8V89308ANLGI [IDT]

Jitter Attenuator & FemtoClock Multiplier;
8V89308ANLGI
型号: 8V89308ANLGI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Jitter Attenuator & FemtoClock Multiplier

衰减器 PC 电信 电信集成电路
文件: 总23页 (文件大小:462K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Jitter Attenuator & FemtoClock® Multiplier  
IDT8V89308I  
DATA SHEET  
General Description  
Features  
The IDT8V89308I is a PLL based synchronous multiplier specifically  
designed for applications utilizing Broadcom PHYs and Switches.  
This high performance device is optimized for Ethernet / SONET /  
PDH frequency translation and clock jitter attenuation. The device  
contains two internal frequency multiplication stages that are  
cascaded in series. The first stage is a low bandwidth PLL that is  
optimized to provide reference clock jitter attenuation. The second  
stage is a FemtoClock® frequency multiplier that provides the low  
jitter, high frequency Ethernet output clock that easily meets Gigabit  
and 10 Gigabit Ethernet jitter requirements. Pre-divider and output  
divider multiplication ratios are selected using device selection  
control pins. The multiplication ratios are optimized to support most  
common clock rates used in Ethernet, SONET, PDH applications.  
IDT8V89308I requires the use of an external, inexpensive  
fundamental mode crystal and uses external passive loop filter  
components which allows configuration of the PLL loop bandwidth  
and damping characteristics. The device is packaged in a  
space-saving 32-VFQFN package and supports industrial  
temperature range.  
Two LVPECL output pairs  
Each output supports independent frequency selection at 25MHz,  
125MHz and 156.25MHz  
One differential input supports the following input types: LVPECL,  
LVDS  
Accepts input frequencies 8kHz, 25MHz,125MHz and 155.52MHz  
First stage PLL bandwidth can be optimized for jitter attenuation  
and reference tracking using external loop filter connection  
FemtoClock frequency multiplier provides low jitter, high  
frequency output  
Absolute pull range: 50ppm  
FemtoClock VCO frequency: 625MHz  
RMS phase jitter @ 25MHz, using a 25MHz crystal  
(12kHz – 5MHz): 0.238ps (typical), 0.30ps (maximum)  
RMS phase jitter @ 125MHz, using a 25MHz crystal  
(12kHz – 20MHz): 0.223ps (typical), 0.30ps (maximum)  
RMS phase jitter @ 156.25MHz, using a 25MHz crystal  
(12kHz – 20MHz): 0.223ps (typical), 0.30ps (maximum)  
3.3V supply voltage  
-40°C to 85°C ambient operating temperature  
Available in lead-free (RoHS 6) package  
Pin Assignment  
32 31 30 29 28 27 26 25  
1
2
3
4
5
LF1  
VEE  
24  
23  
22  
21  
20  
LF0  
nQB  
QB  
ISET  
VCCO  
nQA  
VEE  
nc  
VCC  
6
7
8
QA  
19  
18  
17  
RESERVED  
VEE  
_
ODASEL 0  
VEE  
9
10 11 12 13 14 15 16  
IDT8V89308I  
32 Lead VFQFN  
5mm x 5mm x 0.925mm package body  
NL Package  
Top View  
IDT8V89308ANLGI REVISION A JUNE 18, 2012  
1
©2012 Integrated Device Technology, Inc.  
IDT8V89308I Data Sheet  
JITTER ATTENUATOR & FEMTOCLOCK® MULTIPLIER  
Block Diagram  
Loop  
Filter  
25MHz  
Output Divider  
QA  
Pullup  
PDSEL_[2:0]  
(default)  
00 = 25  
nQA  
01 = 5  
10 = 4  
Phase  
Input  
Pre-Divider  
Detector  
2
Pulldown  
ODASEL_[1:0]  
XTAL  
Oscillator  
FemtoClock PLL  
625MHz  
CLK1  
000 = 1  
Charge  
Pump  
nCLK1  
100 = 3125  
110 = 15625  
111 = 19440  
Output Divider  
Feedback Divider  
÷3125  
QB  
(default)  
00 = 25  
01 = 5  
10 = 4  
nQB  
Jitter Attenuation PLL  
2
Pulldown  
ODBSEL_[1:0]  
IDT8V89308ANLGI REVISION A JUNE 18, 2012  
2
©2012 Integrated Device Technology, Inc.  
IDT8V89308I Data Sheet  
JITTER ATTENUATOR & FEMTOCLOCK® MULTIPLIER  
Table 1. Pin Descriptions  
Number  
Name  
Type  
Description  
Analog  
Input/Output  
1, 2  
LF1, LF0  
Loop filter connection node pins. LF0 is the output. LF1 is the input.  
Charge pump current setting pin.  
Analog  
Input/Output  
3
ISET  
4, 8, 18, 24  
6, 12, 27  
7
VEE  
VCC  
Power  
Power  
Negative supply pins.  
Core supply pins.  
RESERVED  
Reserved  
Reserved pin. Do not connect.  
9,  
10,  
11  
PDSEL_2,  
PDSEL_1,  
PDSEL_0  
Input  
Pullup  
Pre-divider select pins. LVCMOS/LVTTL interface levels. See Table 3A.  
13  
VCCA  
Power  
Input  
Analog supply pin.  
14,  
15  
ODBSEL_1,  
ODBSEL_0  
Frequency select pins for Bank B output. See Table 3B.  
LVCMOS/LVTTL interface levels.  
Pulldown  
Pulldown  
16,  
17  
ODASEL_1,  
ODASEL_0  
Frequency select pins for Bank A output. See Table 3B.  
LVCMOS/LVTTL interface levels.  
Input  
19, 20  
21  
QA, nQA  
VCCO  
Output  
Power  
Output  
Differential Bank A clock outputs. LVPECL interface levels.  
Output supply pin.  
22, 23  
QB, nQB  
Differential Bank B clock outputs. LVPECL interface levels.  
Pullup/  
Pulldown  
25  
26  
nCLK1  
CLK1  
Input  
Input  
Input  
Inverting differential clock input. VCC/2 bias voltage when left floating.  
Non-inverting differential clock input.  
Pulldown  
30,  
31  
XTAL_OUT,  
XTAL_IN  
Crystal oscillator interface. XTAL_IN is the input. XTAL_OUT is the output.  
32  
VCCX  
nc  
Power  
Power supply pin for charge pump.  
No connect.  
5, 28, 29  
Unused  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
4
RPULLUP  
51  
51  
k  
RPULLDOWN Input Pulldown Resistor  
k  
IDT8V89308ANLGI REVISION A JUNE 18, 2012  
3
©2012 Integrated Device Technology, Inc.  
IDT8V89308I Data Sheet  
JITTER ATTENUATOR & FEMTOCLOCK® MULTIPLIER  
Function Tables  
Table 3A. Pre-Divider Selection Function Table  
Table 3B. Output Divider Function Table  
Inputs  
ODxSEL_1  
Inputs  
PDSEL_2  
PDSEL_1  
PDSEL_0  
Pre-Divider Value  
ODxSEL_0  
Output Divider Value  
0
1
1
1
0
0
1
1
0
0
0
1
1
3125  
0
0
1
0
1
0
25 (default)  
5
4
15625  
19440 (default)  
Table 3C. Frequency Function Table  
Input  
Frequency  
(MHz)  
Crystal  
Frequency  
(MHz)  
FemtoClock  
Feedback  
Divider Value  
Pre-Divider  
Value  
FemtoClock VCO  
Frequency (MHz)  
Output Divider  
Output Frequency  
(MHz)  
Value  
25  
5
0.008  
0.008  
0.008  
25  
1
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
625  
625  
625  
625  
625  
625  
625  
625  
625  
625  
625  
625  
25  
125  
1
1
4
156.25  
25  
3125  
3125  
3125  
15625  
15625  
15625  
19440  
19440  
19440  
25  
5
25  
125  
25  
4
156.25  
25  
125  
25  
5
125  
125  
125  
4
156.25  
25  
155.52  
155.52  
155.52  
25  
5
125  
4
156.25  
IDT8V89308ANLGI REVISION A JUNE 18, 2012  
4
©2012 Integrated Device Technology, Inc.  
IDT8V89308I Data Sheet  
JITTER ATTENUATOR & FEMTOCLOCK® MULTIPLIER  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VCC  
3.63V  
Inputs, VI  
XTAL_IN  
0V to VCC  
Other Inputs  
-0.5V to VCC + 0.5V  
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, JA  
33.1C/W (0 mps)  
-65C to 150C  
Storage Temperature, TSTG  
DC Electrical Characteristics  
Table 4A. LVPECL Power Supply DC Characteristics, VCC = VCCO = VCCX = 3.3V ± 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum  
3.465  
VCC  
Units  
V
VCC  
Core Supply Voltage  
VCCA  
VCCO  
VCCX  
IEE  
Analog Supply Voltage  
Output Supply Voltage  
Charge Pump Supply Voltage  
Power Supply Current  
Analog Supply Current  
VCC – 0.20  
3.135  
3.3  
V
3.3  
3.465  
3.465  
200  
V
3.135  
3.3  
V
mA  
mA  
ICCA  
20  
Table 4B. LVCMOS/LVTTL DC Characteristics, VCC = VCCO = VCCX = 3.3V ± 5%, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
VCC + 0.3  
0.8  
Units  
VIH  
VIL  
Input High Voltage  
2
V
V
Input Low Voltage  
-0.3  
ODASEL_[1:0],  
ODBSEL_[1:0]  
V
CC = VIN = 3.465V  
VCC = VIN = 3.465V  
CC = 3.465V, VIN = 0V  
150  
10  
µA  
µA  
µA  
µA  
Input  
High Current  
IIH  
PDSEL_[2:0]  
ODASEL_[1:0],  
ODBSEL_[1:0]  
V
-10  
Input  
Low Current  
IIL  
PDSEL_[2:0]  
VCC = 3.465, VIN = 0V  
-150  
IDT8V89308ANLGI REVISION A JUNE 18, 2012  
5
©2012 Integrated Device Technology, Inc.  
IDT8V89308I Data Sheet  
JITTER ATTENUATOR & FEMTOCLOCK® MULTIPLIER  
Table 4C. Differential DC Characteristics, VCC = VCCO = VCCX = 3.3V ± 5%, TA = -40°C to 85°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
VCC = VIN = 3.465V  
CC = 3.465V, VIN = 0V  
Minimum  
Typical  
Maximum  
Units  
µA  
µA  
µA  
V
CLK1, nCLK1  
CLK1  
150  
V
-10  
-150  
0.15  
VEE  
IIL  
Input Low Current  
nCLK1  
VCC = 3.465V, VIN = 0V  
VPP  
Peak-to-Peak Input Voltage  
1.3  
VCMR  
Common Mode Input Voltage; NOTE 1  
VCC – 0.85  
V
Common mode voltage is defined as the crossing point.  
Table 4D. LVPECL DC Characteristics, VCC = VCCO = VCCX = 3.3V ± 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol  
VOH  
Parameter  
Test Conditions  
Minimum  
VCCO – 1.10  
VCCO – 2.0  
0.6  
Typical  
Maximum  
VCCO – 0.75  
VCCO – 1.6  
1.0  
Units  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Output Voltage Swing  
V
V
V
VOL  
VSWING  
NOTE 1: Outputs terminated with 50to VCCO – 2V. See Parameter Measurement Information section, 3.3V Output Load Test Circuit.  
AC Electrical Characteristics  
Table 5. AC Characteristics, VCC = VCCO = VCCX = 3.3V ± 5%, TA = -40°C to 85°C  
Symbol  
fIN  
Parameter  
Test Conditions  
Minimum  
0.008  
25  
Typical  
Maximum  
155.52  
Units  
MHz  
MHz  
Input Frequency  
Output Frequency  
fOUT  
156.25  
RMS Phase Jitter, (Random),  
NOTE 1  
fOUT = 25MHz, 25MHz crystal,  
Integration Range: 12kHz – 5MHz  
tjit(Ø)  
tjit(Ø)  
tjit(Ø)  
0.238  
0.223  
0.223  
0.3  
0.3  
0.3  
ps  
ps  
ps  
RMS Phase Jitter, (Random),  
NOTE 1  
fOUT = 125MHz, 25MHz crystal,  
Integration Range: 12kHz – 20MHz  
RMS Phase Jitter, (Random),  
NOTE 1  
fOUT = 156.25MHz, 25MHz crystal,  
Integration Range: 12kHz – 20MHz  
tjit(pk-pk)  
tsk(o)  
tR / tF  
odc  
Peak-to-Peak Jitter  
Output Skew; NOTE 2, 3  
Output Rise/Fall Time  
Output Duty Cycle  
1e-12 BER  
25  
25  
ps  
ps  
ps  
%
20% to 80%  
140  
48  
400  
52  
XO & FemtoClock PLL Lock  
Time; NOTE 4  
tLOCK  
6
S
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device  
is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal  
equilibrium has been reached under these conditions.  
NOTE: Characterized using input frequency of 8kHz, QA/nQA and QB/nQB at the same frequency using 3rd order loop filter of 10Hz  
bandwidth. Refer to application schematics.  
NOTE 1: Refer to the Phase Noise Plot.  
NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the output differential  
cross points.  
NOTE 4: Lock Time measured from power-up to stable output frequency.  
IDT8V89308ANLGI REVISION A JUNE 18, 2012  
6
©2012 Integrated Device Technology, Inc.  
IDT8V89308I Data Sheet  
JITTER ATTENUATOR & FEMTOCLOCK® MULTIPLIER  
Typical Phase Noise (25MHz)  
Offset Frequency (Hz)  
Typical Phase Noise (125MHz)  
Offset Frequency (Hz)  
IDT8V89308ANLGI REVISION A JUNE 18, 2012  
7
©2012 Integrated Device Technology, Inc.  
IDT8V89308I Data Sheet  
JITTER ATTENUATOR & FEMTOCLOCK® MULTIPLIER  
Typical Phase Noise (156.25MHz)  
Offset Frequency (Hz)  
IDT8V89308ANLGI REVISION A JUNE 18, 2012  
8
©2012 Integrated Device Technology, Inc.  
IDT8V89308I Data Sheet  
JITTER ATTENUATOR & FEMTOCLOCK® MULTIPLIER  
Parameter Measurement Information  
2V  
2V  
2V  
V
CC  
V
CC,  
SCOPE  
V
nCLK[0:1]  
CLK[0:1]  
CCO  
V
Qx  
CCX  
VPP  
V
Cross Points  
CCA  
VCMR  
nQx  
V
EE  
VEE  
-1.3V±0.165V  
3.3V LVPECL Output Load AC Test Circuit  
Differential Input Level  
Phase Noise Plot  
nQx  
Qx  
nQy  
Qy  
tsk(o)  
Offset Frequency  
f1  
f2  
RMS Phase Jitter =  
1
*
Area Under Curve Defined by the Offset Frequency Markers  
2 * * ƒ  
Output Skew  
RMS Phase Jitter  
nQA, nQB  
QA, QB  
nQA, nQB  
80%  
80%  
tR  
tPW  
tPERIOD  
VSWING  
20%  
20%  
QA, QB  
tPW  
tF  
odc =  
x 100%  
tPERIOD  
Output Duty Cycle/Pulse Width/Period  
Output Rise/Fall Time  
IDT8V89308ANLGI REVISION A JUNE 18, 2012  
9
©2012 Integrated Device Technology, Inc.  
IDT8V89308I Data Sheet  
JITTER ATTENUATOR & FEMTOCLOCK® MULTIPLIER  
Parameter Measurement Information, continued  
XO & FemtoClock PLL Lock Time  
IDT8V89308ANLGI REVISION A JUNE 18, 2012  
10  
©2012 Integrated Device Technology, Inc.  
IDT8V89308I Data Sheet  
JITTER ATTENUATOR & FEMTOCLOCK® MULTIPLIER  
Applications Information  
Recommendations for Unused Input and Output Pins  
Inputs:  
Outputs:  
LVCMOS Control Pins  
LVPECL Outputs  
All control pins have internal pullups or pulldowns; additional  
resistance is not required but can be added for additional protection.  
A 1kresistor can be used.  
All unused LVPECL outputs can be left floating. We recommend that  
there is no trace attached. Both sides of the differential output pair  
should either be left floating or terminated.  
Wiring the Differential Input to Accept Single-Ended Levels  
Figure 1 shows how a differential input can be wired to accept single  
ended levels. The reference voltage VREF = VCC/2 is generated by  
the bias resistors R1 and R2. The bypass capacitor (C1) is used to  
help filter noise on the DC bias. This bias circuit should be located as  
close to the input pin as possible. The ratio of R1 and R2 might need  
to be adjusted to position the VREF in the center of the input voltage  
swing. For example, if the input clock swing is 2.5V and VCC = 3.3V,  
R1 and R2 value should be adjusted to set VREF at 1.25V. The values  
below are for when both the single ended swing and VCC are at the  
same voltage. This configuration requires that the sum of the output  
impedance of the driver (Ro) and the series resistance (Rs) equals  
the transmission line impedance. In addition, matched termination at  
the input will attenuate the signal in half. This can be done in one of  
two ways. First, R3 and R4 in parallel should equal the transmission  
line impedance. For most 50applications, R3 and R4 can be 100.  
The values of the resistors can be increased to reduce the loading for  
slower and weaker LVCMOS driver. When using single-ended  
signaling, the noise rejection benefits of differential signaling are  
reduced. Even though the differential input can handle full rail  
LVCMOS signaling, it is recommended that the amplitude be  
reduced. The datasheet specifies a lower differential amplitude,  
however this only applies to differential signals. For single-ended  
applications, the swing can be larger, however VIL cannot be less  
than -0.3V and VIH cannot be more than VCC + 0.3V. Though some  
of the recommended components might not be used, the pads should  
be placed in the layout. They can be utilized for debugging purposes.  
The datasheet specifications are characterized and guaranteed by  
using a differential signal.  
Figure 1. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels  
IDT8V89308ANLGI REVISION A JUNE 18, 2012  
11  
©2012 Integrated Device Technology, Inc.  
IDT8V89308I Data Sheet  
JITTER ATTENUATOR & FEMTOCLOCK® MULTIPLIER  
Differential Clock Input Interface  
The CLK /nCLK accepts LVDS, LVPECL and other differential  
signals. Both VSWING and VOH must meet the VPP and VCMR input  
requirements. Figures 2A to 2C show interface examples for the CLK  
/nCLK input with built-in 50terminations driven by the most  
common driver types. The input interfaces suggested here are  
examples only. If the driver is from another vendor, use their  
termination recommendation. Please consult with the vendor of the  
driver component to confirm the driver termination requirements.  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
125Ω  
R4  
125Ω  
Zo = 50Ω  
CLK  
Zo = 50Ω  
Zo = 50Ω  
CLK  
Zo = 50Ω  
nCLK  
Differential  
LVPECL  
nCLK  
Input  
R1  
R2  
Differential  
Input  
50Ω  
50Ω  
LVPECL  
R1  
R2  
84Ω  
84Ω  
R2  
50Ω  
Figure 2A. CLK/nCLK Input Driven by a  
3.3V LVPECL Driver  
Figure 2B. CLK/nCLK Input Driven by a  
3.3V LVPECL Driver  
3.3V  
3.3V  
Zo = 50Ω  
CLK  
R1  
100Ω  
nCLK  
Zo = 50Ω  
Receiver  
LVDS  
Figure 2C. CLK/nCLK Input Driven by a 3.3V LVDS Driver  
IDT8V89308ANLGI REVISION A JUNE 18, 2012  
12  
©2012 Integrated Device Technology, Inc.  
IDT8V89308I Data Sheet  
JITTER ATTENUATOR & FEMTOCLOCK® MULTIPLIER  
Termination for 3.3V LVPECL Outputs  
The clock layout topology shown below is a typical termination for  
LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
transmission lines. Matched impedance techniques should be used  
to maximize operating frequency and minimize signal distortion.  
Figures 3A and 3B show two different layouts which are  
recommended only as guidelines. Other suitable clock layouts may  
exist and it would be recommended that the board designers  
simulate to guarantee compatibility across all printed circuit and clock  
component process variations.  
The differential outputs are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must be  
used for functionality. These outputs are designed to drive 50  
3.3V  
R3  
125Ω  
R4  
125Ω  
3.3V  
3.3V  
3.3V  
Z
o = 50Ω  
3.3V  
+
_
Zo = 50Ω  
+
_
Input  
LVPECL  
Zo = 50Ω  
LVPECL  
Input  
Zo = 50Ω  
R1  
R2  
50Ω  
50Ω  
R1  
84Ω  
R2  
84Ω  
VCC - 2V  
1
RTT =  
* Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
Figure 3A. 3.3V LVPECL Output Termination  
Figure 3B. 3.3V LVPECL Output Termination  
IDT8V89308ANLGI REVISION A JUNE 18, 2012  
13  
©2012 Integrated Device Technology, Inc.  
IDT8V89308I Data Sheet  
JITTER ATTENUATOR & FEMTOCLOCK® MULTIPLIER  
VFQFN EPAD Thermal Release Path  
In order to maximize both the removal of heat from the package and  
the electrical performance, a land pattern must be incorporated on  
the Printed Circuit Board (PCB) within the footprint of the package  
corresponding to the exposed metal pad or exposed heat slug on the  
package, as shown in Figure 4. The solderable area on the PCB, as  
defined by the solder mask, should be at least the same size/shape  
as the exposed pad/slug area on the package to maximize the  
thermal/electrical performance. Sufficient clearance should be  
designed on the PCB between the outer edges of the land pattern  
and the inner edges of pad pattern for the leads to avoid any shorts.  
and dependent upon the package power dissipation as well as  
electrical conductivity requirements. Thus, thermal and electrical  
analysis and/or testing are recommended to determine the minimum  
number needed. Maximum thermal and electrical performance is  
achieved when an array of vias is incorporated in the land pattern. It  
is recommended to use as many vias connected to ground as  
possible. It is also recommended that the via diameter should be 12  
to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is  
desirable to avoid any solder wicking inside the via during the  
soldering process which may result in voids in solder between the  
exposed pad/slug and the thermal land. Precautions should be taken  
to eliminate any solder voids between the exposed heat slug and the  
land pattern. Note: These recommendations are to be used as a  
guideline only. For further information, please refer to the Application  
Note on the Surface Mount Assembly of Amkor’s Thermally/  
Electrically Enhance Leadframe Base Package, Amkor Technology.  
While the land pattern on the PCB provides a means of heat transfer  
and electrical grounding from the package to the board through a  
solder joint, thermal vias are necessary to effectively conduct from  
the surface of the PCB to the ground plane(s). The land pattern must  
be connected to ground through these vias. The vias act as “heat  
pipes”. The number of vias (i.e. “heat pipes”) are application specific  
SOLDER  
SOLDER  
PIN  
PIN  
EXPOSED HEAT SLUG  
PIN PAD  
GROUND PLANE  
LAND PATTERN  
(GROUND PAD)  
PIN PAD  
THERMAL VIA  
Figure 4. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale)  
IDT8V89308ANLGI REVISION A JUNE 18, 2012  
14  
©2012 Integrated Device Technology, Inc.  
IDT8V89308I Data Sheet  
JITTER ATTENUATOR & FEMTOCLOCK® MULTIPLIER  
Table 6. Crystal Characteristics  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Fundamental  
25  
Maximum  
Units  
Mode of Oscillation  
Frequency  
fN  
fT  
fS  
MHz  
ppm  
ppm  
0C  
Frequency Tolerance  
Frequency Stability  
Operating Temperature Range  
Load Capacitance  
Shunt Capacitance  
Pullability Ratio  
±20  
±30  
±30  
85  
±20  
-40  
CL  
10  
4
12  
pF  
CO  
pF  
CO / C1  
FL_3OVT  
220  
240  
3rd Overtone FL  
200  
200  
ppm  
ppm  
FL_3OVT_spur  
3rd Overtone FL Spurs  
s
ESR  
Equivalent Series Resistance  
Drive Level  
Aging @ 25 0C  
50  
1
mW  
ppm  
±3 per year  
Application Schematic Example  
Figure 5 (next page) shows an example of IDT8V89308I application  
Power supply filter recommendations are a general guideline to be  
used for reducing external noise from coupling into the devices. The  
filter performance is designed for a wide range of noise frequencies.  
This low-pass filter starts to attenuate noise at approximately 10kHz.  
If a specific frequency noise component is known, such as switching  
power supplies frequencies, it is recommended that component  
values be adjusted and if required, additional filtering be added.  
Additionally, good general design practices for power plane voltage  
stability suggests adding bulk capacitance in the local area of all  
devices.  
schematic. In this example, the device is operated at VCC = VCCX  
VCCA = VCCO = 3.3V. A 3-pole filter is used for additional spur  
=
reduction. As with any high speed analog circuitry, the power supply  
pins are vulnerable to random noise. To achieve optimum jitter  
performance, power supply isolation is required. The 8V89308I  
provides separate power supplies to isolate any high switching noise  
from coupling into the internal PLL.  
In order to achieve the best possible filtering, it is recommended that  
the placement of the filter components be on the device side of the  
PCB as close to the power pins as possible. If space is limited, the  
0.1uF capacitor in each power pin filter should be placed on the  
device side. The other components can be on the opposite side of the  
PCB.  
The schematic example focuses on functional connections and is not  
configuration specific. Refer to the pin description and functional  
tables in the datasheet to ensure that the logic control inputs are  
properly set.  
IDT8V89308ANLGI REVISION A JUNE 18, 2012  
15  
©2012 Integrated Device Technology, Inc.  
IDT8V89308I Data Sheet  
JITTER ATTENUATOR & FEMTOCLOCK® MULTIPLIER  
Logic Control Input Examples  
Set Logic  
Input to  
'1'  
Set Logic  
Input to  
'0'  
V CC  
VCC  
V CC  
RU1  
1K  
RU2  
Not Install  
R1  
125  
R2  
125  
To Logi c  
Input  
pins  
To L ogic  
In put  
pi ns  
Zo = 50  
Zo = 50  
CLK  
RD1  
Not Inst al l  
RD2  
1K  
nCLK  
LV PEC L D r iv e r  
R3  
84  
R4  
84  
3. 3 V  
FB1  
m uRata, B LM18BB221SN1  
3.3V  
XTAL_OU T  
C2  
C4  
C1  
TUNE  
C3  
10uF  
R5  
13 3  
R6  
133  
25MHz  
1uF  
1u F  
X1, 10pF  
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
XTA L_I N  
C5  
TUNE  
3. 3 V  
V CC  
FB2  
VCCO  
R7  
82.5  
R8  
82. 5  
R9  
10  
muRata, BLM18BB 221SN1  
C7  
V CCX  
0.1u  
C8  
C6  
0. 1uF  
C9  
10 u  
1uF  
LVPECL  
C10  
Termination  
0. 1 u  
U1  
Loop Filter  
VCC = VCCO= 3.3V  
R10  
1
24  
LF 0  
LF1  
LF 1  
LF 0  
IS ET  
VEE  
NC  
VCC  
RE SER VED  
VEE  
V EE  
2
23  
nQB  
QB  
nQB  
QB  
3
4
5
6
7
8
22  
21  
20  
19  
18  
17  
Rs  
40 0 k  
2.2M  
VCCO  
nQA  
QA  
V EE  
ODA SEL_0  
nQA  
QA  
Cp  
2.2nF  
C11  
3.3nF  
Zo = 50 Ohm  
Cs  
1uF  
+
-
ODASE L_0  
Zo = 50 Ohm  
C12  
0. 1u  
R11  
10K  
R12  
50  
R13  
50  
3. 3V  
F B3  
muRat a, BLM18BB 221SN1  
C14  
C13  
0. 1uF  
R14  
50  
LVPECL  
Optional  
Y-Termination  
10 u F  
R15  
10  
3. 3V  
VCCA  
VCC  
F B4  
V CC  
muRat a, BLM18BB221SN1  
C15  
0. 1 u  
C16  
10u  
C1 8  
10uF  
C17  
0. 1uF  
C19  
0. 1 u  
Figure 5. IDT8V89308I Application Schematic  
IDT8V89308ANLGI REVISION A JUNE 18, 2012  
16  
©2012 Integrated Device Technology, Inc.  
IDT8V89308I Data Sheet  
JITTER ATTENUATOR & FEMTOCLOCK® MULTIPLIER  
Power Considerations  
This section provides information on power dissipation and junction temperature for the IDT8V89308I.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the IDT8V89308I is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 200mA = 693mW  
Power (outputs)MAX = 31.55mW/Loaded Output pair  
If all outputs are loaded, the total power is 2 * 31.55mW = 63.1mW  
Total Power_MAX (3.465V, with all outputs switching) = 693mW + 63.1mW = 756.1mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and it directly affects the reliability of the device.  
The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the  
bond wire and bond pad temperature remains below 125°C.  
The equation for Tj is as follows: Tj = JA * Pd_total + TA  
Tj = Junction Temperature  
JA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance JA must be used. Assuming no air flow and  
a multi-layer board, the appropriate value is 33.1°C/W per Table 7 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.756W * 33.1°C/W = 110°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of  
board (multi-layer).  
Table 7. Thermal Resistance JA for 32 Lead VFQFN, Forced Convection  
JA by Velocity  
Meters per Second  
0
1
3
Multi-Layer PCB, JEDEC Standard Test Boards  
33.1°C/W  
28.1°C/W  
25.4°C/W  
IDT8V89308ANLGI REVISION A JUNE 18, 2012  
17  
©2012 Integrated Device Technology, Inc.  
IDT8V89308I Data Sheet  
JITTER ATTENUATOR & FEMTOCLOCK® MULTIPLIER  
3. Calculations and Equations.  
The purpose of this section is to calculate the power dissipation for the LVPECL output pairs.  
LVPECL output driver circuit and termination are shown in Figure 6.  
VCCO  
Q1  
VOUT  
RL  
50Ω  
VCCO - 2V  
Figure 6. LVPECL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination voltage of  
VCCO – 2V.  
For logic high, VOUT = VOH_MAX = VCCO_MAX – 0.75V  
(VCCO_MAX – VOH_MAX) = 0.75V  
For logic low, VOUT = VOL_MAX = VCCO_MAX 1.6V  
(VCCO_MAX – VOL_MAX) = 1.6V  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = [(VOH_MAX – (VCCO_MAX – 2V))/RL] * (VCCO_MAX – VOH_MAX) = [(2V – (VCCO_MAX – VOH_MAX))/RL] * (VCCO_MAX – VOH_MAX) =  
[(2V – 0.75V)/50] * 0.75V = 18.75mW  
Pd_L = [(VOL_MAX – (VCCO_MAX – 2V))/RL] * (VCCO_MAX – VOL_MAX) = [(2V – (VCCO_MAX – VOL_MAX))/RL] * (VCCO_MAX – VOL_MAX) =  
[(2V – 1.6V)/50] * 1.6V = 12.80mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 31.55mW  
IDT8V89308ANLGI REVISION A JUNE 18, 2012  
18  
©2012 Integrated Device Technology, Inc.  
IDT8V89308I Data Sheet  
JITTER ATTENUATOR & FEMTOCLOCK® MULTIPLIER  
Reliability Information  
Table 8. JA vs. Air Flow Table for a 32 Lead VFQFN  
JA vs. Air Flow  
Meters per Second  
0
1
3
Multi-Layer PCB, JEDEC Standard Test Boards  
33.1°C/W  
28.1°C/W  
25.4°C/W  
Transistor Count  
The transistor count for IDT8V89308I is: 22,280  
IDT8V89308ANLGI REVISION A JUNE 18, 2012  
19  
©2012 Integrated Device Technology, Inc.  
IDT8V89308I Data Sheet  
JITTER ATTENUATOR & FEMTOCLOCK® MULTIPLIER  
32 Lead VFQFN Package Outline and Package Dimensions  
IDT8V89308ANLGI REVISION A JUNE 18, 2012  
20  
©2012 Integrated Device Technology, Inc.  
IDT8V89308I Data Sheet  
JITTER ATTENUATOR & FEMTOCLOCK® MULTIPLIER  
Ordering Information  
Table 9. Ordering Information  
Part/Order Number  
8V89308ANLGI  
8V89308ANLGI8  
Marking  
IDT8V89308ANLGI  
IDT8V89308ANLGI  
Package  
“Lead-Free” 32 Lead VFQFN  
“Lead-Free” 32 Lead VFQFN  
Shipping Packaging  
Tray  
2500 Tape & Reel  
Temperature  
-40C to 85C  
-40C to 85C  
NOTE: Parts that are ordered with an "G" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal  
commercial. and industrial temperatures. Any other applications, such as those requiring high reliability or other extraordinary environmental requirements are not recommended without  
additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support  
devices or critical medical instruments.  
IDT8V89308ANLGI REVISION A JUNE 18, 2012  
21  
©2012 Integrated Device Technology, Inc.  
IDT8V89308I Data Sheet  
JITTER ATTENUATOR & FEMTOCLOCK® MULTIPLIER  
Revision History Sheet  
Rev  
Table  
Page  
Description of Change  
Date  
21  
Deleted page 21, “Option 2 of NL/NLG32 package outline.” Only Option 1 is  
applicable to this device.  
A
6/18/2012  
IDT8V89308ANLGI REVISION A JUNE 18, 2012  
22  
©2012 Integrated Device Technology, Inc.  
IDT8V89308I Data Sheet  
JITTER ATTENUATOR & FEMTOCLOCK® MULTIPLIER  
We’ve Got Your Timing Solution  
6024 Silver Creek Valley Road Sales  
Technical Support  
800-345-7015 (inside USA)  
netcom@idt.com  
San Jose, California 95138  
+408-284-8200 (outside USA) +480-763-2056  
Fax: 408-284-2775  
www.IDT.com/go/contactIDT  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in this document,  
including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not  
guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the  
suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any  
license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT  
product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third  
party owners.  
Copyright 2012. All rights reserved.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY