9DBL0641 [IDT]

6-output 3.3V PCIe Zero-Delay Buffer;
9DBL0641
型号: 9DBL0641
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

6-output 3.3V PCIe Zero-Delay Buffer

PC
文件: 总19页 (文件大小:307K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
6-output 3.3V PCIe Zero-Delay  
Buffer  
9DBL0641 / 9DBL0651  
DATASHEET  
Description  
Features/Benefits  
The 9DBL0641 / 9DBL0651 devices are 3.3V members of  
IDT's Full-Featured PCIe family. The 9DBL06 supports PCIe  
Gen1-4 Common Clocked (CC) and PCIe Separate  
Reference Independent Spread (SRIS) systems. It offers a  
choice of integrated output terminations providing direct  
connection to 85or 100transmission lines. The  
9DBL06P1 can be factory programmed with a user-defined  
power up default SMBus configuration.  
Direct connection to 100(xx41) or 85(xx51)  
transmission lines; saves 24 resistors compared to  
standard PCIe devices  
149mW typical power consumption (PLL mode@3.3V);  
eliminates thermal concerns  
VDDIO allows 30% power savings at optional 1.05V;  
maximum power savings  
SMBus-selectable features allows optimization to customer  
requirements:  
Recommended Application  
PCIe Gen1-4 clock distribution for Riser Cards, Storage,  
Networking, JBOD, Communications, Access Points  
control input polarity  
control input pull up/downs  
– slew rate for each output  
Output Features  
6 – 1-200 MHz Low-Power (LP) HCSL DIF pairs  
9DBL0641 default ZOUT = 100  
– differential output amplitude  
– output impedance for each output  
– 50, 100, 125MHz operating frequency  
9DBL0651 default ZOUT = 85  
9DBL06P1 factory programmable defaults  
Customer defined SMBus power up default can be  
programmed into P1 device; allows exact optimization to  
customer requirements  
Key Specifications  
OE# pins; support DIF power management  
PCIe Gen1-2-3-4 CC compliant in ZDB mode  
PCIe Gen2 SRIS compliant in ZDB mode  
Supports PCIe Gen2-3 SRIS in fan-out mode  
DIF cycle-to-cycle jitter <50ps  
DIF output-to-output skew < 50ps  
Bypass mode additive phase jitter is 0 ps typical rms for  
PCIe  
HCSL-compatible differential input; can be driven by  
common clock sources  
Spread Spectrum tolerant; allows reduction of EMI  
Pin/SMBus selectable PLL bandwidth and PLL Bypass;  
minimize phase jitter for each application  
Outputs blocked until PLL is locked; clean system start-up  
Device contains default configuration; SMBus interface not  
required for device operation  
Bypass mode additive phase jitter 160fs rms typ. @  
156.25M (1.5M to 10M)  
Three selectable SMBus addresses; multiple devices can  
easily share an SMBus segment  
Space saving 40-pin 5x5mm VFQFPN; minimal board  
space  
Block Diagram  
Note: Default resistors are internal on xx41/xx51 devices. P1 devices have programmable default impedances on an output-by-output basis.  
9DBL0641 / 9DBL0651 FEBRUARY 8, 2017  
1
©2017 Integrated Device Technology, Inc.  
9DBL0641 / 9DBL0651 DATASHEET  
Pin Configuration  
40 39 38 37 36 35 34 33 32 31  
vSADR_tri  
^vHIBW_BYPM_LOBW#  
FB_DNC  
NC  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
vOE3#  
DIF3#  
DIF3  
3
FB_DNC#  
4
9DBL0641/51/P1  
epad is GND  
VDDR3.3  
VDDIO  
VDDA3.3  
vOE2#  
DIF2#  
DIF2  
5
CLK_IN  
6
CLK_IN#  
7
GNDDIG  
8
SCLK_3.3  
9
SDATA_3.3  
vOE1#  
10  
11 12 13 14 15 16 17 18 19 20  
40-VFQFPN, 5mm x 5mm 0.4mm pin pitch  
^ prefix indicates internal 120KOhm pull up resistor  
^v prefix indicates internal 120KOhm pull up AND pull down resistor (biased to VDD/2)  
v prefix indicates internal 120KOhm pull down resistor  
SMBus Address Selection Table  
+
Read/Write bit  
SADR  
Address  
1101011  
1101100  
1101101  
x
x
x
0
M
1
State of SADR on first application of  
CKPWRGD_PD#  
Note: If not using CKPWRGD (CKPWRGD tied to VDD3.3), all 3.3V VDD need to transition  
from 2.1V to 3.135V in <300usec.  
Power Management Table  
SMBus  
OEx bit  
X
DIFx  
True O/P  
Low1  
Low1  
CKPWRGD_PD#  
CLK_IN  
OEx# Pin  
PLL  
Comp. O/P  
Low1  
0
1
1
1
X
X
X
0
Off  
On2  
On2  
On2  
Low1  
Running  
Running  
Running  
0
1
1
Running  
Low1  
Running  
Low1  
1
1. The output state is set by B11[1:0] (Low/Low default)  
2. If Bypass mode is selected, the PLL will be off, and outputs will be running.  
Power Connections  
PLL Operating Mode  
Pin Number  
Description  
Byte1 [7:6] Byte1 [4:3]  
VDD  
VDDIO  
GND  
HiBW_BypM_LoBW#  
MODE  
PLL Lo BW  
Bypass  
Readback  
Control  
00  
Input  
receiver  
0
M
1
00  
01  
11  
5
41  
01  
analog  
PLL Hi BW  
11  
11  
16, 31  
25  
8
Digital Power  
DIF outputs,  
Logic  
12,17,26,32,  
39  
41  
41  
PLL Analog  
6-OUTPUT 3.3V PCIE ZERO-DELAY BUFFER  
2
FEBRUARY 8, 2017  
9DBL0641 / 9DBL0651 DATASHEET  
Pin Descriptions  
PIN #  
PIN NAME  
PIN TYPE  
DESCRIPTION  
1
vSADR_tri  
LATCHED Tri-level latch to select SMBus Address. See SMBus Address Selection Table.  
IN  
LATCHED Trilevel input to select High BW, Bypass or Low BW mode. This pin is biased to VDD/2 (Bypass  
2
^vHIBW_BYPM_LOBW#  
IN  
mode) with internal pull up/pull down resistors. See PLL Operating Mode Table for Details.  
True clock of differential feedback. The feedback output and feedback input are connected  
internally on this pin. Do not connect anything to this pin.  
Complement clock of differential feedback. The feedback output and feedback input are  
connected internally on this pin. Do not connect anything to this pin.  
3.3V power for differential input clock (receiver). This VDD should be treated as an Analog  
power rail and filtered appropriately.  
3
4
5
FB_DNC  
FB_DNC#  
VDDR3.3  
DNC  
DNC  
PWR  
6
7
8
9
CLK_IN  
IN  
IN  
GND  
IN  
I/O  
PWR  
PWR  
True Input for differential reference clock.  
Complementary Input for differential reference clock.  
Ground pin for digital circuitry  
Clock pin of SMBus circuitry, 3.3V tolerant.  
Data pin for SMBus circuitry, 3.3V tolerant.  
3.3V digital power (dirty power)  
CLK_IN#  
GNDDIG  
SCLK_3.3  
10 SDATA_3.3  
11 VDDDIG3.3  
12 VDDIO  
Power supply for differential outputs  
Active low input for enabling DIF pair 0. This pin has an internal pull-down.  
1 =disable outputs, 0 = enable outputs  
13 vOE0#  
IN  
14 DIF0  
15 DIF0#  
16 VDD3.3  
17 VDDIO  
18 DIF1  
19 DIF1#  
20 NC  
OUT  
OUT  
PWR  
PWR  
OUT  
OUT  
N/A  
Differential true clock output  
Differential Complementary clock output  
Power supply, nominal 3.3V  
Power supply for differential outputs  
Differential true clock output  
Differential Complementary clock output  
No Connection.  
Active low input for enabling DIF pair 1. This pin has an internal pull-down.  
1 =disable outputs, 0 = enable outputs  
21 vOE1#  
IN  
22 DIF2  
23 DIF2#  
OUT  
OUT  
Differential true clock output  
Differential Complementary clock output  
Active low input for enabling DIF pair 2. This pin has an internal pull-down.  
1 =disable outputs, 0 = enable outputs  
24 vOE2#  
IN  
25 VDDA3.3  
26 VDDIO  
27 DIF3  
PWR  
PWR  
OUT  
OUT  
3.3V power for the PLL core.  
Power supply for differential outputs  
Differential true clock output  
Differential Complementary clock output  
28 DIF3#  
Active low input for enabling DIF pair 3. This pin has an internal pull-down.  
1 =disable outputs, 0 = enable outputs  
29 vOE3#  
IN  
30 NC  
N/A  
PWR  
PWR  
OUT  
OUT  
No Connection.  
Power supply, nominal 3.3V  
Power supply for differential outputs  
Differential true clock output  
31 VDD3.3  
32 VDDIO  
33 DIF4  
34 DIF4#  
Differential Complementary clock output  
Active low input for enabling DIF pair 4. This pin has an internal pull-down.  
1 =disable outputs, 0 = enable outputs  
35 vOE4#  
IN  
36 DIF5  
37 DIF5#  
OUT  
OUT  
Differential true clock output  
Differential Complementary clock output  
Active low input for enabling DIF pair 5. This pin has an internal pull-down.  
1 =disable outputs, 0 = enable outputs  
Power supply for differential outputs  
38 vOE5#  
39 VDDIO  
IN  
PWR  
Input notifies device to sample latched inputs and start up on first high assertion. Low enters  
Power Down Mode, subsequent high assertions exit Power Down Mode. This pin has internal  
pull-up resistor.  
40 ^CKPWRGD_PD#  
41 ePAD  
IN  
GND  
Connect paddle to ground.  
FEBRUARY 8, 2017  
3
6-OUTPUT 3.3V PCIE ZERO-DELAY BUFFER  
9DBL0641 / 9DBL0651 DATASHEET  
Test Loads  
Terminations  
Device  
Low-Power push-pull HCSL Output test load  
(integrated terminations)  
Zo ()  
100  
100  
100  
85  
Rs ()  
None needed  
7.5  
9DBL0641  
9DBL0651  
9DBL06P1  
9DBL0641  
9DBL0651  
9DBL06P1  
L inches  
Prog.  
N/A  
None needed  
Prog.  
Differential Zo  
85  
85  
2pF  
2pF  
L = 5 inches  
Alternate Terminations  
The 9DBL0641 / 9DBL0651 can easily drive LVPECL, LVDS, and CML logic. See “AN-891 Driving LVPECL, LVDS, and CML  
Logic with IDT's "Universal" Low-Power HCSL Outputs” for details.  
6-OUTPUT 3.3V PCIE ZERO-DELAY BUFFER  
4
FEBRUARY 8, 2017  
9DBL0641 / 9DBL0651 DATASHEET  
Absolute Maximum Ratings  
Stresses above the ratings listed below can cause permanent damage to the 9DBL0641 / 9DBL0651. These ratings, which are  
standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other  
conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum  
rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the  
recommended operating temperature range.  
PARAMETER  
SYMBOL  
CONDITIONS  
UNITS NOTES  
MIN  
-0.5  
TYP  
MAX  
4.6  
VDD+0.5  
Supply Voltage  
Input Voltage  
VDDx  
VIN  
V
V
1,2  
1,3  
Input High Voltage, SMBus  
VIHSMB  
Ts  
Tj  
SMBus clock and data pins  
Human Body Model  
3.9  
150  
125  
V
1
1
1
1
Storage Temperature  
Junction Temperature  
Input ESD protection  
-65  
°C  
°C  
V
ESD prot  
2500  
1Guaranteed by design and characterization, not 100% tested in production.  
2 Operation under these conditions is neither implied nor guaranteed.  
3 Not to exceed 4.6V.  
Electrical Characteristics–Clock Input Parameters  
TA = TAMB, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
900  
UNITS NOTES  
Input Crossover Voltage -  
DIF_IN  
VCROSS  
Cross Over Voltage  
150  
mV  
1
Input Swing - DIF_IN  
Input Slew Rate - DIF_IN  
Input Leakage Current  
VSWING  
dv/dt  
IIN  
Differential value  
Measured differentially  
300  
0.4  
-5  
mV  
V/ns  
uA  
1
1,2  
8
5
VIN = VDD , VIN = GND  
Input Duty Cycle  
dtin  
Measurement from differential wavefrom  
45  
0
55  
125  
%
1
1
Input Jitter - Cycle to Cycle  
JDIFIn  
Differential Measurement  
ps  
1 Guaranteed by design and characterization, not 100% tested in production.  
2Slew rate measured through +/-75mV window centered around differential zero  
Electrical Characteristics–SMBus Parameters  
TA = TAMB; Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS NOTES  
SMBus Input Low Voltage  
SMBus Input High Voltage  
VILSMB  
VIHSMB  
VDDSMB = 3.3V  
VDDSMB = 3.3V  
@ IPULLUP  
0.8  
3.6  
0.4  
V
V
2.1  
SMBus Output Low Voltage VOLSMB  
V
SMBus Sink Current  
Nominal Bus Voltage  
SCLK/SDATA Rise Time  
IPULLUP  
VDDSMB  
tRSMB  
@ VOL  
4
mA  
V
2.7  
3.6  
1000  
300  
(Max VIL - 0.15) to (Min VIH + 0.15)  
(Min VIH + 0.15) to (Max VIL - 0.15)  
ns  
ns  
1
1
SCLK/SDATA Fall Time  
SMBus Operating  
Frequency  
tFSMB  
fSMB  
SMBus operating frequency  
500  
kHz  
2,3  
1 Guaranteed by design and characterization, not 100% tested in production.  
2. The device must be powered up for the SMBus to function.  
3.  
The differential input clock must be running for the SMBus to be active  
FEBRUARY 8, 2017  
5
6-OUTPUT 3.3V PCIE ZERO-DELAY BUFFER  
9DBL0641 / 9DBL0651 DATASHEET  
Electrical Characteristics–Input/Supply/Common Parameters–Normal Operating  
Conditions  
TA = TAMB, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS NOTES  
Supply Voltage  
Output Supply Voltage  
Ambient Operating  
Temperature  
VDDx  
VDDIO  
Supply voltage for core and analog  
Supply voltage for Low Power HCSL Outputs  
3.135  
0.95  
3.3  
1.05-3.3  
3.465  
3.465  
V
V
TAMB  
Industrial range  
-40  
25  
85  
°C  
Input High Voltage  
VIH  
0.75 VDDx  
VDDx + 0.3  
V
Single-ended inputs, except SMBus  
Input Low Voltage  
Input High Voltage  
Input Mid Voltage  
Input Low Voltage  
VIL  
VIHtri  
VIMtri  
VILtri  
IIN  
-0.3  
0.25 VDDx  
VDD + 0.3  
V
V
0.75 VDDx  
Single-ended tri-level inputs ('_tri' suffix)  
0.4 VDDx 0.5 VDDx 0.6 VDDx  
V
-0.3  
-5  
0.25 VDDx  
5
V
Single-ended inputs, VIN = GND, VIN = VDD  
Single-ended inputs  
IN = 0 V; Inputs with internal pull-up resistors  
IN = VDD; Inputs with internal pull-down resistors  
Bypass mode  
uA  
Input Current  
V
IINP  
-50  
50  
uA  
V
1
200  
140  
65  
175  
7
MHz  
MHz  
MHz  
MHz  
nH  
2
2
2
2
1
1
1
1
100MHz PLL mode  
60  
30  
75  
100.00  
50.00  
Input Frequency  
FIN  
50MHz PLL mode  
125MHz PLL mode  
125.00  
Pin Inductance  
Capacitance  
Lpin  
CIN  
Logic Inputs, except DIF_IN  
DIF_IN differential clock inputs  
Output pin capacitance  
1.5  
1.5  
5
pF  
CINDIF_IN  
COUT  
2.7  
6
pF  
pF  
From VDD Power-Up and after input clock  
stabilization or de-assertion of PD# to 1st clock  
Clk Stabilization  
TSTAB  
1
ms  
1,2  
Input SS Modulation  
Frequency PCIe  
Allowable Frequency for PCIe Applications  
(Triangular Modulation)  
fMODINPCIe  
30  
33  
kHz  
Input SS Modulation  
Frequency non-PCIe  
Allowable Frequency for non-PCIe Applications  
(Triangular Modulation)  
fMODIN  
tLATOE#  
tDRVPD  
0
1
66  
3
kHz  
clocks  
us  
DIF start after OE# assertion  
DIF stop after OE# deassertion  
DIF output enable after  
OE# Latency  
Tdrive_PD#  
1,3  
1,3  
300  
PD# de-assertion  
Tfall  
tF  
Fall time of single-ended control inputs  
5
5
ns  
ns  
2
2
Trise  
tR  
Rise time of single-ended control inputs  
1Guaranteed by design and characterization, not 100% tested in production.  
2Control input must be monotonic from 20% to 80% of input swing.  
3Time from deassertion until outputs are >200 mV  
6-OUTPUT 3.3V PCIE ZERO-DELAY BUFFER  
6
FEBRUARY 8, 2017  
9DBL0641 / 9DBL0651 DATASHEET  
Electrical Characteristics–DIF Low-Power HCSL Outputs  
TA = TAMB, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP MAX UNITS NOTES  
V/ns  
V/ns  
%
dV/dt  
dV/dt  
dV/dt  
Δ
Scope averaging on, fast setting  
Scope averaging on, slow setting  
Slew rate matching  
2
1.2  
2.8  
1.9  
7
4
3.1  
20  
1,2,3  
1,2,3  
1,2,4  
Slew rate  
Slew rate matching  
Voltage High  
Statistical measurement on single-ended signal  
using oscilloscope math function. (Scope  
averaging on)  
VHIGH  
660  
768  
-11  
850  
7
7
mV  
Voltage Low  
VLOW  
-150  
150  
Max Voltage  
Min Voltage  
Crossing Voltage (abs)  
Vmax  
Vmin  
Vcross_abs  
Measurement on single ended signal using  
absolute value. (Scope averaging off)  
Scope averaging off  
811  
-49  
357  
14  
1150  
7
7
1,5  
1,6  
mV  
-300  
250  
550  
140  
mV  
mV  
Crossing Voltage (var)  
-Vcross  
Scope averaging off  
Δ
1Guaranteed by design and characterization, not 100% tested in production.  
2 Measured from differential waveform  
3 Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around  
differential 0V.  
4 Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a +/-75mV window centered on  
the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the  
oscilloscope is to use for the edge rate calculations.  
5 Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising  
edge (i.e. Clock rising and Clock# falling).  
6 The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross_min/max (Vcross  
absolute) allowed. The intent is to limit Vcross induced modulation by setting -Vcross to be smaller than Vcross absolute.  
Δ
7 At default SMBus settings.  
Electrical Characteristics–Current Consumption  
TA = TAMB, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions  
PARAMETER  
SYMBOL  
IDDA  
CONDITIONS  
MIN  
TYP  
7
MAX  
15  
UNITS NOTES  
VDDA, PLL Mode, @100MHz  
VDDx, All outputs active @100MHz  
mA  
mA  
mA  
Operating Supply Current  
IDD  
17  
22  
IDDIO  
IDDAPD  
IDDPD  
VDDIO, All outputs active @100MHz  
VDDA, CKPWRGD_PD#=0  
VDDx, CKPWRGD_PD#=0  
20  
0.6  
25  
2
mA  
mA  
mA  
2
2
2
Powerdown Current  
3.8  
6
IDDIOPD  
VDDIO, CKPWRGD_PD#=0  
0.04  
0.10  
1 Guaranteed by design and characterization, not 100% tested in production.  
2 Input clock stopped.  
FEBRUARY 8, 2017  
7
6-OUTPUT 3.3V PCIE ZERO-DELAY BUFFER  
9DBL0641 / 9DBL0651 DATASHEET  
Electrical Characteristics–Output Duty Cycle, Jitter, Skew and PLL Characteristics  
TA = TAMB, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS NOTES  
-3dB point in High BW Mode (100MHz)  
-3dB point in Low BW Mode (100MHz)  
Peak Pass band Gain (100MHz)  
2
1
3.3  
1.5  
0.8  
4
2
2
MHz  
MHz  
dB  
1,5  
1,5  
1
PLL Bandwidth  
BW  
PLL Jitter Peaking  
Duty Cycle  
tJPEAK  
tDC  
Measured differentially, PLL Mode  
Measured differentially, Bypass Mode  
Bypass Mode, VT = 50%  
45  
-1  
50  
0.0  
3406  
8
55  
1
%
%
1
Duty Cycle Distortion  
tDCD  
1,3  
1
tpdBYP  
tpdPLL  
tsk3  
2500  
-100  
4500  
100  
ps  
ps  
Skew, Input to Output  
PLL Mode VT = 50%  
1,4  
Skew, Output to Output  
Jitter, Cycle to cycle  
VT = 50%  
PLL mode  
Additive Jitter in Bypass Mode  
21  
15  
0.1  
55  
50  
1
ps  
ps  
ps  
1,4  
1,2  
1,2  
tjcyc-cyc  
1 Guaranteed by design and characterization, not 100% tested in production.  
2 Measured from differential waveform  
3 Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode.  
4 All outputs at default slew rate  
5 The MIN/TYP/MAX values of each BW setting track each other, i.e., Low BW MAX will never occur with Hi BW MIN.  
Electrical Characteristics–Filtered Phase Jitter Parameters - PCIe Common Clocked  
(CC) Architectures  
TAMB = over the specified operating range. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions  
INDUSTRY  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
23  
MAX  
32  
UNITS Notes  
ps (p-p) 1,2,3,5  
LIMIT  
86  
tjphPCIeG1-CC  
PCIe Gen 1  
PCIe Gen 2 Lo Band  
10kHz < f < 1.5MHz  
ps  
0.6  
1.7  
0.8  
3
1,2,5  
(rms)  
(PLL BW of 5-16MHz or 8-5MHz, CDR = 5MHz)  
PCIe Gen 2 High Band  
1.5MHz < f < Nyquist (50MHz)  
(PLL BW of 5-16MHz or 8-5MHz, CDR = 5MHz)  
PCIe Gen 3  
(PLL BW of 2-4MHz or 2-5MHz, CDR = 10MHz)  
PCIe Gen 4  
(PLL BW of 2-4MHz or 2-5MHz, CDR = 10MHz)  
tjphPCIeG2-CC  
Phase Jitter,  
PLL Mode  
ps  
2.1  
3.1  
1,2,5  
(rms)  
ps  
0.48  
0.48  
0.01  
1
tjphPCIeG3-CC  
tjphPCIeG4-CC  
tjphPCIeG1-CC  
0.4  
0.4  
0.0  
1,2,5  
(rms)  
ps  
(rms)  
0.5  
1,2,5  
ps  
PCIe Gen 1  
1,2,5  
(p-p)  
PCIe Gen 2 Lo Band  
10kHz < f < 1.5MHz  
(PLL BW of 5-16MHz or 8-5MHz, CDR = 5MHz)  
PCIe Gen 2 High Band  
1.5MHz < f < Nyquist (50MHz)  
(PLL BW of 5-16MHz or 8-5MHz, CDR = 5MHz)  
PCIe Gen 3  
(PLL BW of 2-4MHz or 2-5MHz, CDR = 10MHz)  
PCIe Gen 4  
ps  
0.0  
0.0  
0.01  
0.01  
1,2,4,5  
(rms)  
tjphPCIeG2-CC  
Additive Phase Jitter,  
n/a  
ps  
Bypass mode  
1,2,4,5  
(rms)  
ps  
tjphPCIeG3-CC  
0.0  
0.0  
0.01  
0.01  
1,2,4,5  
(rms)  
ps  
tjphPCIeG4-CC  
1,2,4,5  
(rms)  
(PLL BW of 2-4MHz or 2-5MHz, CDR = 10MHz)  
1 Applies to all outputs.  
2 Based on PCIe Base Specification Rev4.0 version 0.7draft. See http://www.pcisig.com for latest specifications.  
3 Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.  
4 For RMS values additive jitter is calculated by solving the following equation for b [a^2+b^2=c^2] where a is rms input jitter and c is rms total jitter.  
5 Driven by 9FGL0841 or equivalent  
6-OUTPUT 3.3V PCIE ZERO-DELAY BUFFER  
8
FEBRUARY 8, 2017  
9DBL0641 / 9DBL0651 DATASHEET  
Electrical Characteristics–Filtered Phase Jitter Parameters - PCIe Separate  
Reference Independent Spread (SRIS) Architectures5  
TAMB = over the specified operating range. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions  
INDUSTRY  
LIMIT  
PARAMETER  
SYMBOL  
tjphPCIeG2-  
CONDITIONS  
MIN  
TYP  
1.2  
MAX  
1.5  
UNITS Notes  
PCIe Gen 2  
(PLL BW of 16MHz , CDR = 5MHz)  
ps  
1,2  
2
(rms)  
SRIS  
Phase Jitter, PLL Mode  
tjphPCIeG3-  
PCIe Gen 3  
ps  
0.5  
n/a  
0.0  
0.0  
1,2,6  
(rms)  
(PLL BW of 2-4MHz or 2-5MHz, CDR = 10MHz)  
SRIS  
tjphPCIeG2-  
PCIe Gen 2  
(PLL BW of 16MHz , CDR = 5MHz)  
ps  
0.01  
1,2,4  
(rms)  
Additive Phase Jitter,  
Bypass mode  
SRIS  
n/a  
tjphPCIeG3-  
PCIe Gen 3  
ps  
0.01  
1,2,4,6  
(rms)  
(PLL BW of 2-4MHz or 2-5MHz, CDR = 10MHz)  
SRIS  
1 Applies to all outputs.  
2 Based on PCIe Base Specification Rev3.1a. These filters are different than Common Clock filters. See http://www.pcisig.com for latest specifications.  
3 Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.  
4 For RMS values, additive jitter is calculated by solving the following equation for b [a^2+b^2=c^2] where a is rms input jitter and c is rms total jitter.  
5 As of PCIe Base Specification Rev4.0 draft 0.7, SRIS is not currently defined for Gen1 or Gen4.  
6 This device does not support PCIe Gen3 SRIS in PLL mode. It supports PCIe Gen3 SRIS in bypass mode.  
Electrical Characteristics– Unfiltered Phase Jitter Parameters  
TA = TAMB, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions  
INDUSTRY  
PARAMETER  
SYMBOL  
tjph156M  
CONDITIONS  
MIN  
TYP  
159  
MAX  
LIMIT  
N/A  
UNITS Notes  
156.25MHz, 1.5MHz to 10MHz, -20dB/decade  
rollover < 1.5MHz, -40db/decade rolloff > 10MHz  
fs  
1,2,3  
(rms)  
Additive Phase Jitter,  
Fanout Mode  
tjph156M12k-  
156.25MHz, 12kHz to 20MHz, -20dB/decade  
rollover <12kHz, -40db/decade rolloff > 20MHz  
fs  
363  
N/A  
1,2,3  
(rms)  
20  
1Guaranteed by design and characterization, not 100% tested in production.  
2
DRiven by Rohde&Schartz SMA100  
3 For RMS figures, additive jitter is calculated by solving the following equation: Additive jitter = SQRT[(total jitter)^2 - (input jitter)^2]  
FEBRUARY 8, 2017  
9
6-OUTPUT 3.3V PCIE ZERO-DELAY BUFFER  
9DBL0641 / 9DBL0651 DATASHEET  
General SMBus Serial Interface Information  
How to Write  
How to Read  
Controller (host) sends a start bit  
Controller (host) sends the write address  
IDT clock will acknowledge  
Controller (host) will send a start bit  
Controller (host) sends the write address  
IDT clock will acknowledge  
Controller (host) sends the beginning byte location = N  
IDT clock will acknowledge  
Controller (host) sends the beginning byte location = N  
IDT clock will acknowledge  
Controller (host) sends the byte count = X  
IDT clock will acknowledge  
Controller (host) will send a separate start bit  
Controller (host) sends the read address  
IDT clock will acknowledge  
Controller (host) starts sending Byte N through Byte  
N+X-1  
IDT clock will send the data byte count = X  
IDT clock sends Byte N+X-1  
IDT clock will acknowledge each byte one at a time  
Controller (host) sends a Stop bit  
IDT clock sends Byte 0 through Byte X (if X was  
(H)  
written to Byte 8)  
Controller (host) will need to acknowledge each byte  
Controller (host) will send a not acknowledge bit  
Controller (host) will send a stop bit  
Index Block Write Operation  
Index Block Read Operation  
Controller (Host)  
starT bit  
Slave Address  
IDT (Slave/Receiver)  
Controller (Host)  
starT bit  
IDT (Slave/Receiver)  
T
T
Slave Address  
WR  
WRite  
WR  
WRite  
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
Beginning Byte = N  
Data Byte Count = X  
Beginning Byte N  
Beginning Byte = N  
RT  
Repeat starT  
Slave Address  
ReaD  
RD  
ACK  
O
O
O
O
O
O
Data Byte Count=X  
Beginning Byte N  
ACK  
ACK  
Byte N + X - 1  
ACK  
O
O
O
P
stoP bit  
O
O
O
Note: SMBus Address is Latched on SADR pin.  
Byte N + X - 1  
Unless otherwise indicated, default values are for the 641  
and 0651. P1 devices are fully factory programmable.  
N
P
Not acknowledge  
stoP bit  
6-OUTPUT 3.3V PCIE ZERO-DELAY BUFFER  
10  
FEBRUARY 8, 2017  
9DBL0641 / 9DBL0651 DATASHEET  
SMBus Table: Output Enable Register 1  
Byte 0  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
DIF OE5  
DIF OE4  
Control Function  
Output Enable  
Output Enable  
Type  
RW  
RW  
0
1
Default  
Pin Control  
Pin Control  
1
1
0
1
1
1
0
1
See B11[1:0]  
Reserved  
DIF OE3  
DIF OE2  
DIF OE1  
Output Enable  
Output Enable  
Output Enable  
Reserved  
Output Enable  
RW  
RW  
RW  
Pin Control  
Pin Control  
Pin Control  
See B11[1:0]  
See B11[1:0]  
DIF OE0  
RW  
Pin Control  
1. A low on these bits will overide the OE# pin and force the differential output to the state indicated by B11[1:0] (Low/Low default)  
SMBus Table: PLL Operating Mode and Output Amplitude Control Register  
Byte 1  
Bit 7  
Bit 6  
Name  
PLLMODERB1  
PLLMODERB0  
Control Function  
PLL Mode Readback Bit 1  
PLL Mode Readback Bit 0  
Type  
R
R
0
1
Default  
Latch  
Latch  
See PLL Operating Mode Table  
Values in B1[7:6]  
set PLL Mode  
Values in B1[4:3]  
set PLL Mode  
PLLMODE_SWCNTRL  
Enable SW control of PLL Mode RW  
0
Bit 5  
RW1  
RW1  
PLLMODE1  
PLLMODE0  
PLL Mode Control Bit 1  
0
0
1
1
0
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
See PLL Operating Mode Table  
PLL Mode Control Bit 0  
Reserved  
RW  
Controls Output Amplitude  
RW  
AMPLITUDE 1  
AMPLITUDE 0  
00 = 0.6V  
10 = 0.75V  
01= 0.68V  
11 = 0.85V  
1. B1[5] must be set to a 1 for these bits to have any effect on the part.  
SMBus Table: Slew Rate Control Register  
Byte 2  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
SLEWRATESEL DIF5  
SLEWRATESEL DIF4  
Control Function  
Slew rate selection  
Slew rate selection  
Type  
RW  
RW  
0
1
Default  
Slow Setting  
Slow Setting  
Fast Setting  
Fast Setting  
1
1
1
1
1
1
1
1
Reserved  
SLEWRATESEL DIF3  
SLEWRATESEL DIF2  
SLEWRATESEL DIF1  
Slew rate selection  
Slew rate selection  
Slew rate selection  
Reserved  
Slew rate selection  
RW  
RW  
RW  
Slow Setting  
Slow Setting  
Slow Setting  
Fast Setting  
Fast Setting  
Fast Setting  
SLEWRATESEL DIF0  
RW  
Slow Setting  
Fast Setting  
Note: See "Low-Power HCSL Outputs" table for slew rates.  
SMBus Table: Slew Rate Control Register  
Byte 3  
Bit 7  
Bit 6  
Name  
Control Function  
Reserved  
Reserved  
Enable SW selection of  
frequency  
Type  
0
1
Default  
1
1
SW frequency  
change disabled  
SW frequency  
change enabled  
FREQ_SEL_EN  
RW  
0
Bit 5  
RW1  
RW1  
00 = 100M, 10 = 125M  
01 = 50M, 11= Reserved  
FSEL1  
FSEL0  
Freq. Select Bit 1  
0
Bit 4  
Freq. Select Bit 0  
Reserved  
Reserved  
Adjust Slew Rate of FB  
0
1
1
1
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SLEWRATESEL FB  
RW  
Slow Setting  
Fast Setting  
1. B3[5] must be set to a 1 for these bits to have any effect on the part.  
Byte 4 is Reserved  
FEBRUARY 8, 2017  
11  
6-OUTPUT 3.3V PCIE ZERO-DELAY BUFFER  
9DBL0641 / 9DBL0651 DATASHEET  
SMBus Table: Revision and Vendor ID Register  
Byte 5  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
RID3  
RID2  
RID1  
RID0  
VID3  
VID2  
VID1  
VID0  
Control Function  
Type  
R
R
R
R
R
R
R
R
0
1
Default  
0
0
0
1
0
0
0
1
Revision ID  
B rev = 0001  
0001 = IDT  
VENDOR ID  
SMBus Table: Device Type/Device ID  
Byte 6  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Control Function  
Type  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
1
Default  
Device Type1  
Device Type0  
Device ID5  
Device ID4  
Device ID3  
Device ID2  
Device ID1  
Device ID0  
00 = FGx, 01 = DBx ZDB/FOB,  
10 = DMx, 11= DBx FOB  
0
1
0
0
0
1
1
0
Device Type  
Device ID  
000110binary or 06 hex  
SMBus Table: Byte Count Register  
Byte 7  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Control Function  
Type  
0
1
Default  
Reserved  
Reserved  
Reserved  
0
0
0
0
1
0
0
0
BC4  
BC3  
BC2  
BC1  
BC0  
RW  
RW Writing to this register will configure how  
RW many bytes will be read back, default is  
RW  
RW  
Byte Count Programming  
= 8 bytes.  
Bytes 8 and 9 are Reserved  
SMBus Table: PD_Restore  
Byte 10  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Control Function  
Type  
0
1
Default  
Reserved  
1
1
0
0
0
0
0
0
Power-Down (PD) Restore  
Restore Default Config. In PD  
Reserved  
RW Clear Config in PD Keep Config in PD  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
6-OUTPUT 3.3V PCIE ZERO-DELAY BUFFER  
12  
FEBRUARY 8, 2017  
9DBL0641 / 9DBL0651 DATASHEET  
SMBus Table: Stop State and Impedance Control  
Byte 11  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
FB_imp[1]  
FB_imp[0]  
Control Function  
FB Zout  
Type  
RW  
RW  
0
1
Default  
00=33DIF Zout 10=100DIF Zout  
01=85DIF Zout  
see Note  
FB Zout  
11 = Reserved  
Reserved  
Reserved  
Reserved  
0
0
0
0
0
0
Reserved  
STP[1]  
STP[0]  
True/Complement DIF Output  
Disable State  
RW  
RW  
00 = Low/Low  
01 = HiZ/HiZ  
10 = High/Low  
11 = Low/High  
Note: xx41 = 10, xx51 = 01, P1 = factory programmable.  
SMBus Table: Impedance Control  
Byte 12  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Control Function  
DIF2 Zout  
Type  
RW  
RW  
RW  
RW  
0
1
Default  
DIF2_imp[1]  
DIF2_imp[0]  
DIF1_imp[1]  
DIF1_imp[0]  
00=33DIF Zout 10=100DIF Zout  
01=85DIF Zout 11 = Reserved  
00=33DIF Zout 10=100DIF Zout  
01=85DIF Zout 11 = Reserved  
DIF2 Zout  
DIF1 Zout  
DIF1 Zout  
see Note  
Reserved  
Reserved  
X
X
DIF0_imp[1]  
DIF0_imp[0]  
DIF0 Zout  
DIF0 Zout  
RW  
RW  
00=33DIF Zout 10=100DIF Zout  
01=85DIF Zout  
see Note  
11 = Reserved  
Note: xx41 = 10, xx51 = 01, P1 = factory programmable.  
SMBus Table: Impedance Control  
Byte 13  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Control Function  
Type  
RW  
RW  
RW  
RW  
0
1
Default  
DIF5_imp[1]  
DIF5_imp[0]  
DIF4_imp[1]  
DIF4_imp[0]  
DIF5 Zout  
DIF5 Zout  
DIF4 Zout  
DIF6 Zout  
00=33DIF Zout 10=100DIF Zout  
01=85DIF Zout 11 = Reserved  
00=33DIF Zout 10=100DIF Zout  
01=85DIF Zout 11 = Reserved  
see Note  
Reserved  
Reserved  
X
X
DIF3_imp[1]  
DIF3_imp[0]  
DIF3 Zout  
DIF3 Zout  
RW  
RW  
00=33DIF Zout 10=100DIF Zout  
01=85DIF Zout  
see Note  
11 = Reserved  
Note: xx41 = 10, xx51 = 01, P1 = factory programmable.  
SMBus Table: Pull-up Pull-down Control  
Byte 14  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Control Function  
Type  
RW  
RW  
RW  
RW  
0
1
Default  
OE2_pu/pd[1]  
OE2_pu/pd[0]  
OE1_pu/pd[1]  
OE1_pu/pd[0]  
OE2 Pull-up(PuP)/  
Pull-down(Pdwn) control  
OE1 Pull-up(PuP)/  
Pull-down(Pdwn) control  
Reserved  
00=None  
01=Pdwn  
00=None  
01=Pdwn  
10=Pup  
11 = Pup+Pdwn  
10=Pup  
0
1
0
1
X
X
0
1
11 = Pup+Pdwn  
Reserved  
OE0_pu/pd[1]  
OE0_pu/pd[0]  
OE0 Pull-up(PuP)/  
Pull-down(Pdwn) control  
RW  
RW  
00=None  
01=Pdwn  
10=Pup  
11 = Pup+Pdwn  
Note: These values are for xx41 and xx51. P1 is factory programmable.  
FEBRUARY 8, 2017  
13  
6-OUTPUT 3.3V PCIE ZERO-DELAY BUFFER  
9DBL0641 / 9DBL0651 DATASHEET  
SMBus Table: Pull-up Pull-down Control  
Byte 15  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Control Function  
OE5 Pull-up(PuP)/  
Pull-down(Pdwn) control  
OE4 Pull-up(PuP)/  
Pull-down(Pdwn) control  
Reserved  
Type  
RW  
RW  
RW  
RW  
0
1
Default  
OE5_pu/pd[1]  
OE5_pu/pd[0]  
OE4_pu/pd[1]  
OE4_pu/pd[0]  
00=None  
01=Pdwn  
00=None  
01=Pdwn  
10=Pup  
11 = Pup+Pdwn  
10=Pup  
0
1
0
1
X
X
0
1
11 = Pup+Pdwn  
Reserved  
OE3_pu/pd[1]  
OE3_pu/pd[0]  
OE3 Pull-up(PuP)/  
Pull-down(Pdwn) control  
RW  
RW  
00=None  
01=Pdwn  
10=Pup  
11 = Pup+Pdwn  
Note: These values are for xx41 and xx51. P1 is factory programmable.  
SMBus Table: Pull-up Pull-down Control  
Byte 16  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Control Function  
Reserved  
Type  
0
1
Default  
0
0
0
0
X
X
1
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
CKPWRGD_PD_pu/pd[1]  
CKPWRGD_PD_pu/pd[0]  
CKPWRGD_PD Pull-up(PuP)/ RW  
00=None  
01=Pdwn  
10=Pup  
11 = Pup+Pdwn  
Pull-down(Pdwn) control  
RW  
* 9DBL09xx devices only.  
Note: These values are for xx41 and xx51. P1 is factory programmable.  
Bytes 17 is Reserved and and reads back 0h00.  
SMBus Table: Polarity Control  
Byte 18  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
OE5_polarity  
OE4_polarity  
Control Function  
Sets OE5 polarity  
Sets OE4 polarity  
Type  
0
1
Default  
RW Enabled when Low Enabled when High  
RW Enabled when Low Enabled when High  
0
0
0
0
0
0
0
0
Reserved  
OE3_polarity  
OE2_polarity  
OE1_polarity  
Sets OE3 polarity  
Sets OE2 polarity  
Sets OE1 polarity  
Reserved  
Sets OE0 polarity  
RW Enabled when Low Enabled when High  
RW Enabled when Low Enabled when High  
RW Enabled when Low Enabled when High  
OE0_polarity  
RW Enabled when Low Enabled when High  
SMBus Table: Polarity Control  
Byte 19  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Name  
Control Function  
Type  
0
1
Default  
Reserved  
0
0
0
0
0
0
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Determines  
CKPWRGD_PD polarity  
Power Down when Power Down when  
Low High  
CKPWRGD_PD  
RW  
0
Bit 0  
6-OUTPUT 3.3V PCIE ZERO-DELAY BUFFER  
14  
FEBRUARY 8, 2017  
9DBL0641 / 9DBL0651 DATASHEET  
Marking Diagrams  
ICS  
BL0641BI  
YYWW  
COO  
ICS  
BL0651BI  
YYWW  
COO  
ICS  
B6P1B000I  
YYWW  
COO  
LOT  
LOT  
LOT  
Notes:  
1. “LOT” is the lot sequence number.  
2. “COO” denotes country of origin.  
3. YYWW is the last two digits of the year and week that the part was assembled.  
4. Line 2: truncated part number  
5. “I” denotes industrial temperature range device.  
Thermal Characteristics  
TYP.  
VALUE  
42  
PARAMETER  
SYMBOL  
CONDITIONS  
PKG  
UNITS NOTES  
C/W  
°
Junction to Case  
Junction to Base  
1
1
1
1
1
1
θJC  
θJb  
C/W  
°
2.4  
39  
33  
28  
27  
C/W  
°
Junction to Air, still air  
θJA0  
θ
Thermal Resistance  
NDG40  
C/W  
°
Junction to Air, 1 m/s air flow  
Junction to Air, 3 m/s air flow  
Junction to Air, 5 m/s air flow  
θJA1  
θJA3  
θJA5  
C/W  
°
C/W  
°
1ePad soldered to board  
FEBRUARY 8, 2017  
15  
6-OUTPUT 3.3V PCIE ZERO-DELAY BUFFER  
9DBL0641 / 9DBL0651 DATASHEET  
Package Outline and Dimensions (NDG40)  
6-OUTPUT 3.3V PCIE ZERO-DELAY BUFFER  
16  
FEBRUARY 8, 2017  
9DBL0641 / 9DBL0651 DATASHEET  
Package Outline and Dimensions, cont. (NDG40)  
FEBRUARY 8, 2017  
17  
6-OUTPUT 3.3V PCIE ZERO-DELAY BUFFER  
9DBL0641 / 9DBL0651 DATASHEET  
Ordering Information  
Shipping  
Packaging  
Trays  
Part / Order Number  
9DBL0641BKILF  
9DBL0641BKILFT  
9DBL0651BKILF  
9DBL0651BKILFT  
9DBL06P1BxxxKILF  
9DBL06P1BxxxKILFT  
Output Impedance  
Package  
40-pin VFQFPN -40 to +85° C  
Temperature  
100  
Tape and Reel 40-pin VFQFPN -40 to +85° C  
Trays 40-pin VFQFPN -40 to +85° C  
Tape and Reel 40-pin VFQFPN -40 to +85° C  
Trays 40-pin VFQFPN -40 to +85° C  
IDT for addtional information. Tape and Reel 40-pin VFQFPN -40 to +85° C  
85Ω  
Factory configurable. Contact  
“LF” suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
“B” is the device revision designator (will not correlate with the datasheet revision).  
“xxx” is a unique factory assigned number to identify a particular default configuration.  
Revision History  
Rev. Initiator Issue Date Description  
Page #  
1. Electrical Table and SMBus Updates/Corrections  
2. Release to final.  
1. SMBus operating frequency is now set to 500kHz max.  
B
C
RDW  
RDW  
6/2/2016  
Various  
6/7/2016 2. Removed duplicate Absolute Maximum Table.  
3. Corrected "Test Loads" table  
Various  
D
E
F
RDW  
RDW  
RDW  
6/8/2016 1. Added Frequency Select info to Byte 3  
6/14/2016 1. Updated IDD tables  
9/2/2016 1. Corrected Byte 2 to properly indicate slew rate control bits  
11  
7
11  
Updated part numbering throughout datasheet to be 9DBL0641 /  
9DBL0651  
G
RDW  
2/8/2017  
Various  
6-OUTPUT 3.3V PCIE ZERO-DELAY BUFFER  
18  
FEBRUARY 8, 2017  
Corporate Headquarters  
6024 Silver Creek Valley Road  
San Jose, CA 95138 USA  
www.IDT.com  
Sales  
Tech Support  
www.idt.com/go/support  
1-800-345-7015 or 408-284-8200  
Fax: 408-284-2775  
www.IDT.com/go/sales  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in  
this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined  
in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether  
express or implied, including, but not limited to, the suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This  
document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably  
expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Product specification subject to change without notice. Other trademarks and service marks used herein, including protected  
names, logos and designs, are the property of IDT or their respective third party owners.  
Copyright ©2017 Integrated Device Technology, Inc.. All rights reserved.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY