer. The first bit presented to the slave is the direction bit R/nW (1 = Read,  
0 = Write) and the following seven bits are the address bits A[0:6] pointing to an internal register in the address space 0 to 127. Data is presented  
with the LSB (least significant bit) first.  
Read operation from an internal register: a read operation starts with an 8 bit transfer from the master to the slave: SDAT is clocked on the rising  
edge of SCLK. The first bit is the direction bit R/nW which must be to 1 to indicate a read transfer, followed by 7 address bits A[0:6]. After the first 8  
bits are clocked into SDAT, the SDAT I/O changes to output: the register content addressed by A[0:6] is loaded into the shift register and the next 8  
SCLK falling clock cycles (if CPOL = 0) will then present the loaded register data on the SDAT output and transfer these to the master. Transfers must  
be completed by de-asserting nCS after any multiple 8 SCLK cycles. If nCS is de-asserted at any other number of SCLKs, the SPI behavior is  
undefined. SPI byte (8 bit) and back-to-back read transfers of multiple registers are supported with an address auto-increment. During multiple  
transfers, nCS must stay at logic low level and SDAT will present multiple registers (A), (A+1), (A+2), etc. with each 8 SCLK cycles. During SPI Read  
operations, the user may continue to hold nCS low and provide further bytes in a single block read.  
Write operation to a 8V79S680 register: During a write transfer, a SPI master transfers one or more bytes of data into the internal registers of the  
8V79S680. A write transfer starts by asserting nCS to low logic level. The first bit presented by the master must set the direction bit R/nW to 0 (Write)  
and the 7 address bits A[0:6] must contain the 7-bit register address. Bits D0 to D7 contain 8 bit of payload data, which is written into the register  
addressed by A[0:6] at the end of a 8-bit write transfer. Multiple, subsequent register transfers from the master to the slave are supported by holding  
nCS asserted at logic low level during write transfers. The 7 bit register address will auto-increment. Transfers must be completed by de-asserting  
nCS after any multiple 8 SCLK cycles. If nCS is de-asserted at any other number of SCLKs, the SPI behavior is undefined.  
End of transfer: After de-asserting nCS, the SPI bus is available to transfers to other slaves on the SPI bus. See also the READ diagram (Figure 5)  
and WRITE diagram (Figure 6) displaying the transfer of two bytes of data from and into registers.  
Registers 0x78 to 0xFF: Registers in the address range 0x78 to 0xFF should not be used. Do not write into any registers in the 0x78 to 0xFF range.  
Figure 5: Logic Diagram: READ Data from 8V79S680 Registers for CPOL = 0 and CPOL = 1  
SCLK  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
nCS  
SDAT, CPOL=0  
SDAT, CPOL=1  
Hi-Imp  
Hi-Imp  
Hi-Imp  
Hi-Imp  
1
1
A0 A1 A2 A3 A4 A5 A6 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7  
A0 A1 A2 A3 A4 A5 A6  
D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7  
Output Register Data  
(Address)  
Output Register Data  
(Address+1)  
Input R=1, 7-bit Address  
©2016 Integrated Device Technology, Inc  
14  
August 4, 2016  
8V79S680 Datasheet  
Figure 6: Logic Diagram WRITE Data into 8V79S680 Registers  
SCLK  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
nCS  
Hi-Imp  
Hi-Imp  
0
A0 A1 A2 A3 A4 A5 A6 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7  
SDAT  
Input Register Data  
Input nW=0, 7-bit Address  
Input Register Data (Address)  
(Address+1)  
Table 11: SPI Read / Write Cycle Timing Parameters  
Symbol  
fSCLK  
Parameter  
Test Condition  
Minimum  
Maximum  
Unit  
SCLK frequency  
20  
MHz  
ns  
tS1  
Setup time, nCS (falling) to SCLK (rising)  
Setup time, SDAT (input) to SCLK (rising)  
Setup time, nCS (rising) to SCLK (rising)  
Hold time, SCLK (rising) to SDAT (input)  
Hold time, SCLK (falling) to nCS (rising)  
Propagation delay, SCLK (falling) to SDAT  
Propagation delay, SCLK (rising) to SDAT  
Propagation delay, nCS to SDAT disable  
5
5
5
5
5
tS2  
ns  
tS3  
ns  
tH1  
ns  
tH2  
ns  
tPD1F  
tPD1R  
tPD2  
CPOL = 0  
CPOL = 1  
12  
12  
12  
ns  
ns  
ns  
Figure 7: SPI Timing Diagram  
tH2  
nCS  
tS3  
tS1  
SCLK  
tS2 tH1  
SDAT  
(Input)  
tPD1F  
tPD1R  
tPD2  
SDAT  
(Output)  
High Impedance  
©2016 Integrated Device Technology, Inc  
15  
August 4, 2016  
8V79S680 Datasheet  
Register Descriptions  
This section contains a list of all addressable registers and a register description, sorted by function, followed for a detailed description of each bit  
field for each register. Several functional blocks with multiple instances in this device have individual registers controlling their settings, but since the  
registers have an identical format and bit meaning, they are described only once, but with an additional table to indicate their addresses and default  
values. All writable register fields will come up with a default values as indicated in the Factory Defaults column unless altered by values loaded from  
non-volatile storage during the initialization sequence.  
Fixed read-only bits will have defaults as indicated in their specific register descriptions. Read-only status bits will reflect valid status of the conditions  
they are designed to monitor once the internal power-up reset has been released. Unused registers and bit positions are Reserved. Reserved bit  
fields will be unaffected by writes and are undefined on reads.  
Table 12: Configuration Registers  
Register Address  
Register Description  
0x00 - 0x17  
0x18 - 0x1B  
0x1C - 0x1F  
0x20  
Reserved  
SYSREF Control  
Reserved  
Channel A, Output Divider  
Channel A Delay CLK_A  
Channel A PD  
0x21  
0x22  
0x23  
Reserved  
0x24  
Output State QCLK_A0  
Output State QCLK_A1  
Output State QCLK_A2  
Reserved  
0x25  
0x26  
0x27  
0x28  
REF_A0 Delay, MUX, PD  
REF_A1 Delay, MUX, PD  
REF_A2 Delay, MUX, PD  
Reserved  
0x29  
0x2A  
0x2B  
0x2C  
Output State QREF_A0  
Output State QREF_A1  
Output State QREF_A2  
Reserved  
0x2D  
0x2E  
0x2F  
0x30  
Channel B, Output Divider  
Channel B Delay CLK_B  
Channel B PD  
0x31  
0x32  
0x33  
Reserved  
0x34  
Output State QCLK_B0  
Output State QCLK_B1  
Reserved  
0x35  
0x36 - 0x37  
©2016 Integrated Device Technology, Inc  
16  
August 4, 2016  
8V79S680 Datasheet  
Table 12: Configuration Registers  
Register Address  
Register Description  
0x38  
0x39  
REF_B0 Delay, MUX, PD  
REF_B1 Delay, MUX, PD  
Reserved  
0x3A-0x3B  
0x3C  
Output State QREF_B0  
Output State QREF_B1  
Reserved  
0x3D  
0x3E-0x3F  
0x40  
Channel C, Output Divider  
Channel C Delay CLK_C  
Channel C PD  
0x41  
0x42  
0x43  
Reserved  
0x44  
Output State QCLK_C0  
Output State QCLK_C1  
Reserved  
0x45  
0x46-0x47  
0x48  
REF_C0 Delay, MUX, PD  
REF_C1 Delay, MUX, PD  
Reserved  
0x49  
0x4A-0x4B  
0x4C  
Output State QREF_C0  
Output State QREF_C1  
Reserved  
0x4D  
0x4E-0x4F  
0x50  
Channel D, Output Divider  
Channel D Delay CLK_D  
Channel D PD  
0x51  
0x52  
0x53  
Reserved  
0x54  
Output State QCLK_D  
Reserved  
0x55-0x57  
0x58  
REF_D Delay, MUX, PD  
Reserved  
0x59-0x5B  
0x5C  
Output State QREF_D  
Reserved  
0x5D-0x6B  
0x6C-0x6D  
0x6E-0x6F  
0x70  
DAC_CODE  
General Control  
Reserved  
0x71-0x73  
0x74  
General Control  
Output State QCLK  
©2016 Integrated Device Technology, Inc  
17  
August 4, 2016  
8V79S680 Datasheet  
Table 12: Configuration Registers  
Register Address  
Register Description  
0x75  
0x76  
Reserved  
Output State QREF  
Reserved  
0x77  
0x78  
Do not use  
Do not use  
Do not use  
Do not use  
Do not use  
Do not use  
Do not use  
Do not use  
0x79  
0x7A  
0x7B  
0x7C-0x7D  
0x7E  
0x7F  
0x80-0xFF  
©2016 Integrated Device Technology, Inc  
18  
August 4, 2016  
8V79S680 Datasheet  
Channel and Clock Output Registers  
The content of the channel register and clock output registers set the clock divider, output style, amplitude, power down state, enable state and the  
clock phase delay.  
Table 13: Channel and Clock Output Register Bit Field Locations  
Bit Field Location  
Register Address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x20  
0x30  
0x40  
0x50  
N_A[2:0]  
N_B[2:0]  
N_C[2:0]  
N_D[2:0]  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x21  
0x31  
0x41  
0x51  
CLK_A[7:0]  
CLK_B[7:0]  
CLK_C[7:0]  
CLK_D[7:0]  
0x22  
0x32  
0x42  
0x52  
PD_A  
PD_B  
PD_C  
PD_D  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x24: QCLK_A0  
0x25: QCLK_A1  
0x26: QCLK_A2  
PD_A0  
PD_A1  
PD_A2  
STYLE_A0  
STYLE_A1  
STYLE_A2  
A_A0[1:0]  
Reserved  
Reserved  
Reserved  
Reserved  
A_A1[1:0]  
A_A2[1:0]  
Reserved  
0x34: QCLK_B0  
0x35: QCLK_B1  
PD_B0  
PD_B1  
STYLE_B0  
STYLE_B1  
A_B0[1:0]  
A_B1[1:0]  
Reserved  
0x44: QCLK_C0  
0x45: QCLK_C1  
PD_C0  
PD_C1  
STYLE_C0  
STYLE_C1  
A_C0[1:0]  
A_C1[1:0]  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x54: QCLK_D  
0x74  
PD_D  
STYLE_D  
A_D[1:0]  
EN_QCLK_A0 EN_QCLK_A1 EN_QCLK_A2 EN_QCLK_B0 EN_QCLK_B1 EN_QCLK_C0 EN_QCLK_C1 EN_QCLK_D  
©2016 Integrated Device Technology, Inc  
19  
August 4, 2016  
8V79S680 Datasheet  
Table 14: Channel and Clock Output Register Descriptionsa  
Register Description  
Default  
Bit Field Name  
Field Type  
Description  
(Binary)  
Output Frequency Divider N  
N_x[2:0]  
Frequency Divider  
000  
001  
010  
011  
100  
101  
110  
111  
÷1 (Divider bypassed and powered-down)  
÷2  
÷4  
000  
÷6  
N_x[2:0]  
R/W  
÷8  
Value: ÷1  
÷12  
÷16  
Not defined  
If N_x[2:0] = 000 (÷1), set BYP_INIT = 1 to exclude the divider from  
initialization.  
0 = Channel x is powered up  
1 = Channel x is powered down  
PD_x  
PD_y  
R/W  
R/W  
0
0
0 = Output QCLK_y is powered up  
1 = Output QCLK_y is powered down  
CLK_x Phase Delay  
CLK_x[7:0] Phase Delay in units of the input period: CLK_x[7:0] ÷ fIN (256 steps).  
0000 0000  
Value: 0ns  
0000 0000  
0000 0001  
0ps  
CLK_x[7:0]  
R/W  
1 ÷ fIN  
1111 1111  
255 ÷ fIN  
©2016 Integrated Device Technology, Inc  
20  
August 4, 2016  
8V79S680 Datasheet  
Table 14: Channel and Clock Output Register Descriptionsa  
Register Description  
Default  
Bit Field Name  
Field Type  
Description  
(Binary)  
QCLK_y Output Amplitude  
Setting for STYLE = 0 (LVDS)  
Setting for STYLE = 1 (LVPECL)  
Termination: 50to VT  
00  
Termination: 100across  
A_y[1:0]  
R/W  
A[1:0] = 00: 250mV  
A[1:0] = 01: 500mV  
A[1:0] = 10: 750mV  
A[1:0] = 11:1000mV  
Value: 250mV  
QCLK_y Output Format:  
0
0 = Output is LVDS (requires LVDS 100output termination)  
STYLE_y  
EN_y  
1 = Output is LVPECL (requires LVPECL 50output termination to the specified  
recommended termination voltage)  
Value: LVDS  
0
QCLK_y Output Enable:  
0 = QCLK_y Output is disabled at the logic low state  
1 = QCLK_y Output is enabled  
Value:  
disabled  
a. x = A, B, C, D; y = A0, A1, A2, B0, B1, C0, C1, D.  
©2016 Integrated Device Technology, Inc  
21  
August 4, 2016  
8V79S680 Datasheet  
QREF Output State Registers  
The content of the QREF output registers selects the source signal of the QREF outputs, set the phase delay, the style, the amplitude, the power  
state, the enable state and the output bias.  
Table 15: QREF Output State Register Bit Field Locationsa  
Bit Field Location  
Register Address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x28: QREF_A0  
0x29: QREF_A1  
0x2A:QREF_A2  
MUX_A0  
MUX_A1  
MUX_A2  
REF_A0[2:0]  
REF_A1[2:0]  
REF_A2[2:0]  
Reserved  
Reserved  
Reserved  
Reserved  
0x38: QREF_B0  
0x39: QREF_B1  
MUX_B0  
MUX_B1  
REF_B0[2:0]  
REF_B1[2:0]  
Reserved  
Reserved  
Reserved  
Reserved  
0x48: QREF_C0  
0x49: QREF_C1  
MUX_C0  
MUX_C1  
REF_C0[2:0]  
REF_C1[2:0]  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x58: QREF_D  
MUX_D  
REF_D[2:0]  
0x2C: QREF_A0  
0x2D: QREF_A1  
0x2E: QREF_A2  
PD_A0  
PD_A1  
PD_A2  
nBIAS_A0  
nBIAS_A1  
nBIAS_A2  
STYLE_A0  
STYLE_A1  
STYLE_A2  
A_A0[1:0]  
Reserved  
Reserved  
A_A1[1:0]  
A_A2[1:0]  
Reserved  
Reserved  
Reserved  
Reserved  
0x3C: QREF_B0  
0x3D: QREF_B1  
PD_B0  
PD_B1  
nBIAS_B0  
nBIAS_B1  
STYLE_B0  
STYLE_B1  
A_B0[1:0]  
A_B1[1:0]  
0x4C: QREF_C0  
0x4D: QREF_C1  
PD_C0  
PD_C1  
nBIAS_C0  
nBIAS_C1  
STYLE_C0  
STYLE_C1  
A_C0[1:0]  
A_C1[1:0]  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x5C: QREF_D  
0x76  
PD_D  
nBIAS_D  
STYLE_D  
A_D[1:0]  
EN_QREF_A0 EN_QREF_A1 EN_QREF_A2 EN_QREF_B0 EN_QREF_B1EN_QREF_C0EN_QREF_C1 EN_QCLK_D  
a. r = A0, A1, A2, B0, B1, C0, C1, D.  
©2016 Integrated Device Technology, Inc  
22  
August 4, 2016  
8V79S680 Datasheet  
Table 16: QREF Output State Register Descriptionsa  
Register Description  
Default  
(Binary)  
Bit Field Name  
Field Type  
Description  
1
0 = QREF_r output signal source is the channel’s clock signal  
MUX_r  
R/W  
1 = QREF_r output signal source is the centrally generated SYSREF signal  
Value: QREF  
= SYSREF  
SYSREF Phase Delay:  
QREF_r delay = REF_r[2:0] · TDCB.  
Delay values for fDCO = 983.04MHz. Delay values are a function of TDCB.  
QREF_r delay in ps for a DLC[1:0] setting of:  
REF_r[2:0]  
000  
00  
01  
10  
0
11  
REF_r[2:0]  
R/W  
000  
001  
010  
0
0
0
Value: 0ps  
131  
262  
262  
524  
393  
786  
524  
1048  
111  
917  
1834  
2751  
3668  
QREF_r Output Bias Voltage:  
Individual QREF_r output LVDS output bias operation. Not applicable to QREF_r outputs  
set to LVPECL mode.  
0 = Normal operation  
1 = Output is biased to the LVDS cross-point voltage if BIAS_TYPE (register 0x19, bit 7)  
is set to 1. Bit has no effect if BIAS_TYPE = 0.  
BIAS_TYPE nBIAS_r  
QREF_r output operation if set to LVDS.  
QREF_r outputs are initially logic low (QREF_r = L,  
nQREF_r = H) and will start switching on the first rising  
edge of the REF input. Use in DC-coupled applications.  
0
0
0
1
nBIAS_r  
R/W  
0
Disabled with static low/high levels. During a SYSREF  
event, the output remains at static low levels (QREF_r = L,  
nQREF_r = H).  
Both QREF_r and nQREF_r outputs are initially set to the  
LVDS crosspoint level (VOS) and will start switching on the  
first rising edge of the REF input. Use in AC-coupled  
applications.  
1
1
0
1
Output is statically set to the LVDS crosspoint voltage.  
During a SYSREF event, the output remains at the LVDS  
crosspoint level (VOS).  
©2016 Integrated Device Technology, Inc  
23  
August 4, 2016  
8V79S680 Datasheet  
Table 16: QREF Output State Register Descriptionsa  
Register Description  
Default  
(Binary)  
Bit Field Name  
Field Type  
Description  
QREF_r Output Amplitude  
Setting for STYLE = 0 (LVDS)  
Setting for STYLE = 1 (LVPECL)  
Termination: 50to VT  
00  
Termination: 100across  
A_r[1:0]  
R/W  
A[1:0] = 00: 250mV  
A[1:0] = 01: 500mV  
A[1:0] = 10: 750mV  
A[1:0] = 11:1000mV  
Value:  
250mV  
QREF_r Output Power Down:  
0
PD_r  
STYLE_r  
EN_r  
R/W  
R/W  
R/W  
0 = Output is powered up  
Value:  
Powered up  
1 = Output is powered down. STYLE, EN and A[1:0] settings have no effect  
QREF_r Output Format:  
0
0 = Output is LVDS (requires LVDS 100output termination)  
Value: LVDS  
0
1 = Output is LVPECL (requires LVPECL 50output termination of to the specified  
recommended termination voltage)  
QREF_r Output Enable:  
0 = Output is disabled at the logic low state  
1 = Output is enabled  
Value:  
Disabled  
a. r = A0, A1, A2, B0, B1, C0, C1, D.  
©2016 Integrated Device Technology, Inc  
24  
August 4, 2016  
8V79S680 Datasheet  
SYSREF Control Registers  
Table 17: SYSREF Control Register Bit Field Locations  
Bit Field Location  
Register Address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x18  
PD_S  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
M_DCB[8]  
0x19  
0x1A  
0x1B  
BIAS_TYPE  
DLC[1:0  
Reserved  
Reserved  
Reserved  
M_DCB[7:0]  
P_DCB[6:0]  
Reserved  
Table 18: SYSREF Control Register Descriptions  
Register Description  
Default  
(Binary)  
Bit Field Name  
Field Type  
Description  
1
SYSREF Global Power-down:  
PD_S  
R/W  
Value:  
Powered  
down  
0 = SYSREF functional blocks are powered-up  
1 = SYSREF functional blocks are powered-down  
SYSREF Output Voltage Bias:  
Global to all QREF_r outputs bit to control the LVDS output operation. Not applicable to  
QREF_r outputs set to LVPECL mode.  
BIAS_TYPE nBIAS_r  
QREF_r output operation if set to LVDS.  
QREF_r outputs are initially logic low (QREF_r = L,  
nQREF_r = H) and will start switching on the first rising  
edge of the REF input. Use in DC-coupled applications.  
0
0
0
1
Disabled with static low/high levels. During a SYSREF  
event, the output remains at static low levels (QREF_r = L,  
nQREF_r = H).  
BIAS_TYPE  
R/W  
1
Both QREF_r and nQREF_r outputs are initially set to the  
LVDS crosspoint level (VOS) and will start switching on the  
first rising edge of the REF input. Use in AC-coupled  
applications.  
1
1
0
1
Output is statically set to the LVDS crosspoint voltage.  
During a SYSREF event, the output remains at the LVDS  
crosspoint level (VOS).  
©2016 Integrated Device Technology, Inc  
25  
August 4, 2016  
8V79S680 Datasheet  
Table 18: SYSREF Control Register Descriptions  
Register Description  
Default  
(Binary)  
Bit Field Name  
Field Type  
Description  
Delay Unit Multiplier:  
Effective delay unit for the SYSREF outputs is (1 + DLC[1:0]) ÷ (8 · fDCO).  
DLC[1:0]  
Effective SYSREF Delay Unit for fDCO = 983.04MHz  
00  
00  
01  
10  
11  
131ps  
262ps  
393ps  
524ps  
DLC[1:0]  
R/W  
Value: 131ps  
0 0000 1000  
Value: 8  
Delay Calibration Block (DCB) DCO feedback divider. Set in conjunction with fIN and  
P_DCB to achieve a DCO frequency of 983.04±20MHz: fDCO = fIN ÷ PDCB · MDCB.  
M_DCB[8:0]  
P_DCB[6:0]  
R/W  
R/W  
000 1000 Delay Calibration Block (DCB) DCO input divider. Set in conjunction with fIN and M_DCB  
to achieve DCO frequency of 983.04±20MHz: fDCO = fIN ÷ PDCB · MDCB. DCO phase  
Value: 8 detector frequency should not exceed 200MHz.  
©2016 Integrated Device Technology, Inc  
26  
August 4, 2016  
8V79S680 Datasheet  
General Control Registers  
Table 19: General Control Register Bit Field Locations  
Bit Field Location  
D4  
Register Address  
D7  
D6  
D5  
D3  
D2  
D1  
D0  
0x6C  
Reserved  
DAC_CODE[14:8]  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
DAC_CODE[7:0]  
Reserved  
Reserved  
Reserved  
INIT_CLK  
DCB_CAL  
PB_CAL  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
PBIAS[5:0]  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
BYP_INIT  
Reserved  
Reserved  
Reserved  
CPOL  
©2016 Integrated Device Technology, Inc  
27  
August 4, 2016  
8V79S680 Datasheet  
Table 20: General Control Register Descriptions  
Register Description  
Default  
(Binary)  
Bit Field Name  
Field Type  
Description  
DAC_CODE is the result of the internal DCB calibration routine. Trigger calibration by  
setting the DCB_CAL bit.  
DAC_CODE[14:0]  
PBIAS[5:0]  
R only  
R only  
X
X
BIAS level.  
Clock divider and phase clock phase delay initialization.  
W only  
Set INIT_CLK = 1 to initialize N_x divider and CLK_x clock phase delay functions.  
Required as part of the startup procedure and after each change of a clock divider or  
clock phase delay value.  
INIT_CLK  
PB_CAL  
X
X
Auto-Clear  
Precision Bias Calibration:  
Set PB_CAL to 1 starts the auto-calibration of an internal precision bias current source.  
The bias current is used as reference for outputs configured as LVDS. This bit will  
auto-clear after the calibration completed. Required to set as part of the startup  
procedure.  
W only  
Auto-Clear  
DCB Calibration:  
Setting this bit to 1 will begin the auto-calibration of the DCB. The DCB provides a  
reference for the SYSREF delay circuits. This bit will auto-clear. This bit should be set as  
part of the startup procedure. The result of the calibration routine is stored in the  
DAC_CODE register.  
W only  
DCB_CAL  
X
Auto-Clear  
Bypass Clock Frequency Divide Initializer:  
0 = The clock dividers NA-D are initialized when INIT_CLK = 1  
BYP_INIT  
CPOL  
R/W  
R/W  
1
0
1 = The clock dividers NA-D are excluded from the initialization. This setting is only  
applicable to NA-D dividers = ÷1 and should be used to achieve output phase alignment  
across multiple devices.  
SPI Read Operation SCLK Polarity:  
0 = Data bits on MISO are output at the falling edge of SCLK edge.  
1 = Data bits on MISO are output at the rising edge of SCLK edge.  
©2016 Integrated Device Technology, Inc  
28  
August 4, 2016  
8V79S680 Datasheet  
Electrical Characteristics  
Absolute Maximum Ratings  
The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the device.  
Functional operation of the 8V79S680 at absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions may affect device  
reliability.  
Table 21: Absolute Maximum Ratings  
Item  
Rating  
Supply Voltage, VDD_V  
Inputs  
3.6V  
-0.5V to VDD_V + 0.5V  
-0.5V to VDD_V + 0.5V  
Outputs, VO (LVCMOS)  
Outputs, IO (LVPECL)  
Continuous Current  
Surge Current  
50mA  
100mA  
Outputs, IO (LVDS)  
Continuous Current  
Surge Current  
50mA  
100mA  
Input termination current, IVT  
±35mA  
Operating Junction Temperature, TJ  
125C  
Storage Temperature, TSTG  
ESD - Human Body Modela  
-65C to 150C  
2000V  
ESD - Charged Device Modela  
500V  
a. According to JEDEC JS-001-2012/JESD22-C101.  
©2016 Integrated Device Technology, Inc  
29  
August 4, 2016  
8V79S680 Datasheet  
Pin Characteristics  
Table 22: Pin Characteristics, VDD_V = 3.3V ± 5%, TA = -40°C to +85°C  
Symbol  
CIN  
Parameter  
Input Capacitance  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
2
4
pF  
k  
k  
RPD  
Input Pull-Down Resistor  
Input Pull-Up Resistor  
SCLK  
nCS  
51  
51  
25  
RPU  
ROUT  
LVCMOS Output Impedance  
SDAT (when output)  
DC Characteristics  
Table 23: Power Supply DC Characteristics, VDD_V = 3.3V ± 5%, TA = -40°C to +85°Ca  
Symbol  
VDD_V  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
Core Supply Voltage  
3.135  
3.3  
3.465  
V
QCLK_y and QREF_r set to LVDS,  
750mV amplitude, terminated 100,  
Nx dividers set to ÷1  
I
DD (Total) Power Supply Current  
705  
mA  
a. Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal  
equilibrium has been reached under these conditions.  
Table 24: Typical Power Supply Current Characteristics, VDD_V = 3.3V, TA = 25°Ca  
Test Case  
Symbol  
Supply Pin Current  
Unit  
1
2
3
4
5
6
Style  
LVPECL  
On  
LVPECL  
On  
LVDS  
On  
LVDS  
On  
LVDS  
On  
LVDS  
On  
QCLK_y  
QREF_r  
State  
Amplitude  
Style  
500  
LVDS  
Off  
750  
LVDS  
Off  
500  
LVDS  
Off  
500  
750  
750  
mV  
LVDS  
On  
LVDS  
On  
LVDS  
On  
State  
Amplitude  
250  
250  
500  
mV  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IDD_CA  
Current through VDD_QCLKA pin(s)  
Current through VDD_QREFA01 pin(s)  
Current through VDD_QREFA2 pin(s)  
Current through VDD_QCLKB pin(s)  
Current through VDD_QREFB pin(s)  
Current through VDD_QCLKC pin(s)  
Current through VDD_QREFC pin(s)  
Current through VDD_QCLKD pin(s)  
109.6  
1.5  
127.3  
1.5  
73.0  
1.5  
73.0  
27.0  
13.5  
48.0  
27.0  
49.0  
27.0  
29.5  
95.0  
26.9  
13.5  
63.0  
27.0  
63.0  
27.0  
36.4  
95.0  
43.0  
20.5  
63.0  
43.0  
63.0  
43.0  
36.4  
IDD_RA01  
IDD_RA2  
IDD_CB  
IDD_RB  
IDD_CC  
IDD_RC  
IDD_CD  
0.8  
0.7  
0.8  
72.4  
1.5  
83.6  
1.5  
48.0  
1.5  
76.2  
1.5  
87.7  
1.5  
49.3  
1.5  
43.8  
49.6  
29.5  
©2016 Integrated Device Technology, Inc  
30  
August 4, 2016  
8V79S680 Datasheet  
Table 24: Typical Power Supply Current Characteristics, VDD_V = 3.3V, TA = 25°Ca  
Test Case  
Symbol  
IDD_RD  
Supply Pin Current  
Unit  
1
2
3
4
5
6
Current through VDD_QREFD pin(s)  
Current through VDD_CLK pin(s)  
Current through VDD_REF pin(s)  
Current through VDD_SPI pin(s)  
Total Device Power Consumption  
0.8  
40.3  
9.8  
0.8  
40.2  
9.8  
0.8  
39.8  
9.7  
13.6  
40.2  
13.6  
40.2  
20.7  
40.1  
mA  
mA  
mA  
mA  
W
IDD_CLK  
IDD_REF  
IDD_SPI  
PTOT  
52.8  
53.5  
54.2  
12.8  
1.223  
1.403  
13.1  
1.377  
1.557  
12.9  
0.885  
0.885  
13.3  
13.4  
13.4  
1.365  
1.365  
1.559  
1.559  
1.766  
1.766  
PTOT, SYS Total System Power Consumptionb  
W
a. fIN (input) = 983.04MHz, fSYSREF = 7.68MHz. Supply current is independent on the output frequency. QCLK_y outputs terminated according  
to amplitude settings. QREF_r outputs unterminated when SYSREF is turned off.  
b. Includes total device power consumption and the power dissipated in external output termination components.  
Table 25: LVCMOS (JESD8-7A, 1.8V) DC Characteristics, VDD_V = 3.3V ± 5%, TA = -40°C to +85°Ca b  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
Positive-going  
input threshold  
voltage  
VT+  
0.660  
1.365  
V
Negative-going  
input threshold  
voltage  
VT-  
0.495  
0.165  
1.170  
V
SCLK, nCS, SDAT  
Hysteresis  
Voltage  
VH  
V
T+ – VT-  
0.780  
150  
V
µA  
µA  
V
Input  
High Current  
IIH  
VDD_V = 3.3V, VIN = 1.8V  
Input  
Low Current  
IIL  
V
DD_V = 3.465V, VIN = 0V  
IOH = -4mA  
-150  
1.4  
Output  
High Voltage  
VOH  
VOL  
SDAT (when output)  
Output  
Low Voltage  
IOL = 4mA  
0.45  
V
a. Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal  
equilibrium has been reached under these conditions.  
b. Table is valid for the SPI interface pins nCS, SCLK and SDAT. SPI inputs have hysteresis.  
©2016 Integrated Device Technology, Inc  
31  
August 4, 2016  
8V79S680 Datasheet  
Table 26: Differential Input DC Characteristics, VDD_V = 3.3V ± 5%, TA = -40°C to +85°Ca  
Symbol  
Parameter  
CLK, nCLK  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
RIN  
Input Resistance  
43.5  
50  
56.5  
REF, nREF  
Differential Input  
Resistance  
CLK, nCLK  
REF, nREF  
RIN_DIFF  
87  
100  
113  
a. Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal  
equilibrium has been reached under these conditions.  
Table 27: LVPECL DC Characteristics (QCLK_y, QREF_r, STYLE = 1), VDD_V = 3.3V ± 5%, TA = -40°C to +85°Ca  
Symbol  
VOH  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
Output High Voltageb  
Any Amplitude Setting  
250mV Amplitude Setting  
500mV Amplitude Setting  
750mV Amplitude Setting  
1000mV Amplitude Setting  
VDD_V - 1.10 VDD_V - 0.85 VDD_V - 0.65  
VDD_V - 1.30 VDD_V - 1.15 VDD_V - 1.10  
VDD_V - 1.55 VDD_V - 1.40 VDD_V - 1.25  
V
V
V
V
V
VOL  
Output Low Voltageb  
V
DD_V - 1.80 VDD_V - 1.65 VDD_V - 1.50  
VDD_V - 2.10 VDD_V - 1.90 VDD_V - 1.75  
a. Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal  
equilibrium has been reached under these conditions.  
b. Outputs terminated with 50to VDD_V – 1.5V (250mV amplitude setting), VDD_V – 1.75V (500mV amplitude setting), VDD_V – 2.0V (750mV  
amplitude setting), VDD_V – 2.25V (1000mV amplitude setting).VDD_V.  
Table 28: LVDS DC Characteristics (QCLK_y, QREF_r, STYLE = 0), VDD_V = 3.3V ± 5%, TA = -40°C to +85°Ca b  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
250mV Amplitude Setting  
500mV Amplitude Setting  
750mV Amplitude Setting  
1000mV Amplitude Setting  
2.00  
1.80  
1.70  
1.55  
2.40  
2.23  
2.08  
1.93  
2.80  
2.60  
2.50  
2.35  
50  
V
V
VOS  
Offset Voltagec  
V
V
VOS  
VOS Magnitude Change  
mV  
a. Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal  
equilibrium has been reached under these conditions.  
b. Outputs are terminated 100  
c. VOS changes with VDD_V.  
©2016 Integrated Device Technology, Inc  
32  
August 4, 2016  
8V79S680 Datasheet  
AC Characteristics  
Table 29: AC Characteristics, VDD_V = 3.3V ± 5%, TA = -40°C to +85°Ca  
Symbol  
fIN  
Parameter  
Test Conditions  
Minimum Typical  
Maximum  
Units  
CLK, nCLK  
0
0
983.04  
3000  
100  
MHz  
MHz  
Input Frequencyb  
REF, nREF  
CLK, nCLK  
REF, nREF  
Input Voltage  
Amplitudec  
VIN  
0.15  
0.3  
1.2  
2.4  
V
V
Differential Input  
CLK, nCLK  
REF, nREF  
VDIFF_IN Voltage  
Amplitudec d  
VCMR  
fOUT  
Common Mode Input Voltage  
Output Frequency  
1.125  
VDD_V – (VIN / 2)  
V
QCLK, QREF (Clock), N = ÷1 to ÷16  
QREF (SYSREF)  
0
0
983.04  
3000÷N  
100  
MHz  
MHz  
%
QCLK, QREF (Clock), fCLK 2500MHz  
45  
50  
50  
50  
55  
QCLK, QREF (Clock),  
2500MHz < fCLK 3000MHz  
odc  
Output Duty Cyclee  
43  
45  
57  
%
QREF (SYSREF at 7.68MHz)  
QCLK, QREF (LVPECL), 20% to 80%  
QCLK, QREF (LVDS), 20% to 80%  
QREF (SYSREF, LVDS), 20% to 80%  
250mV Amplitude Setting  
500mV Amplitude Setting  
750mV Amplitude Setting  
1000mV Amplitude Setting  
250mV Amplitude Setting  
500mV Amplitude Setting  
750mV Amplitude Setting  
1000mV Amplitude Setting  
250mV Amplitude Setting  
500mV Amplitude Setting  
750mV Amplitude Setting  
1000mV Amplitude Setting  
250mV Amplitude Setting  
500mV Amplitude Setting  
750mV Amplitude Setting  
1000mV Amplitude Setting  
55  
%
250  
ps  
t
R / tF  
Output Rise/Fall Time  
250  
ps  
250  
ps  
260  
430  
675  
950  
520  
860  
1350  
1900  
190  
400  
625  
800  
380  
800  
1250  
1600  
300  
532  
320  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
650  
LVPECL Output Voltage Swing,  
Peak-to-peak, 983.04MHz  
785  
920  
981  
1150  
640  
f
VO(PP)  
600  
LVPECL Differential Output  
Voltage Swing, Peak-to-peak,  
983.04MHz  
1064  
1570  
1962  
240  
1300  
1840  
2300  
280  
500  
570  
LVDS Output Voltage Swing,  
Peak-to-peak, 983.04MHz  
750  
840  
1000  
480  
1160  
560  
g
VO(PP)  
LVDS Differential Output  
Voltage Swing, Peak-to-peak,  
983.04MHz  
1000  
1500  
2000  
1140  
1680  
2320  
©2016 Integrated Device Technology, Inc  
33  
August 4, 2016  
8V79S680 Datasheet  
Table 29: AC Characteristics, VDD_V = 3.3V ± 5%, TA = -40°C to +85°Ca  
Symbol  
Parameter  
Test Conditions  
QCLK (same N divider)j  
Minimum Typical  
Maximum  
Units  
100  
100  
100  
100  
190  
375  
375  
850  
850  
1050  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
QCLK (any N divider, incident rising edge)  
QREF (Clock)  
Output Skew; NOTEh i  
All delays set to 0  
tsk(o)  
QREF (SYSREF)  
QCLK to QREF (QREF as clock output)j  
CLK to any QCLKj  
Part-to-part skew  
All delays set to 0  
tsk(pp)  
REF to any QREF  
CLK to QCLK_yj  
CLK to QCLK_y (divider bypass)j  
300  
Propagation Delayj  
tPD  
300  
700  
550  
900  
All delay circuits set to 0  
REF to QREF_r (REF_y = 0)  
Propagation delay variation  
between the clock input and  
any QCLK_y output  
tPD  
CLK to QCLK_yj  
-100  
+100  
ps  
fQCLK_y = 983.04MHzk  
QCLK-QCLK and QREF-QREF fQCLK_y = 491.52MHzk  
60  
65  
70  
dB  
dB  
dB  
Output isolation between any  
outputs  
fQCLK_y = 245.76MHzk  
Output isolation between any fQCLK_y = 983.04MHz, 491.52MHz,  
50  
dB  
QREF/QCLK outputs  
245.76MHz; fQREF_r = 7.68MHz  
a. Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal  
equilibrium has been reached under these conditions.  
b. The CLK, nCLK input supports 0Hz if the applied static signal has a minimum amplitude as specified by VIN, VDIFF_IN.  
For REF, nREF interfaces at 0Hz, See “CLK, nCLK and REF, nREF Interface in JESD204B Applications”.  
c. VIL should not be less than -0.3V and VIH should not be greater than VDD_V.  
d. Common Mode Input Voltage is defined as the cross-point voltage.  
e. Input = 50% duty cycle.  
f. LVPECL outputs terminated with 50to VT = VDD_V – 1.5V (250mV amplitude setting), VDD_V – 1.75V (500mV amplitude setting),  
VDD_V – 2.0V (750mV amplitude setting), VDD_V – 2.25V (1000mV amplitude setting).  
g. LVDS outputs terminated 100across Q, nQ.  
h. This parameter is defined in accordance with JEDEC standard 65.  
i. Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the differential cross points  
j. All frequency dividers N are in ÷1, ÷2, ÷4 or ÷8; output amplitude setting 750mV.  
k. Output amplitudes set to 500mV or 750mV.  
©2016 Integrated Device Technology, Inc  
34  
August 4, 2016  
8V79S680 Datasheet  
Table 30: DCB and Phase Delay Characteristics, VDD_V = 3.3V ± 5%, TA = -40°C to +85°C a  
Symbol  
Parameter  
DCO Lock Range  
Test Conditions  
Minimum Typical Maximum Units  
fDCO  
963.04  
115  
230  
345  
460  
113  
226  
339  
452  
112  
224  
336  
448  
983.04  
131  
262  
393  
524  
134  
268  
402  
536  
128  
256  
384  
512  
1017  
1003.04  
150  
300  
450  
600  
152  
304  
456  
608  
142  
284  
426  
568  
MHz  
ps  
DLC = 1 (DLC[1:0] = 00)  
DLC = 2 (DLC[1:0] = 01)  
DLC = 3 (DLC[1:0] = 10)  
DLC = 4 (DLC[1:0] = 11)  
DLC = 1 (DLC[1:0] = 00)  
DLC = 2 (DLC[1:0] = 01)  
DLC = 3 (DLC[1:0] = 10)  
DLC = 4 (DLC[1:0] = 11)  
DLC = 1 (DLC[1:0] = 00)  
DLC = 2 (DLC[1:0] = 01)  
DLC = 3 (DLC[1:0] = 10)  
DLC = 4 (DLC[1:0] = 11)  
ps  
fDCO = 983.04MHz  
ps  
ps  
ps  
ps  
f
DCO = 963.04MHz  
TDCB  
REF_r Delay Unit Range  
(min DCO frequency)  
ps  
ps  
ps  
ps  
f
DCO = 1003.04MHz  
(max DCO frequency)  
ps  
ps  
b
TIN  
CLK_x Delay Unit  
fIN = 983.04MHz  
ps  
f1, f2  
DCO Phase Detector Frequency  
200  
+30  
MHz  
REF_r delay unit  
variation (deviation  
from nominal,  
-30  
-20  
0
0
ps  
ps  
DLC[1:0] = 00)  
tD  
Delay unit variation  
CLK_y delay unit  
variation (deviation  
from nominal)  
+20  
a. Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal  
equilibrium has been reached under these conditions.  
b. CLK_x clock channel delay unit is equal to 1 ÷ fIN.  
©2016 Integrated Device Technology, Inc  
35  
August 4, 2016  
8V79S680 Datasheet  
Additive Clock Phase Noise Characteristics  
The 8V79S680 is a buffer device, it does not filter the phase noise on the input clock source. Phase noise caused by noise sources within the device  
can add to the input signal noise, resulting in an increased noise on the outputs (additive phase noise). Phase noise from within the part is not  
correlated with the noise on the input, therefore the root-sum-square method must be used to calculate the output phase noise:  
OUT2 = IN2  DEVICE2. As a consequence, at frequency offsets where the input phase noise IN is higher than internal noise sources, the effect  
of additive phase noise is not measurable.  
Simulations of the device phase noise performance are done with an ideal input source, however, simulation models may not account for all possible  
internal noise sources. Table 31 shows the simulation results for the 8V79S680 buffer with an ideal input source. Table 33 shows output phase noise  
measured with a low-noise input source, with one column for the measured data and a second column which de-rates the measured data by a factor  
to model the process variation. Table 33 shows that the input phase noise is the dominating factor in the measured data up to an offset of 100kHz.  
Above 100kHz, the noise floor of the device dominates the characteristics.  
Table 31: Additive Clock Phase Noise Characteristics (Simulationa), VDD_V = 3.3V ± 5%b  
Symbol  
N(1k)  
Parameter  
Test Conditions  
1kHz offset from Carrier  
10kHz offset from Carrier  
25°C  
85°C, Worst Case  
Units  
-146.2  
-156.6  
-161.9  
-162.4  
-162.4  
-141.6  
-152.7  
-159.2  
-159.8  
-159.9  
-134.5  
-141.4  
-155.8  
-157.2  
-157.2  
-145.5  
-155.3  
-159.6  
-160.5  
-160.5  
-141.6  
-151.6  
-157.0  
-158.1  
-158.2  
-132.0  
-141.8  
-152.6  
-155.3  
-155.8  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
N(10k)  
N(100k)  
N(1M)  
N(10M)  
N(1k)  
245.76MHz 100kHz offset from Carrier  
1MHz offset from Carrier  
10MHz offset from Carrier and Noise Floor  
1kHz offset from Carrier  
10kHz offset from Carrier  
N(10k)  
N(100k)  
N(1M)  
N(10M)  
N(1k)  
QCLK_y  
491.52MHz 100kHz offset from Carrier  
1MHz offset from Carrier  
Phase Noise  
10MHz offset from Carrier and Noise Floor  
1kHz offset from Carrier  
10kHz offset from Carrier  
N(10k)  
N(100k)  
N(1M)  
N(10M)  
983.04MHz 100kHz offset from Carrier  
1MHz offset from Carrier  
10MHz offset from Carrier and Noise Floor  
a. Ideal input signal: rectangular clock signal with a slew rate of 5V/ns and without phase noise.  
b. Phase noise and spurious specifications apply for device operation with QREF_r outputs inactive (no SYSREF pulses generated). Phase  
noise specifications are applicable for all outputs active, Nx not equal, process and voltage variations included.  
©2016 Integrated Device Technology, Inc  
36  
August 4, 2016  
8V79S680 Datasheet  
Figure 8: Additive Clock Phase Noise Characteristics (85°C, Worst Case Simulation Model)  
983.04MHz  
491.52MHz  
245.76MHz  
Offset (Hz)  
©2016 Integrated Device Technology, Inc  
37  
August 4, 2016  
8V79S680 Datasheet  
Table 32: Additive Clock Phase Noise Characteristics (Measured), V  
= 3.3V ± 5%, TA = -40°C to +85°C a b  
DD_V  
Symbol  
Parameter  
Test Conditions  
1kHz offset from Carrier  
10kHz offset from Carrier  
Measuredc  
De-Ratedd  
Units  
(1k)  
-141.4  
-151.7  
-157.8  
-158.6  
-158.8  
-135.3  
-145.8  
-154.2  
-157.2  
-157.6  
-131.3  
-141.2  
-149.6  
-154.5  
-155.3  
-137.2  
-149.5  
-155.5  
-156.2  
-156.3  
-128.4  
-140.5  
-149.5  
-155.4  
-156.3  
-125.7  
-138.5  
-146.5  
-152.2  
-152.5  
100  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
fs  
N
(10k)  
N
(100k)  
245.76MHz 100kHz offset from Carrier  
1MHz offset from Carrier  
N
(1M)  
N
(10M)  
10MHz offset from Carrier and Noise Floor  
N
(1k)  
1kHz offset from Carrier  
10kHz offset from Carrier  
N
(10k)  
N
QCLK  
(100k)  
491.52MHz 100kHz offset from Carrier  
1MHz offset from Carrier  
N
Phase Noise  
(1M)  
N
(10M)  
10MHz offset from Carrier and Noise Floor  
N
(1k)  
1kHz offset from Carrier  
10kHz offset from Carrier  
N
(10k)  
N
(100k)  
983.04MHz 100kHz offset from Carrier  
1MHz offset from Carrier  
N
(1M)  
N
(10M)  
10MHz offset from Carrier and Noise Floor  
N
Integration Range: 1kHz - 61.44MHz  
Integration Range: 12kHz - 20MHz  
Clock RMS Phase Jitter  
(Random)  
tjit(Ø)  
100  
fs  
a. Phase noise and spurious specifications apply for device operation with QREF_r outputs inactive (no SYSREF pulses generated). Phase  
noise specifications are applicable for all outputs active, Nx not equal.  
b. Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal  
equilibrium has been reached under these conditions.  
c. Measured results at the max. temperature of 85°C using an input source with a phase noise characteristics of:  
• 245.76MHz: -143.7dBc/Hz (1kHz offset), -152.5dBc/Hz (10kHz), -160.8dBc/Hz (100kHz), -172.6dBc/Hz (1MHz), -179.5dBc/Hz (10MHz).  
• 491.52MHz: -137.7dBc/Hz (1kHz offset), -147.4dBc/Hz (10kHz), -156.1dBc/Hz (100kHz), -167.6dBc/Hz (1MHz), -170.1dBc/Hz (10MHz).  
• 983.04MHz: -132.5dBc/Hz (1kHz offset), -141.4dBc/Hz (10kHz), -149.9dBc/Hz (100kHz), -161.4dBc/Hz (1MHz), -164.2dBc/Hz (10MHz).  
d. De-rating factor applied to the characterized data at 85°C to account for worst-case process variation.  
©2016 Integrated Device Technology, Inc  
38  
August 4, 2016  
8V79S680 Datasheet  
Figure 9: Additive Clock Phase Noise Characteristics (Measured), fCLK = 245.76MHz  
Characterized and de-rated for process variation  
Characterized (high temperature)  
Low phase noise input source  
Offset (Hz)  
©2016 Integrated Device Technology, Inc  
39  
August 4, 2016  
8V79S680 Datasheet  
Figure 10: Additive Clock Phase Noise Characteristics (Measured), fCLK = 491.52MHz  
Characterized and de-rated for process variation  
Characterized (high temperature)  
Low phase noise input source  
Offset (Hz)  
©2016 Integrated Device Technology, Inc  
40  
August 4, 2016  
8V79S680 Datasheet  
Figure 11: Additive Clock Phase Noise Characteristics (Measured), fCLK = 983.04MHz  
Characterized and de-rated for process variation  
Characterized (high temperature)  
Low phase noise input source  
Offset (Hz)  
Symbol  
Parameter  
Test Conditions  
Typical  
Units  
(1k)  
1kHz offset from Carrier  
-146  
-152.5  
-156  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
N
(10k)  
10kHz offset from Carrier  
100kHz offset from Carrier  
1MHz offset from Carrier  
1kHz offset from Carrier  
10kHz offset from Carrier  
100kHz offset from Carrier  
1MHz offset from Carrier  
N
a
c
15.36MHz  
30.72MHz  
(100k)  
N
(1M)  
-156  
N
QREF_r  
Phase Noise  
(1k)  
-147.5  
-153.5  
-155.5  
-155.5  
N
(10k)  
N
(100k)  
N
(1M)  
N
a. Measured results with DLC[1:0] = 00 and REF_r = 3.  
©2016 Integrated Device Technology, Inc  
41  
August 4, 2016  
8V79S680 Datasheet  
Application Information  
Termination for QCLK_y, QREF_r LVDS Outputs (STYLE = 0)  
Figure 12 shows an example termination for the QCLK_y, QREF_r LVDS outputs. In this example, the characteristic transmission line impedance is  
50. The termination resistor R (100) is matched to the line impedance. The termination resistor must be placed at the line end. No external  
termination resistor is required if R is an internal part of the receiver circuit. The LVDS termination in Figure 12 is applicable for any output amplitude  
setting specified in Table 7.  
Figure 12: LVDS (STYLE = 0) Output Termination  
V
DD_V  
T = 50  
R = 100  
LVDS  
AC Termination for QCLK_y, QREF_r LVDS Outputs (STYLE = 0)  
Figure 13 and Figure 14 show example AC terminations for the QCLK_y, QREF_r LVDS outputs. In the examples, the characteristic  
transmission line impedance is 50. In Figure 13, the termination resistor R (100) is placed at the line end. No external termination resistor is  
required if R is an internal part of the receiver circuit, which is shown in Figure 14. The LVDS terminations in both Figure 13 and Figure 14 are  
applicable for any output amplitude setting specified in Table 7. The receiver input should be re-biased according to its common mode range  
specifications.  
Figure 13: LVDS (STYLE = 0) AC Output Termination  
VBIAS  
V
DD_V  
0.1µF  
0.1µF  
T = 50  
R = 100  
LVDS  
Figure 14: LVDS (STYLE = 0) AC Output Termination  
V
DD_V  
0.1µF  
0.1µF  
T = 50  
LVDS  
R = 100  
©2016 Integrated Device Technology, Inc  
42  
August 4, 2016  
8V79S680 Datasheet  
Termination for QCLK_y, QREF_r LVPECL Outputs (STYLE = 1)  
Figure 15 shows an example termination for the QCLK_y, QREF_r LVPECL outputs. In this example, the characteristic transmission line impedance  
is 50 The R1 (50) and R2 (50) resistors are matched load terminations. The output is terminated to the termination voltage V The V must  
.
T
T
be set according to the output amplitude setting defined in Table 7. The termination resistors must be placed close at the line end.  
Figure 15: LVPECL (STYLE = 1) Output Termination  
V = V  
- 1.50V (250 mV Amplitude)  
- 1.75V (500 mV Amplitude)  
- 2.00V (750mV Amplitude)  
- 2.25V (1000mV Amplitude)  
T
DD_V  
DD_V  
DD_V  
DD_V  
V = V  
T
V = V  
T
V = V  
V
V
T
T
DD_V  
R = 50  
R = 50  
2
1
T = 50  
LVPECL  
©2016 Integrated Device Technology, Inc  
43  
August 4, 2016  
8V79S680 Datasheet  
Package Exposed Pad Thermal Release Path  
In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed  
Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in  
Figure 16. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on  
the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the  
land pattern and the inner edges of pad pattern for the leads to avoid any shorts.  
While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint,  
thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground  
through these vias. The vias act as “heat pipes”. The number of vias (i.e. “heat pipes”) are application specific and dependent upon the package power  
dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the  
minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is  
recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to  
0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result  
in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed  
heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For further information, refer to the Application Note  
on the Surface Mount Assembly of Amkor’s Thermally/Electrically Enhance Lead-frame Base Package, Amkor Technology.  
Figure 16: Assembly for Exposed Pad Thermal Release Path - Side View (drawing not to scale)  
SOLDER  
SOLDER  
PIN  
EXPOSED HEAT SLUG  
PIN  
PIN PAD  
GROUND PLANE  
LAND PATTERN  
(GROUND PAD)  
PIN PAD  
THERMAL VIA  
©2016 Integrated Device Technology, Inc  
44  
August 4, 2016  
8V79S680 Datasheet  
Thermal Characteristics  
Table 33: Thermal Resistance for 64 VFQFN-P Packagea  
Symbol  
Thermal Parameter  
Condition  
Value  
Unit  
0 m/s air flow  
1 m/s air flow  
2 m/s air flow  
3 m/s air flow  
4 m/s air flow  
5 m/s air flow  
22.76  
19.25  
17.70  
16.87  
16.37  
16.03  
14.33  
1.1  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
JA  
Junction to ambient  
Junction to case  
Junction to board  
JC  
JB  
a. Standard JEDEC 2S2P multilayer PCB.  
Case Temperature Considerations  
This device supports applications in a natural convection environment which does not have any thermal conductivity through ambient air. The printed  
circuit board (PCB) is typically in a sealed enclosure without any natural or forced air flow and is kept at or below a specific temperature. The device  
package design incorporates an exposed pad (ePad) with enhanced thermal parameters which is soldered to the PCB where most of the heat  
escapes from the bottom exposed pad. For this type of application, it is recommended to use the junction-to-board thermal characterization parameter  
(Psi-JB) to calculate the junction temperature (T ) and ensure it does not exceed the maximum allowed operating junction temperature in the  
JB  
J
Absolute Maximum Rating table.  
The junction-to-board thermal characterization parameter, is calculated using the following equation:  
JB,  
T = T + x P where:  
J
CB  
JB  
D,  
o
TJ = Junction temperature at steady state condition in ( C)  
o
T
CB = Case temperature (Bottom) at steady state condition in ( C)  
JB = Thermal characterization parameter to report the difference between junction temperature and the temperature of the board  
measured at the top surface of the board  
PD = power dissipation (W) in desired operating configuration  
T
J
T
CB  
The ePad provides a low thermal resistance path for heat transfer to the PCB and represents the key pathway to transfer heat away from the IC to  
the PCB. It’s critical that the connection of the exposed pad to the PCB is properly constructed to maintain the desired IC case temperature (T ). A  
CB  
good connection ensures that temperature at the exposed pad (T ) and the board temperature (T ) are relatively the same. An improper connection  
CB  
B
can lead to increased junction temperature, increased power consumption and decreased electrical performance. In addition, there could be  
long-term reliability issues and increased failure rate.  
©2016 Integrated Device Technology, Inc  
45  
August 4, 2016  
8V79S680 Datasheet  
Example Calculation for Junction Temperature (T ): T = T  
+ x P  
JB D  
J
J
CB  
Table 34: Thermal Resistance for 64 VFQFN-P packagea  
Package type  
Body size (mm)  
64 VFQFN-P  
9mmx9mmx0.85mm  
6.00mm x 6.00mm  
8x8 Matrix  
ePad size (mm)  
Thermal Via  
1.1 C/W  
JB  
CB  
D
o
T
P
85 C  
b
1.766 W  
a. Standard JEDEC 2S2P multilayer PCB.  
b. See Table 24, test case 6.  
o
o
o
For the variables above, the junction temperature is T = T + x P = 85 C + 1.1 C/W x 1.766W = 86.9 C. Since this operating junction  
J
CB  
JB  
D
o
temperature is below the maximum operating junction temperature of 125 C, there are no long term reliability concerns. In addition, since the junction  
temperature at which the device was characterized using forced convection is 87.6 C, this device can function without the degradation of the specified  
o
AC or DC parameters.  
©2016 Integrated Device Technology, Inc  
46  
August 4, 2016  
8V79S680 Datasheet  
Package Drawings  
Figure 17: Package Drawings  
©2016 Integrated Device Technology, Inc  
47  
August 4, 2016  
8V79S680 Datasheet  
Recommended Land Pattern  
Figure 18: Recommended Land Pattern  
©2016 Integrated Device Technology, Inc  
48  
August 4, 2016  
8V79S680 Datasheet  
Ordering Information  
Orderable Part Number  
Package  
MSL Rating  
Shipping Packaging  
Temperature  
8V79S680NLGI  
8V79S680NLGI8  
3
3
Tray  
RoHS 6/6 64 VFQFN-P  
-40°C to +85°C  
Tape and Reel  
Marking Diagram  
IDT  
8V79S680NLGI  
#YYWW$  
LOT C00  
©2016 Integrated Device Technology, Inc  
49  
August 4, 2016  
8V79S680 Datasheet  
Revision History  
Date  
Description of Change  
8/4/16  
Initial Final datasheet.  
©2016 Integrated Device Technology, Inc  
50  
August 4, 2016  
8V79S680 Datasheet  
Glossary  
Abbreviation  
Description  
Index x  
Index y  
Index r  
Denominates a channel, channel frequency divider and the associated configuration bits. Range: A, B, C, D.  
Denominates a QCLK output and associated configuration bits. Range: A0, A1, A2, B0, B1, C0, C1, D.  
Denominates a QREF output and associated configuration bits. Range: A0, A1, A2, B0, B1, C0, C1, D.  
Denominates voltage supply pins. Range: V  
V
V
V
V
DD_QCLKA, DD_QREFA01, DD_QREFA2, DD_QCLKB, DD_QREFB,  
V
DD_V  
V
, V  
V
V
V
V
DD_QCLKC DD_QREFC, DD_QCLKD, DD_QREFD, DD_CLK, DD_REF.  
[...]  
Index brackets describe a group associated with a logical function or a bank of outputs.  
List of discrete values.  
{…}  
©2016 Integrated Device Technology, Inc  
51  
August 4, 2016  
8V79S680 Datasheet  
Corporate Headquarters  
6024 Silver Creek Valley Road  
San Jose, CA 95138 USA  
www.IDT.com  
Sales  
Tech Support  
www.idt.com/go/support  
1-800-345-7015 or 408-284-8200  
Fax: 408-284-2775  
www.IDT.com/go/sales  
DISCLAIMER Integrated Device Technology, Inc. (IDT) reserves the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance specifications  
and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein  
is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability,  
or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.  
IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably  
expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of  
IDT or their respective third party owners.  
For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary.  
Copyright ©2016 Integrated Device Technology, Inc. All rights reserved.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY